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ABSTRACT: Recently, the criteria-weighted fuzzy soft max-min decision-making (WFSMmDM) method
provided in [Razak, S. A., Mohamad, D., A decision making method using fuzzy soft sets, Malaysian Journal
of Fundamental and Applied Sciences, 2013, 9(2), 99-104] has been configured to operate in the fuzzy
parameterized fuzzy soft matrices (fpfs-matrices) space by Enginoglu and Memis [A configuration of some soft
decision-making algorithms via fpfs-matrices, Cumhuriyet Science Journal, 2018, 39(4), 871-881] faithfully to
the original. Even though this configured method, which is denoted by RM13 and constructed by and-
product/or-product (RM13a/RM130), is useful in soft decision-making, it is of great importance to improve the
method in terms of running time and complexity when processing a large number of data. In this study, to
improve WFSMmDM, we propose two algorithms, denoted by EM20a and EM200. Furthermore, we prove that
EM20a is equivalent to RM13a. Thereafter, we compare the running time of these algorithms. The results show
that EM20a and EM200 outperform RM13a and RM13o, respectively, in any number of data. We then apply
EM200 to the problem of performance-based value assignment concerning seven filters used in image
denoising. Besides, we compare the proposed two methods’ performance ranking with that of eight state-of-art
soft decision-making methods. Finally, we provide the conclusive remarks and some suggestions for further
research.
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1. Introduction

Molodtsov (1999) propounded the concept of soft sets to deal with uncertainties and up to
now many researchers have conducted various applied and theoretical studies thereon (Maji
et al., 2001, 2003; Cagman and Enginoglu, 2010a; Cagman et al., 2010; Cagman et al.,
2011a,b; Deli and Cagman, 2015; Enginoglu et al., 2015; Zorlutuna and Atmaca, 2016; Riaz
and Hashmi, 2017, 2018; Riaz et al., 2018; Senel, 2018; Ullah et al., 2018; Sezgin et al.,
2019). To able to avail of the ability of this concept in computer mathematics (or sciences),
Cagman and Enginoglu presented the soft matrices (Cagman and Enginoglu, 2010b) and
fuzzy soft matrices (Cagman and Enginoglu, 2012). The authors also proposed the soft max-
min decision-making (SMmDM) method and the fuzzy soft max-min decision-making
(FSMmDM) method using and-product of soft matrices and fuzzy soft matrices, respectively
(Cagman and Enginoglu, 2010b; Cagman and Enginoglu, 2012). Although these methods are
useful in decision-making, they cannot easily model a problem with a parameter containing
uncertainty. Afterwards, Razak and Mohamad (2011, 2013) have presented Criteria-
Weighted SMmDM (WSMmDM) and Criteria-Weighted FSMmDM (WFSMmDM)
methods for soft matrices and fuzzy soft matrices, respectively. Although the methods therein
have taken the parameters’ weights into account, they still suffer from two drawbacks, i.e.
running time and complexity.
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Latterly, Enginoglu and Memis (2018a) have configured eighteen soft decision-making
methods to operate in the fuzzy parameterized fuzzy soft matrices (fpfs-matrices) space
(Enginoglu, 2012; Enginoglu and Cagman, n.d.) faithfully to the original. Since the
configurations have been made as faithfully to the originals, the drawbacks mentioned above
have also been transferred. Further, the authors have highlighted the significance of studies
on the simplification and different configurations of these methods therein. Therefore, several
soft decision-making algorithms in (Enginoglu and Memis, 2018a) have been simplified and
applied to a given decision-making problem (Enginoglu and Memis, 2018b,¢; Enginoglu et
al., 2018a,b, 2019b,c,d).

In this paper, we focus on improving two new methods free of the disadvantages mentioned
above. In Section 2, we present the concept of fpfs-matrices (Enginoglu, 2012; Enginoglu and
Cagman, n.d.) and RM13 constructed by and-product/or-product (RM13a/RM130) (Razak
and Mohamad, 2011, 2013, Enginoglu and Memis, 2018a). In Section 3, we propound two
new methods, namely EM20a and EM200, and prove that EM20a is equivalent to RM13a. In
Section 4, we compare the running time of these algorithms. In Section 5, we apply EM200
to a decision-making problem in which the noise removal/image denoising filters can be
ordered performance-wise. We then compare the ranking orders produced by the proposed
methods with the ranking orders produced by eight state-of-art soft decision-making methods.
Finally, we discuss the need for further research.

2. Preliminaries

In this section, firstly, the definitions of fpfs-sets (Cagman et al., 2010; Enginoglu, 2012) and
fpfs-matrices (Enginoglu, 2012; Enginoglu and Cagman, n.d.) are presented. Throughout this
paper, let E be a parameter set, F(E) be the set of all fuzzy sets over E, and u € F(E). Here,

a fuzzy set is denoted by {”(")x i X € E}.

Definition 1. (Cagman et al., 2010; Enginoglu, 2012) Let U be a universal set, u € F(E),
and « be a function from u to F(U). Then, the set {(*®x, a(*®x)):x € E} being the
graphic of a is called a fuzzy parameterized fuzzy soft set (fpfs-set) parameterized via E over
U (or briefly over U).
Example 1. Let E = {xq, x5, x3, x4} and U = {u,, u,, uz, uy, us}. Then,

a= {( 1X1, {O'SUZ, 0.8u4})’ (0.7x2’ {O.Zull 1U3, 0'8u5}), (O.ng' {0'8u1, 0.4u3' 0.7u4})' ( 0x4’ {0.9u2' O.6u5})}

is an fpfs-set over U.
In the present paper, the set of all fpfs-sets over U is denoted by FPFSg(U).

Definition 2. (Enginoglu, 2012; Enginoglu and Cagman, n.d.) Let a € FPFSg(U). Then,
[a;;] is called the matrix representation of a (or briefly fpfs-matrix of a) and is defined by

o1 Qo2 Qo3 -+ Qon

aj; Q12 Q13 - Qip
lay] =

m1  Am2 am3s o OQmp

such that for i € {0,1,2,--- } and j_'e {1,2', . '
S u(x;p), i=0
ij a(”(xi)xj)(ui), i #0
Here, if [U| = m — 1 and |E| = n, then [a;;] has order m X n.
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Example 2. The fpfs-matrix of @ provided in Example 1 is as follows:
1 0.7 05 0 7

0 02 08 0
(] = 05 0 0 09
Y 0 1 04 O

08 0 07 0
0 08 0 0.6

From now on, the set of all fpfs-matrices parameterized via E over U is denoted by FPFSg[U].

Definition 3. (Enginoglu and Cagman, n.d.) Let [aij]mxnl € FPFSg [U], [biklmxn, €
FPFSg,[U], and [¢iplmxn,n, € FPFSg, xg,[U] suchthatp = n,(j — 1) + k. For all i and p,
if ¢;p == min{a;;, b}, then [c;,] is called and-product of [a;;] and [b] and is denoted by
[ai;] A [Bik],

if ¢ == max{a;j, by}, then [c;,] is called or-product of [a;;] and [b;] and is denoted by
[ai;] V [bir],

if ¢ip == min{a;;, 1 — by}, then [c;,] is called andnot-product of [a;;] and [b;] and is
denoted by [a;;] A [b].,

if ¢;p == max{a;j, 1 — by}, then [c;,] is called ornot-product of [a;;] and [b;] and is
denoted by [a;;] V [bix].

Secondly, we present the algorithm RM13a (RM130) (Enginoglu and Memis, 2018a).

RM13a (RM130) Algorithm Steps
Construct three fpfs-matrices [a;;], [bi], and [c;c] suchthat }.; ag; = Xk boj = X¢ Cor = 1

Obtain [A;;], [Bix], and [C;¢] defined by A;; := agja;;, Bk = boibik, and Cy; := corcy; SUch that
ie{1,2,..,m—1}andj k,t € {1,2,..,n}

Find and-product (or-product) fpfs-matrix [d;,] of [4;;] and [Bj]
Obtain [x;;] defined by

0, Ik = (Z)
suchthati € {1,2,..,m — 1}, k € {1,2,...,n},and [ :== {p | 3i,d, # 0 A (k —1)n <p < kn}
Find and-product (or-product) fpfs-matrix [e;,-] of [x;,] and [C;]
Obtain [y;.] defined by

min{e;.}, I # @
Vit = {TEIt

0, It = @

suchthati € {1,2,...,m—1},t € {1,2,...,n},and [; =={r | Ji,e; #0 A (t — D)n <r < tn}

Obtain [s;;] defined by s;; = m?x{yl-t} suchthati € {1,2,...,m —1}andt € {1,2,...,n}

Obtain the decision set { *'u;|u; € U}
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3. Soft Decision-Making Methods: EM20a and EM200
Under this title, we first propose an algorithm denoted by EM20a.

EM20a Algorithm Steps
Construct three fpfs-matrices [a;;], [bi], and [c;¢]

Obtain score matrix [s;;] defined by
S = {min {min {rjrg};({aofaij}'%ilg{b%bik} }vrtréill;l{COtcit}}r I, 1p,Ic # @
0, otherwise

suchthati € {1,2,..,m — 1}, I, == {j | 3i,agja;; # 0}, I == { k | 3i, boy.by, # 0}, and I, :=
{t | 31, COtcit #: 0}

Obtain the decision set { *'u;|u; € U}

It is clear that the values s;; give a ranking order over u;. Therefore, the decision-maker can
opt for the proper ones of the alternatives.

Theorem 1. EM20a is equivalent to RM13a.

PROOF. Let us consider the score matrices [$;;] and [s;;] provided in RM13a and EM20a,
respectively. We first prove that 3¢, [, # 0 © (I, # 0 A I, # O A I. # ). Then,

at, I, #0 < 3Ai,e;p 0
& 3i,min{x;, C;;} # 0
& 3i,(x;x # 0ACy #0)
& 3, (gg};{dm} +0ACy # 0)
T (gglz {minfay;, By} # 0 A e # 0)
& 3i,(A;j #0ABy #0ACy #0)

& 3, (aojaij #=0A bOkbik =0 A CotCit * 0)

S I,#O0ANL, #OANI, +0

Therefore, Vt, I, =0 = (I, =0VI,=0VI. =@). Here,i € {1,2,...,m—1},j,k,t €
{1,2,..,n},p=n(—1)+ k,andr = n(k — 1) + t. Moreover, it can be seen that I, #
Q=1 # 0.

Suppose that I = {r{, 75, .., n }, k € {x1, %5, ..., %}, and I, = {cy, ¢, ..., ¢} Then,
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min{e;.}, I #0
§p = max{y;;} = max{ "€k
t t 0, L=¢

{min{eir}, L+0 {min{eir}, L#0 {min{eir}, I, #0
== max T€l Rk Tre€ly ), TEIn
0, 11 = Q O, [2 = o 0, [Tl = @

min {eirll,eirzl, ...,eirwl/(l)}, L+0
O, [1 = o
= max< min {e"lz'e”zz' ""e”vzv(z)}' b # Q, .
0, 12 = @
{min {eirln,eirzn, ""eirﬁ(m}‘ L, #0
0, I,=0

f{mm {min{xixl,Cicl}, min{x;y,, Cic, }, ...,min{xixl,Cicv}}, L #0
0, L=0

{min{xixZ,Cicl}, min{xixZ,CiCZ}, ...,min{xixz,(]icu}}, L#+0 '
0, L=0
{min{xixu, Cicl}, min{xixu, CiCZ}, s min{xixu, Cic,,}} , I,#0
0, L,=0

min
= max\

oy

{
{min

r{mln {xl’xl, min{Cicl,CiCZ, ""CiCU}}' 11 * @
0, L =0
min {xl-xZ,min{Cl-Cl,CiCZ, ---,Cic,,}}, L#8

{

= max\

—y

min {xixu,min{Cicl,CiCZ, ---:Cicy}}: I, #0
0, I,=9

. b min{Ci } ¢, 3t 1
— min m’?X{xzk} rtréll?{ Lt}} t# 0

0, vt I, =0

0, otherwise
from . . .
(Theorem 4.1) =  min {mm {fanF;lf{Azj},ggIr;{Bik} },rtrglrcl{cit}}, Iy, L, 1.+ @
in [27]

0, otherwise

{min {r}gl;({aojaij} ’ Eéilr;{bﬂkbik} } ’ lggll:{cotcit}} ’ Ia: Ib! IC * @

0, otherwise

= min{ m}\?x {gg,il{dip}}:rtréllil{&t}], I, I, 1. #0

Hence, the functions s;; provided in RM13a and EM20a are equal in any case. QED
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Secondly, we propose another algorithm denoted by EM200.

EM200 Algorithm Steps
Construct three fpfs-matrices [a;;], [by], and [c;]

Obtain score matrix [s;;] defined by

max4 maximaxiag;a;;{, min{bgb; } min{cy.c; I,,I,,].#®
Sip = { {jela{ 0j ”}'kelb{ 0k lk} , telc{ ot Lt} ’ ar'bric
0, otherwise

suchthati € {1,2,...,m — 1}, I, == {j | 3i,agja;; # 0}, I == { k | 3i, bo.by, # 0}, and I, :=

Obtain the decision set { *'u;|u; € U}

It is clear that the values s;; give a ranking order over u;. Therefore, the decision-maker can
opt for the proper ones of the alternatives.

4. Simulation Results

This section first compares the running time of RM13a and EM20a by using MATLAB
R2019b. In the absence of a difficulty, we use a laptop with 2.6 GHz i5 Dual-Core CPU and
4 GB RAM to compare the methods. However, in this study, we utilize a workstation with
I(R) Xeon(R) CPU E5-1620 v4 @ 3.5 GHz and 64 GB RAM because the computer is
incapable of running RM13a if the number of parameters exceeds 5000.

We present the running time of RM13a and EM20a in Table 1 and Figure 1 for 10 objects
and 10-100 parameters. In Table 1, although the difference in running time is low, EM20a is
60 times faster than RM13a and has about 98% advantage

Table 1. The running time of the methods for 10 objects and 10-100 parameters (in second)

Parameter Count 10 20 30 40 50 60 70 80 90 100
RM13a 0.0254 0.0098 0.0042 0.0075 0.0164 0.0144 0.0166 0.0201 0.0154 0.0182
EM20a 0.0097  0.0030  0.0007 0.0006 0.0024  0.0022 0.0004 0.0002 0.0004 0.0003
Difference 0.0157  0.0069 0.0035 0.0069 0.0140 0.0122 0.0162 0.0199 0.0149 0.0180
Advantage (%) 61.8764 69.8312 83.8179 91.6161 85.3601 84.7762 97.4951  98.7605 97.0879  98.5553
0.030
S 0.025

2 \

S 0.020

v 0.015 [~

P \ / ——RM13a
£ 0.010 \ \ /

= ——EM20a
= 0.005

0.000

10 20 30 40 50 60 70 8 90 100
Parameter (e)

Figure 1. The figure for Table 1
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We then give the running time data of RM13a and EM20a in Table 2 and Figure 2 for 10
objects and 1000-10000 parameters. Table 2 shows that EM20a has a 1046-second advantage
over RM13a.

Table 2. The running time of the methods for 10 objects and 1000-10000 parameters (in second)

Parameter Count 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
RM13a 1.8102 12.4026 37.2990 80.1327 144.9890 242.7991 376.2401 546.7492 766.2646  1046.9352
EM20a 0.0108 0.0054 0.0028 0.0040  0.0065 0.0076 0.0055 0.0061 0.0077 0.0084
Difference 1.7994 12.3972 37.2962 80.1286 144.9824 242.7916 376.2345 546.7430 766.2569 1046.9268

Advantage (%) 99.4026 99.9566 99.9925 99.9950 99.9955 99.9969  99.9985 99.9989  99.9990 99.9992

1200

1000 /

600
/ ——RM13a
400

/ ——EM20a

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Parameter (e)

Time: Second

0

Figure 2. The figure for Table 2

In Table 3 and Figure 3, we give the running time for 10 parameters and 10-100 objects.
Despite the little difference of running time between these methods, EM20a is about eight
times faster than RM13a in 10 parameters and 100 objects.

Table 3. The running time of the methods for 10-100 objects and 10 parameters (in second)

Object Count 10 20 30 40 50 60 70 80 90 100
RM13a 0.0258 0.0095 0.0036 0.0042 0.0111  0.0091 0.0036 0.0040 0.0044 0.0048
EM20a 0.0111  0.0037 0.0006 0.0007 0.0035  0.0015 0.0004 0.0005 0.0005 0.0006
Difference 0.0147  0.0059 0.0030 0.0035 0.0076  0.0076 0.0031 0.0035 0.0038 0.0042
Advantage (%) 56.9685 61.5630 82.2879 82.4274 685547 83.2298 87.4329 88.0516 87.8472  87.8744
0.030
\

o 0.025 \

C

S 0.020

[S]

5 \

® 0,015

© \ ——RM13a

£ 0010 N ~

i NN\ N ——EM20a

0.000

10 20 30 40 50 60 70 8 90 100
Object (u)

Figure 3. The figure for Table 3
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We then offer the running time data in Table 4 and Figure 4 for 10 parameters and 1000-
10000 objects. The results show that increasing the number of objects only does not affect
the running time as severely as increasing the number of parameters does. Besides, EM20a
works faster in a large number of parameters than in a large number of objects.

Table 4. The running time of the methods for 1000-10000 objects and 10 parameters (in second)

Object Count 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
RM13a 0.1438 0.2608 0.5117 0.8513 1.2834 1.8454 2.4193 3.1301 3.9135 4.8779
EM20a 0.0169 0.0150 0.0200 0.0269 0.0372 0.0462 0.0550 0.0653 0.0752 0.0889
Difference 0.1268 0.2459 0.4917 0.8244 1.2462 1.7992 2.3643 3.0648 3.8382 4.7890
Advantage (%) 88.2163 94.2671 96.0854 96.8384 97.1001 97.4985 97.7267 97.9149 98.0780 98.1778
6
5 ° /
c
o4
O
@ /
w3
o - ——RM13a
€2
= - ——EM20a
1 /
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Object (u)

Figure 4. The figure for Table 4

In Table 5 and Figure 5, we present the running time for 10-100 parameters and 10-100
objects. Although the difference of running time between these methods is little, EM20a is

up to 145 times faster than RM13a.

Table 5. The running time of the methods for 10-100 objects and 10-100 parameters (in second)

Count 10 20 30 40 50 60 70 80 90 100
RM13a 0.0254 0.0098 0.0090 0.0136 0.0431 0.0478 0.0701 0.0949 0.1196 0.1595
EM20a 0.0098 0.0026 0.0005 0.0005 0.0038 0.0018 0.0010 0.0008 0.0010 0.0011
Difference 0.0156 0.0072 0.0085 0.0131 0.0393 0.0460 0.0691 0.0941 0.1186 0.1584
Advantage (%) 61.4693 73.7303 94.8735 96.0255 91.2480 96.2688 98.5028 99.1123 99.1688 99.3137
0.20
- 0.16
c
S e
g 0.12
A /
@ 0.08 RM13a
S
004 ——EM20a
0.00 —
10 20 30 40 50 60 70 8 90 100
Parameter and Object (e, u)

Figure 5. The figure for Table 5
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The authors provide their running time in Table 6 and Figure 6 for 100-1000 parameters and
100-1000 objects. 0.0594-second and 1292-second running time data suggest that EM20a is
more suitable than RM13a for any real-time software.

Table 6. The running time of the methods for 100-1000 objects and 100-1000 parameters

(in second)

Count 100 200 300 400 500 600 700 800 900 1000
RM13a 0.2262 25518 11.8859 35.0138 81.3499 164.1251 297.2333 510.7264 831.2171 1292.8854
EM20a 0.0111 0.0056 0.0124 0.0094 0.0280  0.0221 0.0333 0.0467 0.0474 0.0594
Difference 0.2150 2.5462 11.8734 35.0043 81.3219 164.1031 297.2000 510.6797 831.1697 1292.8260

Advantage (%) 95.0751 99.7805 99.8954 99.9731 99.9656 99.9865 99.9888  99.9909  99.9943 99.9954

1400
1200 /
1000 /
800 /
600 /

——RM13a
400 /

—EM20
200 // a

100 200 300 400 500 600 700 800 900 1000
Parameter and Object (e, u)

Time: Second

0

Figure 6. The figure for Table 6

All the results mentioned above indicate that EM20a outperforms RM13a in the presence of
any number of data. Thus, EM20a can be more efficaciously in intelligent systems than
RM13a. Similarly, EM200 performs better than RM130 in any number of data. However,
there is a need for another comparison, e.g. of ranking performances, to better understand
whether EM20o0 is fitter to be used in smart systems than RM13o is.

Secondly, we compare the running time data of RM130 and EM200 by using MATLAB
R2019b and a workstation with I(R) Xeon(R) CPU E5-1620 v4 @ 3.5 GHz and 64 GB RAM
because the computer is incapable of running RM13o if the parameters are more than 5000.
In Table 7 and Figure 7, we present the running time data of RM130 and EM200 for 10
objects and 10-100 parameters. Even though the running time difference between these
methods is little, EM200 performs about 35 times faster in 100 parameters and 10 objects
than RM13o0 does. The contribution of the results and the importance of the results should be
emphasised.

Table 7. The running time of the methods for 10 objects and 10-100 parameters (in second)

Parameter Count 10 20 30 40 50 60 70 80 90 100

RM130 0.0215 0.0090 0.0056 0.0075 0.0095  0.0186 0.0167 0.0121 0.0155 0.0210
EM200 0.0094 0.0027 0.0006 0.0006 0.0024  0.0021 0.0004 0.0003 0.0005 0.0006
Difference 0.0121  0.0063 0.0049 0.0069 0.0071  0.0165 0.0162 0.0118 0.0150 0.0205

Advantage (%) 56.4999 70.2257 88.4300 91.8359 75.0223 88.5756 97.5088 97.7622 96.9134  97.2908
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0.025
T 0.020 -\ /
o
8 0.015 \ /\ /
< \ / \/
o 0.010 RM130
= 0.005 v\ EM200

0.000

10 20 30 40 50 60 70 80 90 100
Parameter (e)

Figure 7. The figure for Table 7

In Table 8 and Figure 8, we offer the data on the running time of RM130 and EM200 for 10
objects and 1000-10000 parameters. It must be noted that the difference in running time
between these methods has been remarkably increased. 1049-second running time shows that
RM13o is unsuitable for any real-time software that processes a large number of data.

Table 8. The running time of the methods for 10 objects and 1000-10000 parameters (in second)

Parameter Count 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
RM130 1.8135 12.3918 37.3141 79.0899 1452155 242.4259 378.3586 547.9714 774.1607 1049.7234
EM200 0.0116  0.0045 0.0028  0.0038 0.0065 0.0071 0.0056 0.0065 0.0091 0.0084
Difference 1.8019 12.3873 37.3113 79.0861 1452090 242.4188 378.3530 547.9649 774.1516 1049.7150

Advantage (%) 99.3599 99.9635 99.9924 99.9952  99.9955  99.9971 99.9985 99.9988 99.9988  99.9992

1200
1000 /

800 /

600 /

400 / ——RM130

200 / ——EM200
0 /

Time: Second

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Parameter (e)

Figure 8. The figure for Table 8

Moreover, we give the running time data for 10 parameters and 10-100 objects in Table 9 and
Figure 9. Despite the little difference of running time between these methods, EM200
performs nearly six times faster in the presence of 10 parameters and 100 objects than RM130
does.

Table 9. The running time of the methods for 10-100 objects and 10 parameters (in second)

Object Count 10 20 30 40 50 60 70 80 90 100

RM130 0.0229  0.0122 0.0038  0.0042  0.0074 0.0063 0.0036  0.0040  0.0045  0.0067
EM200 0.0100  0.0037  0.0007  0.0007  0.0027  0.0015 0.0005 0.0005 0.0006  0.0012
Difference 0.0129  0.0085 0.0031  0.0034  0.0047  0.0048 0.0031 0.0035 0.0039  0.0055

Advantage (%) 56.2014 69.8167 82.2833 82.3911 63.1816 76.1694 87.4118 87.0136 87.1234 82.3050
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Figure 9. The figure for Table 9

In addition, we provide the running time data for 10 parameters and 1000-10000 objects in
Table 10 and Figure 10. The results show that increasing the number of objects only does not
affect the running time as dramatically as an increase in the number of parameters. Besides,
EM200 works faster in a large number of parameters than of objects.

Table 10. The running time of the methods for 1000-10000 objects and 10 parameters (in second)

Object Count 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

RM130 0.1081 0.2877  0.5093  0.8545 1.2902 1.8647 24231 31187 39172  4.8781

EM200 0.0159 0.0154  0.0192 0.0270  0.0373  0.0466  0.0547  0.0648  0.0758  0.0882

Difference 0.0922 0.2723 04901  0.8276 1.2528 18180 23685  3.0539  3.8413  4.7899

Advantage (%) 85.2610 94.6338 96.2331 96.8426 97.1064 97.4999 97.7440 97.9218 98.0639 98.1925
5

. pd
3 /
2 / RM130

0 L =
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Object (u)

Time: Second

Figure 10. The figure for Table 10

Table 11 and Figure 11 offer the data on the running time for 10-100 parameters and 10-100
objects. Although the difference of running time between these methods is little, EM200 runs
up to 138 times faster than RM130 does.
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Table 11. The running time of the methods for 10-100 objects and 10-100 parameters (in second)

Count 10 20 30 40 50 60 70 80 90 100
RM130 0.0227 0.0101 0.0073 0.0227 0.0360 0.0478 0.0672 0.0985 0.1332 0.1527
EM200 0.0102 0.0028 0.0004 0.0009 0.0026 0.0019 0.0010 0.0012 0.0010 0.0011
Difference 0.0125 0.0073 0.0069 0.0217 0.0334 0.0460 0.0661 0.0972 0.1322 0.1515
Advantage (%) 55.1189 72.6515 93.8748 959867 92.6882 96.1294 98.4663 98.7575 99.2383  99.2587
0.20
< 0.16
c
8 /
S 0.12
N /
@ 0.08 RM130
S
004 ——EM200
0.00 Te—
10 20 30 40 50 60 70 8 90 100
Parameter and Object (e, u)

Figure 11. The figure for Table 11

In Table 12 and Figure 12, we give the running time data for 100-1000 parameters and 100-
1000 objects. 0.0587-second and 1288-second running time suggests that EM200 is more
suitable for any real-time software than RM13o0.

Table 12. The running time of the methods for 100-1000 objects and 100-1000 parameters
(in second)

Count 100 200 300 400 500 600 700 800 900 1000
RM130 0.2253 25523 11.8292 35.0828 81.2237 163.0558 298.5850 512.0823 832.7337 1288.3115
EM200 0.0110 0.0055 0.0060 0.0096 0.0231  0.0223 0.0282 0.0367 0.0470 0.0587
Difference 0.2143 25469 11.8232 35.0732 81.2006 163.0335 2985568 512.0456 832.6867 1288.2528

Advantage (%) 95.0969  99.7848 99.9495 99.9727 99.9716 99.9863  99.9906  99.9928  99.9944  99.9954

1400
1200 /

1000 /
800 //
600 — ——RM130
400 - ——EM200
200 ——

0

100 200 300 400 500 600 700 800 900 1000
Parameter and Object (e, u)

Time: Second

Figure 12. The figure for Table 12

The results show that EM200 outperforms RM130 in any number of data.
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5. An Application of EM200 to a Performance-Based Value Assignment
(PVA) Problem

In this section, we firstly apply EM200 to sort seven state-of-art filters used in image
denoising in terms of noise removal performance. Even though it is more difficult to sort
these filters in the event that the filters perform variously in different noise densities, EM200
ably copes with this difficulty. To illustrate, let us consider the mean-PSNR results (Table
13), the mean-SSIM results (Table 14), and the mean-VIF results (Table 15) for 20 traditional
images provided in (Enginoglu et al., 2019b).

Table 13. The mean-PSNR results for the 20 traditional images with different SPN ratios

Noise Density 10% 20% 30% 40% 50% 60% 70% 80% 90%
DBA 37.52 34.29 31.96 29.83 27.86 25.89 23.90 21.55 18.55
MDBUTMF 36.80 32.18 29.02 28.48 28.81 28.34 26.95 23.42 15.29
BPDF 36.98 33.54 31.03 28.88 26.82 24.60 21.98 17.74 10.51
NAFSMF 36.08 33.27 31.49 30.15 29.02 27.96 26.82 25.47 22.34
AWMF 36.34 35.00 33.83 32.69 31.47 30.14 28.68 26.99 24.70
DAMF 39.58 36.33 34.14 32.45 30.99 29.64 28.28 26.69 24.35
ARmMF 40.04 37.12 35.14 33.53 31.99 30.45 28.86 27.08 24.74

Table 14. The mean-SSIM results for the 20 traditional images with different SPN ratios

Noise Density 10% 20% 30% 40% 50% 60% 70% 80% 90%

DBA 09796 09584  0.9315 0.8968 0.8520 0.7949  0.7213  0.6265 0.4966
MDBUTMF 09774 09197 0.8117 0.7973 0.8399  0.8410 0.8025 0.7023 0.3566
BPDF 09783 09536  0.9229  0.8838 0.8323  0.7634  0.6680  0.5096 0.2585
NAFSMF 0.9748  0.9504 09248 0.8973 0.8666 0.8320  0.7910  0.7357 0.6190
AWMF 0.9728  0.9622 09484 09315 0.9098 0.8816  0.8437  0.7904 0.7028
DAMF 0.9854  0.9699 09516 0.9303 0.9051 0.8748 0.8368  0.7846 0.6964
ARMF 09868 0.9735 09581 0.9400 0.9173  0.8880  0.8491  0.7947 0.7056

Table 15. The mean-VIF results for the 20 traditional images with different SPN ratios

Noise Density 10% 20% 30% 40% 50% 60% 70% 80% 90%

DBA 0.8548 0.7319 0.6179 05119 04095 03128  0.2229  0.1365 0.0635
MDBUTMF 0.8272  0.6713  0.5044  0.4420 0.4310 0.3978 0.3302  0.2212 0.0730
BPDF 0.8188  0.6858  0.5659  0.4564  0.3529  0.2541 0.1614  0.0783 0.0334
NAFSMF 0.7902  0.6751  0.5828 0.5030 0.4307 0.3604 0.2897  0.2129 0.1226
AWMF 0.7896  0.7366  0.6789  0.6181  0.5533  0.4833  0.4066  0.3129 0.1928
DAMF 0.8787  0.7816  0.6943  0.6162 05437 0.4731  0.3998  0.3096 0.1913
ARmMF 0.8832  0.7975 07210 0.6474 05741  0.4974  0.4158  0.3182 0.1955

Assume that the success in high noise densities is more important than that in others. In this
case, the values in Table 13, 14, and 15 can be represented in three fpfs-matrices as follows:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.9371 0.8564 0.7982 0.7450 0.6958 0.6466 0.5969 0.5382 0.4633
0.9191 0.8037 0.7248 0.7113 0.7195 0.7078 0.6731 0.5849 0.3819
[a--] . 109236 0.8377 0.7750 0.7213 0.6698 0.6144 0.5490 0.4431 0.2625
Y 0.9011 0.8309 0.7865 0.7530 0.7248 0.6983 0.6698 0.6361 0.5579
0.9076 0.8741 0.8449 0.8164 0.7860 0.7527 0.7163 0.6741 0.6169
0.9885 0.9073 0.8526 0.8104 0.7740 0.7403 0.7063 0.6666 0.6081
*1.0000 0.9271 0.8776 0.8374 0.7990 0.7605 0.7208 0.6763 0.6179
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r0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9796 0.9584 0.9315 0.8968 0.8520 0.7949 0.7213 0.6265 0.4966
09774 0.9197 0.8117 0.7973 0.8399 0.8410 0.8025 0.7023 0.3566
0.9783 0.9536 0.9229 0.8838 0.8323 0.7634 0.6680 0.5096 0.2585
0.9748 0.9504 09248 0.8973 0.8666 0.8320 0.7910 0.7357 0.6190
0.9728 0.9622 09484 0.9315 0.9098 0.8816 0.8437 0.7904 0.7028
0.9854 0.9699 0.9516 0.9303 0.9051 0.8748 0.8368 0.7846 0.6964
L0.9868 0.9735 0.9581 0.9400 0.9173 0.8880 0.8491 0.7947 0.7056-

[bi] =

and

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.8548 0.7319 0.6179 0.5119 0.4095 0.3128 0.2229 0.1365 0.0635
0.8272 0.6713 0.5044 0.4420 0.4310 0.3978 0.3302 0.2212 0.0730
[c;,] = 0.8188 0.6858 0.5659 0.4564 0.3529 0.2541 0.1614 0.0783 0.0334
i 0.7902 0.6751 0.5828 0.5030 0.4307 0.3604 0.2897 0.2129 0.1226
0.7896 0.7366 0.6789 0.6181 0.5533 0.4833 0.4066 0.3129 0.1928
0.8787 0.7816 0.6943 0.6162 0.5437 0.4731 0.3998 0.3096 0.1913
10.8832 0.7975 0.7210 0.6474 0.5741 0.4974 0.4158 0.3182 0.1955-

Here, the entries of [al-j] except for its first row have been obtained by normalizing the values
provided in Table 13 in consideration of the maximum value in the same table. If we apply
EM200 to the fpfs-matrices [a;;], [bix], and [c;], then the score matrix and the decision set

are as follows:
[s;1] = [0.4306 0.4712 0.3843 0.5889 0.5552 0.5473 0.5561]7
and
{0'7742DBA, 0'8473MDBUTMF, 0'6911BPDF, 0'9151NAFSMF, 0'9984AWMF, 0'9841DAMF, 1AR1’1’1F}

The scores show that ARmF outperforms the others and the ranking order
BPDF<DBA<MDBUTMF <NAFSMF<DAMF<AWMF<ARmMF is valid.

Assume that the success in low noise densities is more important than that in others. In this
case, the values given in Table 13, 14, and 15 can be represented with three fpfs-matrices as
follows:

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.9371 0.8564 0.7982 0.7450 0.6958 0.6466 0.5969 0.5382 0.4633
0.9191 0.8037 0.7248 0.7113 0.7195 0.7078 0.6731 0.5849 0.3819
(dy] = 0.9236 0.8377 0.7750 0.7213 0.6698 0.6144 0.5490 0.4431 0.2625
J 0.9011 0.8309 0.7865 0.7530 0.7248 0.6983 0.6698 0.6361 0.5579
0.9076 0.8741 0.8449 0.8164 0.7860 0.7527 0.7163 0.6741 0.6169
0.9885 0.9073 0.8526 0.8104 0.7740 0.7403 0.7063 0.6666 0.6081
[1.0000 0.9271 0.8776 0.8374 0.7990 0.7605 0.7208 0.6763 0.6179/

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.9796 0.9584 0.9315 0.8968 0.8520 0.7949 0.7213 0.6265 0.4966
0.9774 0.9197 0.8117 0.7973 0.8399 0.8410 0.8025 0.7023 0.3566
[es] == 0.9783 0.9536 0.9229 0.8838 0.8323 0.7634 0.6680 0.5096 0.2585
tk 0.9748 0.9504 0.9248 0.8973 0.8666 0.8320 0.7910 0.7357 0.6190
0.9728 0.9622 0.9484 0.9315 0.9098 0.8816 0.8437 0.7904 0.7028
0.9854 0.9699 09516 0.9303 0.9051 0.8748 0.8368 0.7846 0.6964
10.9868 0.9735 0.9581 0.9400 0.9173 0.8880 0.8491 0.7947 0.7056-

and
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0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.8548 0.7319 0.6179 0.5119 0.4095 0.3128 0.2229 0.1365 0.0635
0.8272 0.6713 0.5044 0.4420 0.4310 0.3978 0.3302 0.2212 0.0730
0.8188 0.6858 0.5659 0.4564 0.3529 0.2541 0.1614 0.0783 0.0334
0.7902 0.6751 0.5828 0.5030 0.4307 0.3604 0.2897 0.2129 0.1226
0.7896 0.7366 0.6789 0.6181 0.5533 0.4833 0.4066 0.3129 0.1928
0.8787 0.7816 0.6943 0.6162 0.5437 0.4731 0.3998 0.3096 0.1913
L0.8832 0.7975 0.7210 0.6474 0.5741 0.4974 0.4158 0.3182 0.1955-

[fie] =

Here, the entries of [di j] except for its first row have been obtained by normalizing the values
provided in Table 13 in view of the maximum value provided therein. If we apply EM200 to
the fpfs-matrices [d;;], [ei], and [f;.], then the score matrix and the decision set are as
follows:

[si1] = [0.8334 0.8272 0.8312 0.8110 0.8168 0.8897 0.9000]T
and

{0.9371DBA' 0'9191MDBUTMF, 0'9236BPDF, 0.9011NAFSMF' 0.9076AWMF' 0.9885DAMF’ 1ARmF}

The scores show that ARmF outperforms the others and the ranking order NAFSMF<AWMF
<MDBUTMF<BPDF<DBA<DAMF<ARMF is valid.

Secondly, we apply RM13a, EM20a, RM130, and EM20o0 to fpfs-matrices mentioned above
and compare the ranking orders of the algorithms in Table 16.

Table 16. The ranking orders of the filters for RM13a, EM20a, RM130, and EM200

Algorithms Matrices Ranking Orders

RM13a [ai;1.[bix] [cic] BPDF<DBA<MDBUTMF<AWMF<NAFSMF<DAMF<ARMF
EM20a [ai].[buc] [cic] BPDF<DBA<MDBUTMF<AWMF<NAFSMF<DAMF<ARMF
RM130 [ai].[buc] [cic] BPDF<DBA<MDBUTMF<NAFSMF<DAMF<AWMF<ARMF
EM200 [ai;1.[bix] [cic] BPDF<DBA<MDBUTMF<NAFSMF<DAMF<AWMF<ARMF
RM13a [di;], [eir] [ fic] BPDF<DBA<MDBUTMF<NAFSMF<DAMF<AWMF<ARMF
EM20a [di;], [eir] [ fic] BPDF<DBA<MDBUTMF<NAFSMF<DAMF<AWMF<ARmMF
RM130 [dij]; [ewc]: [fie] NAFSMF<AWMF<MDBUTMF<BPDF<DBA<DAMF<ARmMF
EM200 [di;], e [fie] NAFSMF<AWMF<MDBUTMF<BPDF<DBA<DAMF<ARMF

Finally, we compare EM200 with four state-of-art soft decision-making methods sDB12
(Enginoglu and Memis, 2018c), EMC190 (Enginoglu et al., 2019b), EMO180 (Enginoglu et
al., 2018b), and sMBRO1 (Enginoglu and Memis, 2018b) by using the aforesaid fpfs-matrices
[a;;].[bix], and [c;c]. The results in Table 17 show that EM200 produce suitable ranking order
to the state-of-art methods and experts’ views.

Table 17. The ranking orders of the filters for the state-of-art methods

Algorithms Matrices Ranking Orders

EM200 [aij].[bik].[cit] BPDF<DBA<MDBUTMF<NAFSMF<DAMF<AWMF<ARMF

sDB12 [a:;].[buc] [cic] BPDF<DBA<MDBUTMF<NAFSMF<DAMF<AWMF<ARMF

EMC190 [a:;].[buc] BPDF<DBA<MDBUTMF<NAFSMF<DAMF<AWMF<ARMF

EMO180 [a;;].[bi] BPDF<DBA<MDBUTMF<NAFSMF<DAMF<AWMF<ARMF
[

sSMBRO1

BPDF<DBA<MDBUTMF<NAFSMF<DAMF<AWMF<ARMF
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It must be noted that EM200 and sDB12 algorithms use three fpfs-matrices, EMC190 and
EMO18o algorithms use two fpfs-matrices, and SMBRO1 algorithm uses one fpfs-matrix for
the decision-making process.

4. Conclusion

WSMmDM and WFSMmDM have been proposed by Razak and Mohamad (2011, 2013).
Recently, since such methods cannot model decision-making problems in the event that the
parameters have uncertainties, these two methods have been configured (Enginoglu and
Memis, 2018a). However, the configured method has a drawback such as its incapability of
processing a large number of parameters on such a standard computer with 2.6 GHz i5 Dual-
Core CPU and 4GB RAM.

In this paper, we proposed the method EM20a, which is faster than RM13a, and the method
EM200, which is faster than RM130. Of course, simplifications of these methods can be
investigated in view of other products.

Additionally, we compared the aforesaid methods in terms of their running time data.
Besides, the results in Section of Simulation Results and the results in Table 18 and 19 too
evidence that EM20a and EM200 perform better than RM13a and RM13o0, respectively.

Table 18. The mean advantages and max advantages of EM20a over RM13a and max
differences between EM20a and RM13a

Location  Objects Parameters Mean Advantage % Max Advantage % Max Difference
Table 1 10 10-100 86.9177 98.7605 0.0199

Table 2 10 1000-10000  99.9335 99.9992 1046.9268
Table 3 10-100 10 78.6237 88.0516 0.0147

Table 4 1000-10000 10 96.1903 98.1778 4.7890

Table 5 10-100 10-100 90.9713 99.3137 0.1584

Table 6 100-1000  100-1000 99.4646 99.9954 1292.8260

Table 19. The mean advantages and max advantages of EM200 over RM130 and max
differences between EM200 and RM130

Location  Objects Parameters Mean Advantage % Max Advantage % Max Difference
Table 7 10 10-100 86.0065 97.7622 0.0205

Table 8 10 1000-10000  99.9299 99.9992 1049.7150
Table 9 10-100 10 77.3897 87.4118 0.0129

Table 10  1000-10000 10 95.9499 98.1925 4.7899
Table11  10-100 10-100 90.2170 99.2587 0.1515

Table 12 ~ 100-1000  100-1000 99.4735 99.9954 1288.2528

Finally, it is suggested that the methods constructed by means of min-max, max-max, and
min-min decision functions should also be studied. Thus, applying such soft decision-making
methods to more area can be possible. For more details, see (Enginoglu and Aydin, 2019;
Enginoglu et al., 2019a,b,c,d; Memis and Enginoglu, 2019; Memis et al., 2019; Enginoglu
and Ongel, 2020).
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