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Abstract
In this paper, a discrete predator-prey model with Allee effect which is obtained by the
forward Euler method has been investigated. The local stability conditions of the model
at the fixed point have been discussed. In addition, it is shown that the model undergoes
Neimark-Sacker bifurcation by using bifurcation theory. Then, the direction of Neimark-
Sacker bifurcation has been given. The OGY method is applied in order to control chaos
in considered model due to emergence of Neimark-Sacker bifurcation. Some numerical
simulations such as phase portraits and bifurcation figures have been presented to support
the theoretical results. Also, the chaotic features are justified numerically by computing
Lyapunov exponents. Because of consistency with the biological facts, the parameter
values have been taken from literature [Controlling chaos and Neimark-Sacker bifurcation
discrete-time predator-prey system, Hacet. J. Math. Stat. 49 (5), 1761-1776, 2020].
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1. Introduction
The predator-prey systems which show relationships between two predator-prey species

have an important role in both ecology and mathematical biology [8, 19, 33]. Compre-
hending the dynamics of predator-prey models will be very useful for analysis of multiple
species interactions. Leslie [20, 21] introduced the following famous Leslie predator-prey
system where the carrying capacity of the predator is proportional to the number of prey
:

dN (t)
dt

= N (t) (r1 − bP (t)) ,

dP (t)
dt

= P (t)
(

r2 − θ
P (t)
N (t)

)
.

(1.1)
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where N (t) and P (t) represent population densities of prey and predator at time t, re-
spectively. The parameters r1 and r2 are the intrinsic growth rates of prey and predator,
respectively. The parameter b measures the strength of competition among individuals of
species N. The value r1

b is the carrying capacity of the prey in the absence of predation.
The parameter θ is a measure of the food quantity that the prey provides and is converted
to predator birth. The term P

N is called the Leslie-Gower term [18].
When the dynamical systems are modelled, these systems usually take one of two forms:

i) continuous-time systems described by differential equations, or ii) discrete-time systems
governed by difference equations. Although many authors investigate the nonlinear dy-
namic characteristics of continuous systems for a long time, the researchers’ interest has
recently increased to discrete- time systems. The reasons are that these systems provide
more efficient computing systems for numerical simulations as compared with continuous
ones and also in the case of non-overlapping generation, discrete time systems are more
realistic than continuous systems. So, discrete time systems are more attractive than
continuous time systems. [1, 10,11,13–17,24,28].

The Allee effect phenemenon, which was first explained by Warden Clyde Allee [2] in
1931, describes a positive correlation between any measure of species fitness and popu-
lation numbers. The main causes of the Allee effect are difficulty in finding mates, in-
breeding depression social dysfunction at small population sizes, predator avoidance and
food exploitation. In general, Allee effect, which plays an important role in predator-prey
models, gives these models a rich dynamic. Many researchers have studied the bifurca-
tion and stability analysis of continuous time models with Allee effect in [4,30,34]. In the
literature, a discrete-time models with Allee effect on prey population have been studied
intensively, however, the research with Allee effect on predator population is relatively
rare [3, 26, 31, 32]. So, we introduce a discrete-time system with Allee effect on predator
population.

As a parameter is changed, stability may change, emerge or disappear of new stable
points. Bifurcation theory is the mathematical work of changes in the qualitative or
topological structure of a given continuous or discrete system. Several works [4, 10, 12,
29, 30] and the references cited therein have been provided bifurcation and found richer
dynamics by doing both theoretical and numerical analysis.

Unpredictable time evolution of many nonlinear systems has been called chaos. There
are many different methods and techniques in the literature to ensure chaos control such
as OGY method [23, 27], time-delay feed-back control method [22] and fuzzy control [9],
etc. OGY method which has become more and more interesting in many researchers after
introducing by Ott et al. [27] is used in this paper. More detailed information on chaos
control can be found in the articles [5–7,23,25,27].

In the present study motivated by the Leslie predator-prey model, a predator-prey model
obtained by adding Allee effect on predator population is considered. By implementing
the forward Euler scheme to model (1.1), obtained new model can be written as follow:

Nt+1 = Nt + δNt (r1 − εPt)

Pt+1 = Pt + δPt

(
r2 − θ

Pt

Nt

Pt

(α + Pt)

)
(1.2)

where δ > 0 is the step size and the term Pt

α + Pt
is Allee effect [34]. α > 0 is described

as a Allee constant. The other parameters are defined as the model (1.1).
Motivated by the above mentioned studies, the contribution and novelty of the paper

are presented as follows:
i. The dynamic behavior of a discrete-time predator-prey model obtained by the for-

ward Euler scheme with Allee effect on predator population which is studied rarely is
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investigated. The Allee effect is a new idea in the literature, which gives the model more
realistic and complicated. Thus, the model (1.2) has been more realistic compared with
model (1.1).

ii. The interior fixed point of the proposed model is found and the topological classifi-
cation of this fixed point is analysed.

iii. It is shown that the proposed model undergoes Neimark-Sacker bifurcation about
its interior fixed point whenever the step size is selected as the bifurcation parameter. In
addition, the direction of the Neimark-Sacker bifurcation is given.

iv. The OGY method is applied to the model for controlling chaos due to the emergence
of the Neimark-Sacker bifurcation.

v. Finally, three numerical examples are presented for our discrete-time predator-prey
model with Allee effect in order to support the accuracy of our theoretical findings.

This paper is organized as follows: In section 1, a discrete predator-prey model is formu-
lated by applying the forward Euler method. In section 2, the topological classifications
of the fixed point of the model with Allee effect on predator population are investigated.
In section 3, it is shown that the model undergoes Neimark-Sacker bifurcation by using
bifurcation theory. Then, the direction of Neimark-Sacker bifurcation is given. In section
4, the OGY method is applied to the model for controlling chaos due to the emergence
of the Neimark-Sacker bifurcation. In section 5, in order to verify the analytical findings
obtained in the previous sections, three examples are given. Moreover, the bifurcation di-
agrams, phase portraits and maximum Lyapunov exponents for different parameter values
are drawn. Finally, the conclusion is given in section 6.

2. Topological classifications of the fixed point of the model (2)
In this section, we will determine the existence of the fixed point of the discrete-time

system and study the stability of this fixed point. To determine the positive fixed point
(N∗, P ∗) we have to solve the following nonlinear system:

N∗ = N∗ + δN∗ (r1 − εP ∗) (2.1)

P ∗ = P ∗ + δP ∗
(

r2 − θ
P ∗

N∗
P ∗

(α + P ∗)

)
,

From the definition of the fixed point, the model (1.2) has one nontrivial fixed point

E∗ =
(

r2
1θ

r2ε(αε + r1)
,
r1
ε

)
. The Jacobian matrix of the map (1.2) evaluated at any point

(N, P ) is given by

J =
(

a11 a12
a21 a22

)
, (2.2)

where
a11 = 1 + δr1 − δPε, a12 = −δNε

a21 = δP 3θ

N2 (α + P )
a22 = 1 + δr2 − 3δP 2θ

N (α + P )
+ δP 3θ

N (α + P )2 .

The characteristic equation of matrix J can be written as
λ2 − trJλ + det J = 0,

where trJ = a11 + a22 and det J = a11a22 − a12a21.

Definition 2.1. A fixed point (N,P) is called
i) sink if |λ1| < 1 and |λ2| < 1, and it is locally asymptotically stable,
ii) source if |λ1| > 1 and |λ2| > 1 and it is locally unstable,
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iii) saddle if |λ1| < 1 and |λ2| > 1 or |λ1| > 1 and |λ2| < 1,
iv) non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

To investigate the stability of the one nontrivial fixed point of the system (1.2), we give
the following lemma.

Lemma 2.2 ([10,17]). Assume F (λ) = λ2 +Bλ+C, where B and C are two real constants
and let F (1) > 0. Suppose that λ1 and λ2are two roots of F (λ) = 0. Then the following
statements hold

i) |λ1| < 1 and |λ2| < 1 if and only if F (−1) > 0 and C < 1;
ii) |λ1| > 1 and |λ2| > 1 if and only if F (−1) > 0 and C > 1;
iii) |λ1| < 1 and |λ2| > 1, or |λ1| > 1 and |λ2| < 1,if and only if F (−1) < 0,
iv) λ1 and λ2 are a pair of conjugate complex roots and |λ1| = |λ2| = 1 if and only if

B2 − 4C < 0 and C = 1.

The stability of the coexistence fixed point E∗ =
(

θr2
1

r2ε (αε + r1)
,
r1
ε

)
can be determined

by analyzing the following matrix:

J(E∗) =

 1 − δθr2
1

r2 (αε + r1)
δr2

2 (αε + r1)
r1θ

1 − δr2

(2αε + r1
αε + r1

)
 . (2.3)

The characteristic polynomial associated with the map (1.2) at E∗ is written by
F (λ) = λ2 − trJ(E∗)λ + det J(E∗), (2.4)

where

trJ(E∗) = 2 − δr2

(2αε + r1
αε + r1

)
, det J(E∗) = 1 + δ2r1r2 − δr2

(2αε + r1
αε + r1

)
.

Since δ > 0, r1 > 0 and r2 > 0, then

F (1) = δ2r1r2 > 0. (2.5)
On the other hand

F (−1) = δ2r1r2 − 2δr2

(2αε + r1
αε + r1

)
+ 4. (2.6)

Let’s write ϕ (δ) = δ2r1r2 − 2δr2

(2αε + r1
αε + r1

)
+ 4. ∆F = 4r2

[
r2

(2αε + r1
αε + r1

)2
− 4r1

]
is the

discriminant of the function ϕ (δ) . We assume that ∆F > 0. Then, the function ϕ (δ) has
two real roots as:

δ1,2 = r2 (2αε + r1) ±
√

∆
r1r2 (αε + r1)

.

Thus if ∆F > 0, we have F (−1) > 0 for δ < δ1 or δ > δ2 and F (−1) < 0 for δ1 <
δ < δ2. Similarly, if ∆F < 0, since the the function ϕ (δ) has not real roots for ∀δ > 0,

F (−1) > 0. Moreover, it is easily seen that det J(E∗) > 1 for δ < 0 or δ >
2αε + r1

r1 (αε + r1)
and det J(E∗) < 1 for 0 < δ <

2αε + r1
r1 (αε + r1)

.

Using Lemma 2.2, we can give the topological classification of the E∗ fixed point as
follows:
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Proposition 2.3. The positive fixed point E∗ of the system (1.2) is
i) sink fixed point if one of the following conditions holds:

a) ∆F > 0 and 0 < δ <
r2 (2αε + r1) −

√
∆

r1r2 (αε + r1)
,

b) ∆F < 0 and 0 < δ <
2αε + r1

r1 (αε + r1)
,

ii) source fixed point if one of the following conditions holds:

a) ∆F > 0 and 2αε + r1
r1 (αε + r1)

< δ <
r2 (2αε + r1) +

√
∆

r1r2 (αε + r1)
,

b) ∆F < 0 and δ >
2αε + r1

r1 (αε + r1)
,

iii) saddle fixed point if the following conditions holds:

∆F > 0 and r2 (2αε + r1) −
√

∆
r1r2 (αε + r1)

< δ <
r2 (2αε + r1) +

√
∆

r1r2 (αε + r1)
,

iv) non-hyperbolic fixed point if one of the following conditions holds:

a) ∆F > 0 and δ=r2 (2αε + r1) ±
√

∆
r1r2 (αε + r1)

and δ ̸= (2αε + r1)
r2 (αε + r1)

,
2 (2αε + r1)
r2 (αε + r1)

,

b) ∆F < 0 and δ= 2αε + r1
r1 (αε + r1)

,

where ∆ = r2
[
r2 (2αε + r1)2 − 4r1 (αε + r1)2

]
.

3. Neimark-Sacker bifurcation analysis
In this section, choosing the step size δ as a bifurcation parameter, a detailed bifurcation

analysis is being performed at the fixed point E∗ of the system (1.2). Also, the direction
of Neimark-Sacker bifurcation is evaluated.

It is clear that the eigenvalues of the Jacobian matrix J(E∗) are a pair of conjugate
complex numbers with module one, when the condition from Proposition 2.3 iv.b). Let’s

NSBE∗ =
{

r1, r2, δ, θ, ε, α ∈ (0, +∞) : δ = 2αε + r1
r1 (αε + r1)

, ∆F < 0
}

. (3.1)

If the parameters lie in NSBE∗ , two eigenvalues of J (E∗) are complex having modules
one and Neimark-Sacker bifurcation can emerge from the fixed point E∗. The eigenvalues
under these conditions are given by

λ, λ =
2b − δr2 (b + αε) ± i

√
δ2r2

(
4r1b2 − r2 (αε + b)2

)
2b

. (3.2)

If we take
δ = 2αε + r1

r1 (αε + r1)
, (3.3)

the eigenvalues can be rewritten as

λ, λ =
2r1b2 − r2 (b + αε)2 ± i

√
r2 (b + αε)2

(
4r1b2 − r2 (αε + b)2

)
2r1b2 ,

where b = αε + r1.
It is clear that

|λ| =
∣∣∣λ∣∣∣ = 1. (3.4)



On the Analysis of Stability, Bifurcation, and Chaos Control 409

Because of δ ∈ NSBE∗ , we obtain
d |λ (δ)|

dδ

∣∣∣∣
δ=

2αε + r1
r1 (αε + r1)

= r2

(
b + αε

b

)
̸= 0. (3.5)

Also, if

trJ (E∗) ̸= 0, −1 namely δr2

(
b + αε

b

)
̸= 2, 3 (3.6)

then
λk (δ) ̸= 1 for k = 1, 2, 3, 4. (3.7)

is satisfied.
Let q, p ∈ C2 are two eigenvectors of J

(
δNSBE∗

)
and transposed matrix JT

(
δNSBE∗

)
corresponding to λ and λ, respectively. By simple calculation we get

q ∼

1,
r2
(
r2 (b + αε) − i

√
K
)

2θr2
1

T

(3.8)

and

p ∼

1, −
r1θ

(
r2 (b + αε) + i

√
K
)

2r2
2b2

T

, (3.9)

where K = r2
(
4r1b2 − r2 (b + αε)2

)
.

When the normalization < p, q >= 1 is made, the normalized vectors can be obtained
as follows

q =


1

r2
(
r2 (b + αε) − i

√
K
)

2θr2
1


and

p =



4r2
1b4

[
2r1b2 − r2 (b + αε)2 + i (b + αε)

√
K
]

16r2
1b4 − (b + αε)2 (K − 8r2

1b2 + r1r2
2 (b + αε)

)
−2r1θb2

r2
2

[
(b + αε) 2r1r2b2 − r2

1 (b + αε)2 − K

L

]


where L = 16r2

1b4 − (b + αε)2 [K − 8r2
1b2 + r1r2

2 (b + αε)
]
. Now, let us consider

xt = Nt − θr2
1

r2ε (αε + r1)
, yt = Pt − r1

ε
. (3.10)

So the fixed point E∗ is shifted to the point (0, 0) . From Taylor expansion, the system
(1.2) becomes following form:

xt+1 = xt − δθr2
1

r2 (αϵ + r1)
yt + F1 (xt, yt)

yt+1 = (αϵ + r1) δr2
2

r1θ
xt +

(
1 − δr2

2αϵ + r1
(αϵ + r1)

)
yt + F2 (xt, yt)

(3.11)



410 S. Işık, F. Kangalgil

or (
xt

yt

)
→ J (E∗)

(
xt

yt

)
+
(

F1 (xt, yt)
F2 (xt, yt)

)
, (3.12)

where

F1 (xt, yt) = −εδxtyt + O
(
∥Xt∥4

)
,

F2 (xt, yt) = −δεr2
2b2

r3
1θ2 x2

t − δε2r3
2

r4
1θ2 b (αε + 2b) x2

t yt

−δεr2
r1b2

[
b2 + αε (αε + b)

]
y2

t + δεr2
2

r2
1θ

(αε + 2b) xtyt

+δε2r2
2

r3
1θb

(
b2 + αε (αε + b)

)
xty

2
t − δε5r2α3

r2
1b3 y3

t + O
(
∥Xt∥4

)
,

and Xt = (xt, yt)T .
Furthermore the system (1.2) can be expressed as(

xt+1
yt+1

)
= J (E∗)

(
xt

yt

)
+ 1

2
B (xt, xt) + 1

6
C (xt, xt, xt) + O

(
∥Xt∥4

)
, (3.13)

where the multilinear vector functions of x, y, u ∈ R2 :

B (x, y) =
(

B1 (x, y)
B2 (x, y)

)
and

C (x, y, u) =
(

C1 (x, y, u)
C2 (x, y, u)

)
are defined by

B1 (x, y) =
2∑

j,k=1

∂2F1
∂ξj∂ξk

∣∣∣∣∣
ξ=0

xjyk = −δε (x1y2 + x2y1) ,

B2 (x, y) =
2∑

j,k=1

∂2F2
∂ξj∂ξk

∣∣∣∣∣
ξ=0

xjyk

= −2δr2
2εb2

r3
1θ2 x1y1 − 2δr2ε

r1b2
(
b2 + αε (b + αε)

)
x2y2

+δεr2
2

r2
1θ

(2b + αε) (x1y2 + x2y1) ,

C1 (x, y, u) =
2∑

j,k,l=1

∂3F1
∂ξj∂ξk∂ξl

∣∣∣∣∣
ξ=0

xjykul = 0,

C2 (x, y, u) =
2∑

j,k,l=1

∂3F2
∂ξj∂ξk∂ξl

∣∣∣∣∣
ξ=0

xjykul

= −2δr3
2ε2

r4
1θ2 b (2b + αϵ) (x1y1u2 + x1y2u1 + x2y1u1)

+2δr2
2ε2

θr3
1b

(
b2 + αϵ (b + αϵ)

)
(x1y2u2 + x2y1u2 + x2y2u1)

−δr2ε5α3

r2
1b3 x2y2u2.

(3.14)
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To analyze the corresponding bifurcation, introduce the complex variable: z and z.
∀X ∈ R2 can be uniqely represented as

X = zq + zq

for some z ∈ C. It is clear that z =< p, X > .
The system (1.2) can be transformed for all sufficiently small |δ| into the form

z → λ1 (δ) z + g (z, z, δ) , (3.15)

where λ (δ) = (1 + φ (δ)) eiθ(δ) with φ (δNS) = 0 and g (z, z, δ) is a complex-valued smooth
function of z and z. After Taylor expression of g with respect to (z, z) , we obtain

g (z, z, δ) =
∑

k+l≥2

1
k!l!

gkl (δ) zkzl, (3.16)

where
g20 (δNS) =< p, B (q, q) > (3.17)
g11 (δNS) =< p, B (q, q) > (3.18)
g02 (δNS) =< p, B (q, q) > (3.19)
g21 (δNS) =< p, C (q, q, q) > . (3.20)

The direction of the Neimark-Sacker bifurcation is computed by sign (a (δNS)) . The co-
efficient a (δNS) is given via

a (δNS) = Re
(

e−iθ(δNS)

2
g21

)
(3.21)

−Re


(
1 − 2eiθ(δNS)

)
e−2iθ(δNS)

2
(
1 − eiθ(δNS)) g20g11

− 1
2

|g11|2 − 1
4

|g02|2

where eiθ(δNS) = λ (δNS) .
We get the following theorem on Neimark-Sacker bifurcation:

Theorem 3.1. If (3.6) holds, a (δNS) ̸= 0 and the parameter δ changes its value in small
vicinity of NSBE∗ , then the model (1.2) passes through a Neimark-Sacker bifurcation at
only fixed point E∗. Moreover if a (δNS) < 0 (resp., a (δNS) > 0) , then there exists a unique
attracting (resp., repelling) invariant closed curve which bifurcates from E∗.

4. Chaos control
Chaotic behavior is very interesting non-linear phenomenon observed in many fields

such as physics, biology, chemistry and engineering. The chaos is harmful to systems as it
can lead them to be unstable and make undesirable behaviors. So chaos control methods
are required to decrease or eliminate the harmful chaotic effect. Chaotic dynamics must be
controlled according to a regular orbit, such as a periodic orbit or a fixed point to improve
the performance of the system under consideration. Chaos control refers to deliberately
manipulating the chaotic dynamic behavior of some complex nonlinear systems. There are
numerous methods in literature for chaos control such as OGY method [23,27], time-delay
feed-back control method [22] and fuzzy control [9], etc. The OGY method was proposed
by Ott, Greborgi and Yorke [27]. The common idea of Ott, Grebogi and Yorke consists
of turning the presence of chaos into an advantage. In fact, the system can be stabilized
on a certain unstable periodic orbit embedded in a strange attractor by applying a small
time-dependent feedback perturbation to some accessible parameter or variable system.
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The periodic orbit is maintained, but its stability is changed so that the orbit stays close
to the unstable periodic orbit. This control strategy is known as the OGY method. Also
see [23, 25, 27] for details related to OGY method. In this section, we apply the OGY
control method to stabilize chaotic orbits an unstable fixed point of the system (1.2).

Constructing the controlled system is as follows:
Nt+1 = Nt + δNt (r1 − εPt) = f (Nt, Pt, r1)

Pt+1 = Pt + δPt

(
r2 − θ

Pt

Nt

Pt

(α + Pt)

)
= g (Nt, Pt, r1)

(4.1)

where r1 is taken as controlling parameter. Moreover, r1 is restricted to line in some small
interval |r1 − r10 | < µ with µ > 0 and r10 denotes the nominal value belong to chaotic
region. Assume that (N∗, P ∗) be unstable fixed point of the system (1.2) in chaotic region
produced by the emergence of Neimark-Sacker bifurcation, then the system (4.1) can be
approximated in the neigborhood of the unstable fixed point (N∗, P ∗) by the following
linear map: [

Nt+1 − N∗

Pt+1 − P ∗

]
≈ A

[
Nt − N∗

Pt − P ∗

]
+ B [r1 − r10 ] , (4.2)

where

A =

 ∂f(N∗,P ∗,r10)
∂Nt

∂f(N∗,P ∗,r10)
∂Pt

∂g(N∗,P ∗,r10)
∂Nt

∂g(N∗,P ∗,r10)
∂Pt

 ,

and

B =

 ∂f(N∗,P ∗,r10)
∂r1

∂f(N∗,P ∗,r10)
∂r1

 =
[

δθr2
10

r2εb

0

]
.

On the other hand the system (4.1) is controllable provided that the following matrix
C = [B : AB]

=

 δθr2
10

r2εb

δθr2
10

r2εb

0 δ2r2r10
ε

 .
(4.3)

Since all parameters are positive, the rank of C is 2. Furthermore, δ2r2r10
ε ̸= 0 im-

plies that the system (4.1) is always controllable. Now, we suppose that [r1 − r10 ] =

−K

[
Nt − N∗

Pt − P ∗

]
, where K = [ρ1 ρ2] , then the system (4.1) can be written as follows:[

Nt+1 − N∗

Pt+1 − P ∗

]
≈ [A − BK]

[
Nt − N∗

Pt − P ∗

]
. (4.4)

The corresponding controller can be rewritten as:
Nt+1 = Nt + δNt ((r10 − ρ1 (Nt − N∗) − ρ2 (Pt − P ∗)) − εPt) ,

Pt+1 = Pt + δPt

(
r2 − θ

Pt

Nt

Pt

(α + Pt)

)
.

(4.5)

Furthermore, the fixed point (N∗, P ∗) of (4.1) is locally asymptotically stable if and only
if both eigenvalues of the matrix A − BK lie in an open unit disk. The Jacobian matrix
A − BK of the controlled system (4.1) can be written as follow:

A − BK =

 1 − δ2θρ1r10
r2εb −

δθr2
10

br2

(
1 + ρ2

ε

)
δbr2

2
θr10

1 − δr2(b+αε)
b

 .

The characteristic equation of the Jacobian matrix A − BK is given by
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P (λ) = λ2 −
(

2 −
δθρ1r2

10
εbr2

− δr2(b+αε)
b

)
λ

+ 1
r2εb2

(
δ2r10r2

(
r2b2 (ρ2 + ε) + θr10ρ1 (b + αε)

))
.

Let λ1 and λ2 are the eigenvalues of characteristic equation (4.1), then

λ1 + λ2 = 2 + r2 (δ − 2θ) − δ2ρ1r10

r2ε
(4.6)

λ1λ2 = 1 + r2 (δ − 2θ) − δ2r2r10

ε

(
ρ1
r2

2
(1 + r2 (δ − 2θ)) + θ

(
1 + ρ2

ε

))
(4.7)

are valid.
In order to obtain the lines of marginal stability we must solve equations λ1 = ±1 and

λ1λ2 = 1. These restrictions make sure that λ1 and λ2 have absolute less than 1.Assume
that λ1λ2 = 1, Eq. (4.7) implies that:

L1 := −
δθρ1r2

10

r2εb2 (δr2 (b + αε) + b) + δ2r2
2ρ2r10

ε
+ δr2

(
δr10 − 1 − αε

b

)
= 0. (4.8)

Moreover, we suppose that λ1 = 1, then (4.6)-(4.7) yield that:

L2 :=
δ2θρ1r2

10

εb2 (b + αε) + δθr2ρ2r10

ε
+ δ2r2r10 = 0. (4.9)

Finally, taking λ1 = −1 and using equation (4.6)-(4.7) we get

L3 := −
δθρ1r2

10

r2εb2 (δ (r2b + αε) − 2b)+ δ2r2ρ2r10

ε
+δ2r2r10 − 2δr2

ε

(
1 + αε

b

)
+4 = 0. (4.10)

Then, stable eigenvalues lie within the triangular region in ρ1ρ2 plane bounded by the
straight lines L1, L2, L3 for particular parametric values.

5. Numerical simulations
In this section, all the previous analytical evidences are verified with the help of nu-

merical simulations performed via Matlab. We present the bifurcation diagrams, phase
portraits, and maximum Lyapunov exponents for the system (1.2) with Allee effect. Thus,
numerical simulations have displayed valuable and meaningful dynamical behaviors, which
show that the model can eventually lead to chaos by Neimark-Sacker bifurcation.

Example 5.1. For the parameter values r1 = 4, r2 = 14, δ = 0.23, θ = 50, ε = 0.4,
α = 0.23 and initial condition (N0, P0) = (34, 9.5), the positive fixed point of the model
(1.2) is obtained as (N∗, P ∗) = (34.91132522, 10). From Figure 1, the fixed point (N∗, P ∗)
of the system (1.2) is local asymptotically stable where the graphs represent P (t) and N(t)
populations, respectively.
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Figure 1. A stable fixed point for the system (1.2) for r1 = 4, r2 = 14, δ =
0.23, θ = 50, ε = 0.4, α = 0.23 and initial condition (N0, P0) = (34, 9.5).

Example 5.2. For the parameters values r1 = 4, r2 = 14, θ = 50, ε = 0.4, δNS =
0.2556207234, α = 0.23, the positive fixed point (N∗, P ∗) of the model (1.2) is evaluated
as (N∗, P ∗) = (34.91132522, 10) . Because of computing the coefficients of normal form,
we transform to point (0, 0) to fixed point (N∗, P ∗) by change of variables,

x = N − 34.91132522 (5.1)
y = P − 10.

So, the model (1.2) converts to

xt+1 = xt − 0.1022482894(xt + 34.91132522)yt

yt+1 = yt + 0.2556207234
(yt + 10)

(
14 (yt + 10.23) − 50 (yt + 10)2

)
(xt + 34.91132522) (yt + 10.23)

.

Using the above parameters, we get

J (N∗, P ∗) =
[

1 −3.569623284
0.9579667646 −2.419540691

]
.

The eigenvalues are obtained as follows:
λ1,2 = −0.7097703455 ± 0.7044613785i.

Let q, p ∈ C2 be complex eigenvectors corresponding to λ1,2 respectively

q ∼ (−0.7353714178 + 1.784790882i, i)T ,

and
p ∼ (0.1973489417 + 0.4789778108i, −i)T .

To obtain the normalization ⟨p, q⟩ = 1, we can take normalized vectors as

q = (−0.7353714178 + 1.784790882i, i)T
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and

p = (−0.6799285207 + 3.62648408410−10i)T .

By using the formula (3.17-3.20) the coefficients of the normal of the system (1.2) can be
computed as follows:

g20(δ) = 0,

g11(δ) = −0.05112414463 − 0.1349731779i,

g02(δ) = 0.2627353398 + 0.11956541671i,

g21(δ) = 0.

From (3.21), the critical part is obtained as a(δNS) = −0.03124715537 < 0. Therefore,
a supercritical Neimark-Sacker bifurcation occurs at δNS = 0.2556207234. The bifurcation
diagram and the phase portrait of the system (1.2) are shown in Figure 2 and Figure 3.

(a)

(b)

Figure 2. (a) Bifurcation diagram (b) Maximum Lyapunov exponents for the
system (1.2) for values of r1 = 4, r2 = 14, δ = (0.25, 0.27), θ = 50, ε = 0.4, α = 0.23
and initial condition (N0, P0) = (34, 9.5).
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Figure 3. Phase portraits of the system (1.2) for different values of δ .

Example 5.3. Let r1NS = 3.934043156, r2 = 14, δ = 0.26, θ = 50, ε = 0.4, α = 0.23, r1 ∈
[3.8, 4.15] and (N0, P0) = (34, 9.5), then system (1.2) undergoes Neimark-Sacker bifur-
cation. For these parametric values, bifurcation diagram, and corresponding maximum
Lyapunov exponents are plotted in Figure 4. In order to discuss the OGY feedback control
method for system (1.2), we take r10 = 4.147. System (1.2) has unique positive fixed point
(N∗, P ∗) = (36.22318480, 10.36750000) .Then corresponding controlled system is given by:

Nt+1 = Nt + 0.26Nt ((4.147 − ρ1(Nt − 36.22318480) − ρ2(Pt − 10.36750000)) − 0.4Pt) ,

Pt+1 = Pt + 0.26Pt (14 − 50 Pt

Nt

Pt

(0.23 + Pt)
).

(5.2)
where K = [ρ1 ρ2] be matrix and (N∗, P ∗) = (36.22318480, 10.36750000) is unstable fixed
point of the system (1.2) . We have

A =
[

1 −3.767211220
1.041810658 −2.718999764

]
,

B =
[

9.418028049
0

]
,

and

C = [B : AB]

=
[

9.418028049 10.22404907
0 8.146575000

]
.
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Then it is easy to check that rank of C matrix is 2. Therefore the system (5.2) is control-
lable. Then, Jacobian matrix A − BK of the controlled system (5.2) is given by

A − BK =
[

1 − 9.418028049ρ1 −3.767211220 − 9.418028049ρ2
1.041810658 −2.718999764

]

Moreover, the lines L1, L2 and L3 for marginal stability are given by:

L1 = 0.2057210360 + 25.60761604ρ1 + 9.811801999ρ2 = 0,

L2 = 3.924720800 + 35.02564409ρ1 + 9.811801999ρ2 = 0,

and
L3 = 0.4867212720 + 16.18958799ρ1 + 9.811801999ρ2 = 0.

Then, the stable triangular region bounded by marginal lines L1, L2 and L3 for the con-
trolled system (5.2) is shown in Figure 5.

(a) (b)

(c)

Figure 4. Bifurcation diagrams and MLE for the system (1.2) for values of r2 =
12 δ = 0.27, θ = 50, ε = 0.4, r1 = (3.6, 4.5), and initial condition (N0, P0) =
(34, 8.1). (a) Bifurcation diagram for Nt (b) Bifurcation diagram for Pt (c)
Maximum Lyapunov exponents.
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Figure 5. Triangular stability region bounded by L1, L2 and L3 for the controlled
system (5.1).

6. Discussions
In this paper, we have introduced a discrete-time predator-prey model with Allee ef-

fect on predator population. The existence and topological classification of the coexis-
tence fixed point E∗ of the system (1.2) have been shown. The system (1.2) undergoes
Neimark-Sacker bifurcation when the parameters r1, r2, δ, θ, ε, α go through the curves
NSBE∗ =

{
r1, r2, δ, θ, ε, α ∈ (0, +∞) : δ = 2αε + r1

r1 (αε + r1)
, ∆F < 0

}
[8, 19, 33]. In other

words, attracting invariant closed curves appears. From the viewpoint of biologically,
attractive invariable closed curves bifurcated from the Neimark-Sacker bifurcation mean
that predator-prey population will coexist under the periodic or quasiperiodic oscillations
for a long time. Moreover, for supporting theoretical results obtained, some figures are
presented by using MATLAB and MAPLE programmes. The drawn phase potraits imply
invariant curve or behave chaotic. In that case, we can say that more complex dynamics
are observed than in the continuous time systems.

In Figure 1 and Figure 2, stability and bifurcation diagrams of the system (1.2) are
given for some parameter values, respectively. In Figure 2, we show that E∗ is stable for
δ < 0.2556207234 and losses its stability at δ = 0.2556207234 and an attracting invariant
curve appears if δ > 0.2556207234. In Figure 3, the phase portraits of the system (1.2) for
the different values of the δ are plotted. We can say that the parameter δ has a strong
effect for the stability of the system (1.2) and on interaction of two populations. In Figure
4a and 4b, the bifurcation process and the emergence of a closed invariant curve are shown.
In Figure 4c we calculated maximum Lyapunov exponents to illustrate the stability of the
fixed point E∗. When r1 lies in a small neighborhood of the corresponding exponents are
positive, which implies the occurrence of the chaotic phenomena.

To sum up, from a biological point of view, introduction of Allee effect in the model (1.2)
improves the stability results, enriches the dynamics of the model, keeps the population
densities in balance and makes the model closer to reality.
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