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Abstract: In this work, we present a explicit trace forms for maximal real subfields of cyclotomic fields as tools
for constructing algebraic lattices in Euclidean space with optimal center density. We also obtain a
closed formula for the Gram matrix of algebraic lattices obtained from these subfields. The obtained
lattices are rotated versions of the lattices Λ9,Λ10 and Λ11 and they are images of Z-submodules of
rings of integers under the twisted homomorphism, and these constructions, as algebraic lattices, are
new in the literature. We also obtain algebraic lattices in odd dimensions up to 7 over real subfields,
calculate their minimum product distance and compare with those known in literatura, since lattices
constructed over real subfields have full diversity.
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1. Introduction

Lattices have been considered in different areas, especially in coding theory and more recently in
cryptography. Algebraic lattices are lattices obtained via the ring of integers of a number field and they
have been studied in several papers and from different points of view [1–7, 10–13, 15, 16, 18].
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The classical sphere packing problem is to determine how densely a large number of identical spheres
can be packed together in the Euclidean space. The packing density of a lattice Λ is the proportion of
the space covered by the non-overlapping spheres of maximum radius centered at the points of Λ. The
densest known lattice packings in dimensions 1 through 8 and 24 are also the optimal ones, see [12, p.
12] for n = 1, 2, . . . , 8, and [11] for n = 24. Those lattice packings are unique. For all other dimensions,
it is not known whether the current records are optimal.

A lattice Λ has diversity equal to k if k is the maximum number such that any non-zero vector y ∈ Λ
has at least k non-zero coordinates. Given an n-dimensional lattice Λ ⊆ Rn of full diversity, the minimum
product distance of Λ is defined as dp,min(Λ) = min{

∏n
i=1 |yi|; y = (y1, y2, . . . , yn) ∈ Λ, y 6= 0}. Usually

the problem of finding good signal constellations for a Gaussian channel is associated with the search for
lattices with high packing density, see [12, Chapter 3]. On the other hand, for a Rayleigh fading channel,
the efficiency of the signal constellation, measured by the error probability in the transmission, is strongly
related to the lattice diversity and its minimum product distance, see [10, Section III]. For this purpose
the lattice parameters we consider here are packing density, diversity, and minimum product distance.

The approach in this work, following [2, 3] is the use of algebraic number theory to construct lattices
which have good performance on both channels. For general lattices the packing density and the minimum
product distance are usually hard to estimate [17]. Those parameters can be calculated in certain cases
of lattices associated to number fields through algebraic properties. In [4–6] some families of rotated Zn-
lattices of full diversity and high minimum product distance are studied for transmission over Rayleigh
fading channels. In [13] some families of rotated Zn-lattices of full diversity in dimensions power of 3 are
studied and lower bounds for the minimum product distances of such construction are also presented. In
[7] the lattices Ap−1, p prime, E6, E8, K12 and Λ24 were realized as full diversity ideal lattices via some
subfields of cyclotomic fields. In this work we construct the lattices D3, E5, E7,Λ9,Λ10 and Λ11, calculate
(or estimate) their minimum product distance and compare the obtained values with those known in
literature, mainly Zn-lattices given in [5, 18].

In [14, Theorem 1] a trace form for cyclotomic fields Q(ζn) via the Minkowski homomorphism is
derived. In this work, we generalize the result for the maximal real subfields Q(ζn + ζ−1n ) via the twisted
homomorphism. In [6, Proposition 4.1(a)] and [8] the Gram matrix of the algebraic lattice constructed via
the Minkowski homomorphism overQ(ζpr+ζ−1pr ) is determined, but in this work we use a different aproach.
In this work, we generalize the result to the case Q(ζn + ζ−1n ) considering the twisted homomorphism.
Trace forms are used to calculate the packing radius of algebraic lattices. As an application, we present
constructions of algebraic lattices with optimal center density in dimensions 3, 5, 7, 9, 10 and 11.

The paper is organized as follows. In Sections 2, we collect some results on number fields and
algebraic lattices. In Section 3, we present a explicit trace form for the maximal real subfields via
the twisted homomorphism. We also present a closed formula of Gram matrix for the lattice σα(OK),
where K = Q(ζn + ζ−1n ). In Section 4, we construct algebraic lattices in Euclidean space with optimal
center density in dimensions 3, 5, 7, 9, 10 and 11 and calculate (estimate) their minimum product distance.
Finally, in Section 5, we draw our conclusions.

2. Background on number fields and algebraic lattices

If L is a number field of degree n, that is, a field that is a finite degree extension of Q, then L = Q(α),
where α ∈ C is a root of a monic irreducible polynomial p(x) ∈ Z[x]. The n distinct roots of p(x), namely,
α1, α2, . . . , αn, are the conjugates of α. If σ : L → C is a Q-homomorphism, then σ(α) = αi for some
i = 1, 2, . . . , n. Furthermore, there are exactly n Q-homomorphisms σi, for i = 1, 2, . . . , n, of L in C,
where r1 are real monomorphisms and 2r2 are complex monomorphisms with n = r1 + 2r2.

An element α ∈ L is called an algebraic integer if there is a monic polynomial f(x) with integer
coefficients such that f(α) = 0. The set

OL = {α ∈ L : α is an algebraic integer}
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is a ring, called ring of algebraic integers of L [20, 21]. It can be shown that OL, as a Z-module, has
a basis {α1, α2, . . . , αn} over Z, called integral basis, where n is the degree of L. In other words, every
element α ∈ OL can be uniquely written as

α =

n∑
i=1

aiαi,

where ai ∈ Z for all i = 1, 2, . . . , n.

The trace and the norm of an element α ∈ L over Q are defined as the rational numbers

TrL/Q(α) =

n∑
i=1

σi(α) and NL/Q(α) =

n∏
i=1

σi(α).

If α ∈ OL, then TrL/Q(α) and NL/Q(α) are algebraic integers. The discriminant of L over Q is defined
by

dL = d(α1, α2, . . . , αn) = det
1≤i,j≤n

(σi(αj))
2,

where {α1, α2, . . . , αn} is an integral basis of L.
A lattice Λ is a discrete additive subgroup of Rn considered as the standard real vector space, that

is, Λ ⊆ Rn is a lattice if there are linearly independent vectors α1, α2, . . . , αm ∈ Rn such that

Λ =

{
m∑
i=1

aiαi; ai ∈ Z, i = 1, 2, . . . ,m

}
.

The classical sphere packing problem is to find out how densely a large number of identical spheres
can be packed together in the Euclidean space. The packing density, ∆(Λ), of a lattice Λ is the proportion
of the space Rn covered by the non-overlapping spheres of maximum radius centered at the points of Λ.
The densest possible lattice packings have only be determined in dimensions 1 to 8 and 24 [12, p. 12]. It
is also known that these densest lattice packings are unique.

Let {α1, α2 . . . , αm} be a set of linearly independent vectors in Rn and Λ = {
∑m
i=1 aiαi; ai ∈ Z} a

lattice. The set {α1, α2, . . . , αm} is called a basis for Λ. A matrix M whose rows are these vectors is said
to be a generator matrix for Λ whereas G = MM t = (〈αi, αj〉)mi,j=1 is called the Gram matrix of Λ. The
determinant of Λ, denoted by det Λ, is equal to detG and it is an invariant under change of basis. The
volume of Λ is equal to

√
det(Λ). The packing density of Λ is the proportion occupied by the spheres

centered in the points of the lattice and having radius min{||x − y||; x, y ∈ Λ, x 6= y}/2 relative to the
entire space Rn. If ∆(Λ) is the packing density of Λ, then δ(Λ) = ∆(Λ)/Vn is the center density of the
lattice, where Vn is the volume of an n-dimensional sphere of radius 1 [12, p. 9].

Let α ∈ L such that αi = σi(α) > 0 for all i = 1, . . . , n. If R(x) and I(x) denote, respectively, the
real part and the imaginary part of x, the homomorphism σα : L −→ Rn defined by

σα(x) =
(√
α1σ1(x), . . . ,

√
αr1σr1(x), . . . ,

√
αr1+r2R(σr1+r2(x)),

√
αr1+r2I(σr1+r2(x))

)
,

for every x ∈ L, is called twisted homomorphism [2, 3]. When α = 1 the twisted homomorphism
is the Minkowski homomorphism. If M is a Z-module in L of rank n with Z-basis {w1, w2, . . . , wn},
then the set Λ = σα(M) is a complete lattice in Rn with basis {σα(w1), σα(w2), . . . , σα(wn)}. If L
is a totally real number field then G =

(
TrL/Q(αwiwj)

)n
i,j=1

is a Gram matrix for σα(M). From [2],
det(Λ) = [OK :M]2NL/Q(α)|dL|, so the center density of Λ is given by

δ(Λ) =
ρn√

det(Λ)
=

tn/2

2n[OL :M]
√
NL/Q(α)|dL|

,
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where dL denotes the discriminant of the number field L, [OL :M] denotes the index ofM and

t = min
{
TrL/Q(αx2) : x ∈M, x 6= 0

}
.

IfM is a Z-module in L of rank m, m < n, with Z-basis {w1, w2, . . . , wm}, then the set Λ = σα(M)

is a lattice of rank m in Rn with basis {σα(w1), σα(w2), . . . , σα(wm)} and Q =
(
TrL/Q(αwiwj)

)n
i,j=1

is a
Gram matrix for σα(M). The center density of Λ is given by

δ(Λ) =


tm/2

2m
√

det(Q)
, if L is totally real.

tm/2

23m/2
√

det(Q)
, if L is totally complex.

(1)

If K is a totally real field number with [K : Q] = n andM⊆ K a free Z-module of rank n, then the
minimum product distance of Λ = σα(M) is defined as

dp,min(Λ) =
√
NK/Q(α) min

06=y∈M
|NK/Q(y)|. (2)

In particular, by [5], ifM⊆ K is a principal ideal then

dp,min(Λ) =

√
det(Λ)

|dK|
. (3)

The relative minimum product distance of Λ, denoted by dp,rel(Λ), is the minimum product distance
of a scaled version of Λ with unitary minimum norm vector. Thus, if Λ1 is a scaled version of Λ of
dimension n with scale factor

√
k, i. e., Λ1 =

√
kΛ and the minimum norm of Λ is µ, then the relative

minimum product distance of Λ1 is given by

dp,rel(Λ1) =

(
1√
kµ

)n
dp,min(Λ1). (4)

3. Trace forms for cyclotomic fields

In this section, we present explicit trace forms for maximal real subfiel K = Q(ζn + ζ−1n ) via twisted
homomorphism. We also present a closed formula of Gram matrix for the lattice σα(OK). A related
result, through a different approach, can be found in [6] and [8], where the authors use abelian fields of
odd prime power conductor.

A cyclotomic field is a number field L such that L = Q(ζn), where ζn is a primitive n-th root of
unity. It can be shown that [L : Q] = ϕ(n), where ϕ is the Euler function, OL = Z[ζn] is the ring of
algebraic integers of Z[ζn], {1, ζn, ζ2n, . . . , ζ

ϕ(n)−1
n } is an integral basis of L. Let K = Q(ζn + ζ−1n ) be the

maximal real subfield of a cyclotomic field Q(ζn). In this case, [K : Q] = ϕ(n)/2, OK = Z[ζn + ζ−1n ] and

{1, ζn + ζ−1n , ζ2n + ζ−2n , . . . , ζ
ϕ(n)

2 −1
n + ζ

−ϕ(n)
2 +1

n } is an integral basis of OK. [21].

Lemma 3.1. [14] Let j, n be integers. If gcd(j, n) = d, then

TrQ(ζn)/Q(ζjn) =
ϕ(n)

ϕ(n/d)
TrQ(ζn/d)/Q(ζ

j/d
n/d).

Lemma 3.2. [14] If j, ai are integers, ai ≥ 1 and pi is a prime number such that gcd(j, pi
ai) = 1, then

TrQ(ζpi
ai )/Q(ζjpiai ) =

{
−1, if ai = 1.

0, if ai > 1.
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Lemma 3.3. [14] Let n = pa11 · · · pass , where ak ≥ 1, for k = 1, . . . , s. If j is a prime number and
gcd(j, n) = d, then

TrQ(ζn)/Q(ζjn) =
ϕ(n)

ϕ(n/d)
µ(n/d),

where µ is the Moebius function.

Lemma 3.4. Let n = pa11 · · · pass , where aj ≥ 1, for j = 1, . . . s. If i is an integer such that i < ϕ(n) and
d = gcd(i, n), then

TrQ(ζn)/Q(ζin) 6= 0⇔ d = (n/P )tk and i = (n/P )k,

where P = p1 · · · ps, tk = gcd(k, P ) and k = 0, 1, 2, . . . , ϕ(P )− 1.

Proof. If d = (n/P )tk, where tk = gcd(k, P ), then the values that tk can assume are 1 and pα1 · · · pαt ,
where 1 ≤ αr ≤ s, for r = 1, 2, . . . , t and αr 6= αl if r 6= l and 1 ≤ t < s. So, d = pa1−11 · · · pas−1s or
d = pa1−11 · · · paα1

α1 · · · p
aαt
αt · · · pas−1s . Thus, n/d = p1 · · · ps or n/d = p1 · · · pα1−1pα1+1 · · · pαt−1pαt+1 · · · ps,

and therefore, µ(n/d) = ±1 6= 0. But, from Lemma 3.3, it follows that

TrQ(ζn)/Q(ζin) =
ϕ(n)

ϕ(n/d)
µ(n/d) 6= 0.

Now, if i = (n/P )k, then gcd(i, n) = d, for k = 0, 1, 2, . . . , ϕ(P ) − 1. In fact, if gcd(i, n) = d′, then
gcd((n/P )k, n) = d′. Thus, gcd(((n/P )k)/(n/P )n/(n/P )) = d′/(n/P ), that is, tk = gcd(k, P ) =
(P/n)d′. So, d′ = (n/P )tk = d and k = 0, 1, 2, . . . , ϕ(P ) − 1. From the Euler function, it follows
that

ϕ(n)
ϕ(P ) =

ϕ(p
a1
1 ···p

as
s )

ϕ(p1...ps)
=

ϕ(p
a1
1 )···ϕ(pass )

ϕ(p1)···ϕ(ps) = [p1
a1−1(p1−1)]···[psas−1(ps−1)]

(p1−1)···(ps−1)

= pa1−11 · · · pas−1s = n
P .

Thus, if k ≥ ϕ(P ), then i = (n/P )k = ((ϕ(n))/(ϕ(P ))k ≥ ((ϕ(n))/(ϕ(P ))ϕ(P ) = ϕ(n), which is a
contradiction. Therefore, k = 0, 1, 2, . . . , ϕ(P )− 1. Furthermore, d = (n/P )tk if and only if i = (n/P )k.
Reciprocically, suppose that TrQ(ζn)/Q(ζin) 6= 0 com d 6= (n/P )tk. Thus, n/d is not square free. So, from
definition of Euler function, it follows that µ(n/d) = 0, and therefore, TrQ(ζn)/Q(ζin) = 0, which is a
contradiction.

Lemma 3.5. Let n = pa11 · · · pass , where ar ≥ 1, for r = 1, . . . s. If i and j are integers such that
i, j < ϕ(n) and d = gcd(i− j, n), then

TrQ(ζn)/Q(ζi−jn ) 6= 0⇔ d = (n/P )tk and |i− j| = (n/P )k,

where P = p1 · · · ps, tk = gcd(k, P ) and k = 0, 1, 2, . . . , ϕ(P )− 1.

Proof. It is enough to observe that TrQ(ζn)/Q(ζi−jn ) = TrQ(ζn)/Q(ζj−in ), gcd(i − j, n) = gcd(j − i, n)
and as i, j < ϕ(n) then |i− j| < ϕ(n). Therefore, by Lemma 3.4, it follow the result.

Lemma 3.6. Let n = pa11 · · · pass , where ar ≥ 1, for r = 1, . . . s. If i and j are integers such that
i, j < ϕ(n) and d = gcd(i+ j, n), then

TrQ(ζn)/Q(ζi+jn ) 6= 0⇔ d = (n/P )tk and i+ j = (n/P )k,

where P = p1 · · · ps, tk = gcd(k, P ) and k = 0, 1, . . . , 2ϕ(P ) − 2 if n = P and k = 0, 1, . . . , 2ϕ(P ) − 1,
otherwise.
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Proof. For n = P , if k ≥ 2ϕ(P ) − 1, then i + j = (n/P )k = k ≥ 2ϕ(P ) − 1 = 2ϕ(n) − 1, which is
a contradiction, since i, j ≤ ϕ(n) − 1 implies i + j ≤ 2ϕ(n) − 2. Thus, k = 0, 1, . . . , 2ϕ(P ) − 2. For
n > P , if k ≤ 2ϕ(P )− 1, then i+ j = (n/P )k ≤ (ϕ(n)/ϕ(P ))(2ϕ(P )− 1) = 2ϕ(n)− (n/P ) < 2ϕ(n)−1.
So, i + j ≤ 2ϕ(n) − 2. If k ≥ 2ϕ(P ), then i + j = (n/P )k ≥ (ϕ(n)/ϕ(P ))2ϕ(P ) = 2ϕ(n), which is a
contradiction, since i+ j ≤ 2ϕ(n)− 2. Therefore, k = 0, 1, . . . , 2ϕ(P )− 1.

Lemma 3.7. Let n = pa11 · · · pass , where ar ≥ 1, for r = 1, 2, . . . s. If i and j are integers such i, j ≤
ϕ(n)/2− 1 and d = gcd(i+ 2j, n), then

TrQ(ζn)/Q(ζi+2j
n ) 6= 0⇔ d = (n/P )tk and i+ 2j = (n/P )k,

where P = p1 · · · ps, tk = gcd(k, P ) and k = 0, 1, . . . , b3ϕ(P )/2− 3P/nc, where byc is the greater integer
less than or equal to y.

Proof. If k > 3ϕ(P )/2 − 3P/n, then i + 2j = (n/P )k > (n/P ) (3ϕ(P )/2− 3P/n) = 3ϕ(n)/2 − 3,
which is a contradiction, since i, j ≤ ϕ(n)/2 − 1 implies i + 2j ≤ 3ϕ(n)/2 − 3. Thus, k =
0, 1, . . . , b3ϕ(P )/2− 3P/nc.

Lemma 3.8. Let n = pa11 · · · pass , where ar ≥ 1, for r = 1, 2, . . . s. If i and j are integers such i, j ≤
ϕ(n)/2− 1 and d = gcd(−i+ 2j, n), then

TrQ(ζn)/Q(ζ−i+2j
n ) 6= 0⇔ d = (n/P )tk and | − i+ 2j| = (n/P )k,

where P = p1 · · · ps, tk = gcd(k, P ) and k = 0, 1, 2, . . . , bϕ(P )− 3P/nc.

Proof. It is enough to observe that TrQ(ζn)/Q(ζ−i+2j
n ) = TrQ(ζn)/Q(ζi−2jn ), gcd(−i + 2j, n) =

gcd(i−2j, n). If k > ϕ(P )−3P/n, then |−i+2j| = (n/P )k > (n/P ) (ϕ(P )− 3P/n) = ϕ(n)−3, which is a
contradiction, since i, j ≤ ϕ(n)/2−1 implies |−i+2j| ≤ ϕ(n)−3. Thus, k = 0, 1, . . . , bϕ(P )− 3P/nc.

Proposition 3.9. Let L = Q(ζn) and K = Q(ζn+ζ−1n ) be its maximal real subfield, where n = pa11 . . . pass ,
with aj ≥ 1, for j = 1, 2, . . . s, m = ϕ(n). Let α = α0+α1(ζn+ζ−1n )+α2(ζ2n+ζ−2n )+· · ·+αm/2−1(ζ

m/2−1
n +

ζ
−m/2+1
n ) be a totally positive element of Z[ζn + ζ−1n ], i. e., σi(α) > 0, for all i = 1, 2, . . . ,m/2, where σi

are the m/2 distinct Q-homomorphisms from K to C. If x = a0 + a1(ζn + ζ−1n ) + a2(ζ2n + ζ−2n ) + · · · +
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am
2 −1(ζ

m/2−1
n + ζ

−m/2+1
n ) is an element of Z[ζn + ζ−1n ], then

TrK/Q(αx2) =
n

P

ϕ(P )

2
α0a

2
0 + α0

u1∑
k=l1

n
P
k:even

a2nk
2P
ρ(tk) + 2α0a0

u2∑
k=l2

ank
P
ρ(tk) + 2α0

u3∑
k=l3

Bnk
P
ρ(tk)

+ ϕ(P )α0

m/2−1∑
j=1

a2j + 2α0

u4∑
k=l2

Ank
P
ρ(tk) + a20

u2∑
k=l2

αnk
P
ρ(tk) +

∑
n6=i+2j=nk

P
l3≤k≤u5

1≤i≤m
2
−1

1≤j≤m
2
−1

2∑
i

αia
2
j ρ(tk)

+ ϕ(P )

2∑
i+2j=n

1≤i≤m
2
−1

1≤j≤m
2
−1

2∑
i

αia
2
j +

∑
0≤|−i+2j|=nk

P
0≤k≤u3

1≤i≤m/2−1
1≤j≤m/2−1

2∑
i

αia
2
j ρ(tk) + 2a0

∑
i+j=nk

P
l1≤k≤u1

1≤i≤m/2−1
1≤j≤m/2−1

2∑
i

αiaj ρ(tk)

+ +2a0
∑

0≤|i−j|=nk
P

0≤k≤u4
1≤i≤m/2−1
1≤j≤m/2−1

2∑
i

αiaj ρ(tk) + 2
∑

n6=i+j=nk
P

l4≤k≤u7
1≤i≤m/2−1
3≤j≤m−3

2∑
i

αiBj ρ(tk) + 2ϕ(P )
∑
i+j=n

1≤i≤m/2−1
3≤j≤m−3

2∑
i

αiBj

+ 2
∑

0≤|i−j|=nk
P

0≤k≤u8
1≤i≤m/2−1
3≤j≤m−3

αiBj ρ(tk) + 2

u2∑
k=l2

m/2−1∑
j=1

αnk
P
a2jρ(tk) + 2

∑
i+j=nk

P
l1≤k≤u3

1≤i≤m/2−1

1≤j≤m
2
−2

2∑
i

αiAj ρ(tk)

+ 2
∑

0≤|i−j|=nk
P

0≤k≤u4
1≤i≤m/2−1

1≤j≤m
2
−2

2∑
i

αiAj ρ(tk)

u1∑
k=l1

n
P
k:even

 .

where P = p1 · · · ps, tk = gcd(k, P ), dye is the smaller integer greater than or equal to y, byc is the greater
integer less than or equal to y, l1 = d2P/ne, l2 = dP/ne, l3 = d3P/ne, l4 = d4P/ne, u1 = bϕ(P )− 2P/nc,
u2 = bϕ(P )/2− P/nc, u3 = bϕ(P )− 3P/nc, u4 = bϕ(P )/2− 2P/nc, u5 = b3ϕ(P )/2− 3P/nc, u6 =
b(m− 2)/4c, u7 = b3ϕ(P )/2− 4P/nc, u8 = bϕ(P )− 4P/nc, ρ(tk) = µ( Ptk )ϕ(tk) with µ the Mobius

function and ϕ the Euler function, Aj = a1aj+1+a2aj+2+· · ·+am
2 −1−jam/2−1, Bj =

∑
k≥1

k<j−k≤m/2−1

akaj−k,

and any sum of the trace form must be disregarded if the lower bound of k is greater than the upper bound.

Proof. Let x = a0 + a1(ζn + ζ−1n ) + a2(ζ2n + ζ−2n ) + · · ·+ am/2−1(ζ
m/2−1
n + ζ

−m/2+1
n ) be an element of

OK = Z[ζn + ζ−1n ], with ai ∈ Z, for i = 0, 1, 2, . . .m/2− 1. Thus,

x2 = (a0 + a1ζn + a1ζ
−1
n + · · ·+ am/2−1ζ

m/2−1
n + am/2−1ζ

−m2 +1
n )2 =

m/2−1∑
j=0

ajζ
j
n +

m/2−1∑
j=1

ajζ
−j
n

2

=

m/2−1∑
j=0

ajζ
j
n

2

+

m/2−1∑
j=1

ajζ
−j
n

2

+ 2

m/2−1∑
j=0

ajζ
j
n

m/2−1∑
j=1

ajζ
−j
n

 =

=

m/2−1∑
j=0

a2jζ
2j
n + 2

∑
0≤i<j≤m/2−1

aiajζ
i+j
n +

m/2−1∑
j=1

a2jζ
−2j
n + 2

∑
1≤i<j≤m/2−1

aiajζ
−i−j
n
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+ 2

m/2−1∑
j=0

ajζ
j
n

m/2−1∑
j=1

ajζ
−j
n

 =

= a20 +

m/2−1∑
j=1

a2j (ζ
2j
n + ζ−2jn ) + 2

m/2−1∑
j=1

a0aj(ζ
j
n + ζ−jn ) + 2

m−3∑
j=3

Bj(ζ
j
n + ζ−jn ) + 2

m/2−1∑
j=1

a2j tttttttttt

+ 2

m/2−2∑
j=1

Aj(ζ
j
n + ζ−jn ),

where Aj = a1aj+1 + a2aj+2 + · · · + am/2−1−jam/2−1 and Bj =
∑
k≥1

k<j−k≤m/2−1

akaj−k. Now, let α =

α0 + α1(ζn + ζ−1n ) + α2(ζ2n + ζ−2n ) + · · · + αm/2−1(ζ
m/2−1
n + ζ

−m/2+1
n ) be a totally positive element of

OK = Z[ζn + ζ−1n ], with αi ∈ Z, for i = 0, 1, 2, . . .m/2− 1. Thus,

αx2 =

α0 +

m/2−1∑
i=1

αj(ζ
i
n + ζ−in )

a20 +

m/2−1∑
j=1

a2j (ζ
2j
n + ζ−2jn ) + 2

m/2−1∑
j=1

a0aj(ζ
j
n + ζ−jn )

+ 2

m−3∑
j=3

Bj(ζ
j
n + ζ−jn ) + 2

m/2−1∑
j=1

a2j + 2

m
2 −2∑
j=1

Aj(ζ
j
n + ζ−jn )

 =

= α0a
2
0 + α0

m/2−1∑
j=1

a2j (ζ
2j
n + ζ−2jn ) + 2α0a0

m/2−1∑
j=1

aj(ζ
j
n + ζ−jn ) + 2α0

m−3∑
j=3

Bj(ζ
j
n + ζ−jn )

+2α0

m/2−1∑
j=1

a2j + 2α0

m
2 −2∑
j=1

Aj(ζ
j
n + ζ−jn ) + a20

m/2−1∑
i=1

αi(ζ
i
n + ζ−in )

+

m/2−1∑
i=1

m/2−1∑
j=1

αia
2
j (ζ

i+2j
n + ζ−i−2jn ) +

m/2−1∑
i=1

m/2−1∑
j=1

αia
2
j (ζ
−i+2j
n + ζi−2jn )

+2a0

m/2−1∑
i=1

m/2−1∑
j=1

αiaj(ζ
i+j
n + ζ−i−jn ) + 2a0

m/2−1∑
i=1

m/2−1∑
j=1

αiaj(ζ
i−j
n + ζ−i+jn )

+ 2

m/2−1∑
i=1

m−3∑
j=3

αiBj(ζ
i+j
n + ζ−i−jn ) + 2

m/2−1∑
i=1

m−3∑
j=3

αiBj(ζ
i−j
n + ζ−i+jn )

+2

m/2−1∑
i=1

m/2−1∑
j=1

αia
2
j (ζ

i
n + ζ−in ) + 2

m/2−1∑
i=1

m/2−2∑
j=1

αiAj(ζ
i+j
n + ζ−i−jn )

+ 2

m/2−1∑
i=1

m/2−2∑
j=1

αiAj(ζ
i−j
n + ζ−i+jn ).

Since ζkn and ζ−kn are conjugates, it follows that they have the same trace, i. e., TrL/Q(ζkn + ζ−kn ) =

2TrL/Q(ζkn) and as TrL/Q(αx2) = [L : K] TrK/Q(αx2), it follows that

TrK/Q(αx2) =
1

2
TrL/Q(αx2).
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Thus,

TrK/Q(αx2) =
1

2
TrL/Q

α0a
2
0 + α0

m/2−1∑
j=1

a2j (ζ
2j
n + ζ−2jn ) + 2α0a0

m/2−1∑
j=1

aj(ζ
j
n + ζ−jn )

+2α0

m−3∑
j=3

Bj(ζ
j
n + ζ−jn ) + 2α0

m/2−1∑
j=1

a2j + 2α0

m/2−2∑
j=1

Aj(ζ
j
n + ζ−jn )

+a20

m/2−1∑
i=1

αi(ζ
i
n + ζ−in ) +

m/2−1∑
i=1

m/2−1∑
j=1

αia
2
j (ζ

i+2j
n + ζ−i−2jn )

+

m/2−1∑
i=1

m/2−1∑
j=1

αia
2
j (ζ
−i+2j
n + ζi−2jn ) + 2a0

m/2−1∑
i=1

m/2−1∑
j=1

αiaj(ζ
i+j
n + ζ−i−jn )

+2a0

m/2−1∑
i=1

m/2−1∑
j=1

αiaj(ζ
i−j
n + ζ−i+jn ) + 2

m/2−1∑
i=1

m−3∑
j=3

αiBj(ζ
i+j
n + ζ−i−jn )

+2

m/2−1∑
i=1

m−3∑
j=3

αiBj(ζ
i−j
n + ζ−i+jn ) + 2

m/2−1∑
i=1

m/2−1∑
j=1

αia
2
j (ζ

i
n + ζ−in )

+2

m/2−1∑
i=1

m/2−2∑
j=1

αiAj(ζ
i+j
n + ζ−i−jn ) + 2

m/2−1∑
i=1

m/2−2∑
j=1

αiAj(ζ
i−j
n + ζ−i+jn )


=

m

2
α0a

2
0 + α0

m/2−1∑
j=1

a2jTrL/Q(ζ2jn ) + 2α0a0

m/2−1∑
j=1

ajTrL/Q(ζjn)

+2α0

m−3∑
j=3

BjTrL/Q(ζjn) + mα0

m/2−1∑
j=1

a2j + 2α0

m/2−2∑
j=1

AjTrL/Q(ζjn)

+a20

m/2−1∑
j=1

αjTrL/Q(ζjn) +

m/2−1∑
i=1

m/2−1∑
j=1

αia
2
jTrL/Q(ζi+2j

n )

+

m/2−1∑
i=1

m/2−1∑
j=1

αia
2
jTrL/Q(ζ−i+2j

n ) + 2a0

m/2−1∑
i=1

m/2−1∑
j=1

αiajTrL/Q(ζi+jn )

+2a0

m/2−1∑
i=1

m/2−1∑
j=1

αiajTrL/Q(ζi−jn ) + 2

m/2−1∑
i=1

m−3∑
j=3

αiBjTrL/Q(ζi+jn )

+2

m/2−1∑
i=1

m−3∑
j=3

αiBjTrL/Q(ζi−jn ) + 2

m/2−1∑
i=1

m/2−1∑
j=1

αia
2
jTrL/Q(ζin)

+2

m/2−1∑
i=1

m/2−2∑
j=1

αiAjTrL/Q(ζi+jn ) + 2

m/2−1∑
i=1

m/2−2∑
j=1

αiAjTrL/Q(ζi−jn ).
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From Lemmas 3.3 to 3.8, it follows that

m/2−1∑
j=1

a2jTrL/Q(ζ2jn ) =

u1∑
k=l1

n
P
k:even

a2nk
2P
ρ(tk),

m/2−1∑
j=1

ajTrL/Q(ζjn) =

u2∑
k=l2

ank
P
ρ(tk),

m−3∑
j=3

BjTrL/Q(ζjn) =

u3∑
k=l3

Bnk
P
ρ(tk),

m/2−2∑
j=1

AjTrL/Q(ζjn) =

u4∑
k=l2

Ank
P
ρ(tk),

m/2−1∑
j=1

αjTrL/Q(ζjn) =

u2∑
k=l2

αnk
P
ρ(tk),

m/2−1∑
i=1

m/2−1∑
j=1

αia
2
jTrL/Q(ζi+2j

n ) =
∑

n 6=i+2j=nk
P

l3≤k≤u5
1≤i≤m/2−1
1≤j≤m/2−1

2∑
i

αia
2
j ρ(tk) +

2∑
i+2j=n

1≤i≤m/2−1
1≤j≤m/2−1

2∑
i

αia
2
j ,

m/2−1∑
i=1

m/2−1∑
j=1

αia
2
jTrL/Q(ζ−i+2j

n ) =
∑

0≤|−i+2j|=nk
P

0≤k≤u3
1≤i≤m/2−1
1≤j≤m/2−1

2∑
i

αia
2
j ρ(tk),

m/2−1∑
i=1

m/2−1∑
j=1

αiajTrL/Q(ζi+jn ) =
∑

i+j=nk
P

l1≤k≤u1
1≤i≤m/2−1
1≤j≤m/2−1

2∑
i

αiaj ρ(tk),

m/2−1∑
i=1

m/2−1∑
j=1

αiajTrL/Q(ζi−jn ) =
∑

0≤|i−j|=nk
P

0≤k≤u4
1≤i≤m/2−1
1≤j≤m/2−1

2∑
i

αiaj ρ(tk),

m/2−1∑
i=1

m−3∑
j=3

αiBjTrL/Q(ζi+jn ) =
∑

n 6=i+j=nk
P

l4≤k≤u7
1≤i≤m/2−1
3≤j≤m−3

∑
2
iαiBj ρ(tk) + ϕ(P )

∑
i+j=n

1≤i≤m/2−1
3≤j≤m−3

∑
2
iαiBj ,

m/2−1∑
i=1

m−3∑
j=3

αiBjTrL/Q(ζi−jn ) =
∑

0≤|i−j|=nk
P

0≤k≤u8
1≤i≤m/2−1
3≤j≤m−3

αiBj ρ(tk),

m/2−1∑
i=1

m/2−1∑
j=1

αia
2
jTrL/Q(ζin) =

u2∑
k=l2

m/2−1∑
j=1

αnk
P
a2jρ(tk),

m/2−1∑
i=1

m/2−2∑
j=1

αiAjTrL/Q(ζi+jn ) =
∑

i+j=nk
P

l1≤k≤u3
1≤i≤m/2−1

1≤j≤m
2
−2

∑
2
iαiAj ρ(tk),

m/2−1∑
i=1

m/2−2∑
j=1

αiAjTrL/Q(ζi−jn ) =
∑

0≤|i−j|=nk
P

0≤k≤u4
1≤i≤m/2−1

1≤j≤m
2
−2

2∑
i

αiAj ρ(tk),

where l1 =
⌈
2P
n

⌉
, l2 =

⌈
P
n

⌉
, l3 =

⌈
3P
n

⌉
, l4 =

⌈
4P
n

⌉
, u1 =

⌊
ϕ(P )− 2P

n

⌋
, u2 =

⌊
ϕ(P )
2 − P

n

⌋
,
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u3 =
⌊
ϕ(P )− 3P

n

⌋
, u4 =

⌊
ϕ(P )
2 − 2P

n

⌋
, u5 =

⌊
3ϕ(P )

2 − 3P
n

⌋
, u6 =

⌊
m−2
4

⌋
, u7 =

⌊
3ϕ(P )

2 − 4P
n

⌋
,

u8 =
⌊
ϕ(P )− 4P

n

⌋
, ρ(tk) = µ( Ptk )ϕ(tk) with µ the Mobius function and ϕ the Euler function. Therefore,

the result follows.

As a corollary of the last theorem, we present an explicit Gram matrix of a lattice via the maximal
real subfield of K = Q(ζn + ζ−1n ), when the Z-module is the ring OK.

Corollary 3.10. Let be K = Q(ζn + ζ−1n ), e0 = 1 and ej = ζjn + ζ−jn for j = 1, 2, . . . ,m/2 − 1, where
n = pa11 · · · pass , m = ϕ(n) and α = α0 + α1(ζn + ζ−1n ) + α2(ζ2n + ζ−2n ) + · · ·+ αm/2−1(ζ

m/2−1
n + ζ

−m/2+1
n )

is a totally positive element of Z[ζn + ζ−1n ], i. e., σi(α) > 0, for all i = 1, 2, . . . ,m/2, where σi are the
m/2 distinct Q-homomorphisms from K to C. A Gram matrix for the lattice Λ = σα(OK) is given by
G =

(
TrK/Q(αeiej)

)m/2−1
i,j=0

, where

(a) TrK/Q(αe0e0) =
mα0

2
+
n

P

u1∑
k=l1

αnk
p
ρ(tk),

(b) For j ≥ 1,

T rK/Q(αe0ej) =
ϕ(n)

ϕ(n/d1)
µ(n/d1)α0 +

n

P

∑
r+j=nk

P
l2≤k≤u2

1≤r≤m/2−1

αrρ(tk) +
n

P

∑
|r−j|=nk

P
0≤k≤u3

1≤r≤m/2−1

αrρ(tk),

(c) For i, j ≥ 1,

T rK/Q(αeiej) =
ϕ(n)

ϕ(n/d2)
µ(n/d2)α0 +

ϕ(n)

ϕ(n/d3)
µ(n/d3)α0 +

n

P

∑
r+i+j=nk

P
l3≤k≤u4

1≤r≤m/2−1

αrρ(tk)

+
n

P

∑
|r−(i+j)|=nk

P
0≤k≤u5

1≤r≤m/2−1

αrρ(tk) +
n

P

∑
|r+(i−j)|=nk

P
0≤k≤u5

1≤r≤m/2−1

αrρ(tk) +
n

P

∑
|r+(j−i)|=nk

P
0≤k≤u5

1≤r≤m/2−1

αrρ(tk),

where P = p1 · · · ps, tk = gcd(k, P ), dye is the smaller integer greater than or equal to y, byc is the
greater integer less than or equal to y, l1 = dP/ne, l2 = d2P/ne, l3 = d3P/ne, u1 = bϕ(P )/2− P/nc,
u2 = bϕ(P )− 2P/nc, u3 = bϕ(P )/2c, u4 = b3ϕ(P )/2− 3P/nc, u5 = bϕ(P )− 3P/nc, d1 = gcd(j, n),
d2 = gcd(i + j, n), d3 = gcd(i − j, n), ρ(tk) = µ( Ptk )ϕ(tk) with µ the Mobius function and ϕ the Euler
function, and any sum must be disregarded if the lower bound of k is greater than the upper bound.

Proof. From Lemmas 3 to 6 and following the same steps of the proof of the Proposition 3.9, the result
follows.

The next proposition, stated and proved in [19, Corollary 2.3], will be used in the next section.
Before recalling it, we need a few assumptions. Let L/Q be a Galois extension of prime degree p such
that p is unramifed in OL, the ring of integers of L. Denote the conductor of L by n, that is, n is
the smallest positive integer such that L ⊆ Q(ζn). Then {σ(i)(θ)}p−1i=0 is an integral basis for L where
θ = TrQ(ζn)/L(ζn) and σ is any generator of Gal(L/Q).

Proposition 3.11. Let x =

p−1∑
i=0

aiσ
(i)(θ) be any element in OL. Then

TrL/Q(x2) = n

p−1∑
i=0

a2i −
n− 1

p

(
p−1∑
i=0

ai

)2

.
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4. Constructions of algebraic lattices

In this section, we construct algebraic lattices in Euclidean space with op-
timal center density in dimensions 9, 10 and 11 which are rotated ver-
sions of the lattices Λ9,Λ10 and Λ11 via twisted embeddings applied to
Z-modules of the ring of integers of a number field K. We believe these constructions, as alge-
braic lattices, are new in the literature. Constructions of rotated D3, D5 and E7-lattices via ideals
and free Z-modules that are not ideals are also presented. The same lattices are also constructed in
[15, 16], through a different approach, where the authors construct these lattices by shifting ideal lattices
constructed over cyclotomic fields via ideal or module in the maximal totally real subfields of cyclotomic
fields.

4.1. Construction of the D3-lattice

If K = Q(ζ9 + ζ−19 ), then [K : Q] = 3 and dK = 34. If α = 1, then α is a totally positive element
of Z[ζ9 + ζ−19 ] and N(α) = 1. IfM is a submodule of OK generated by {2 + e1 + e2,−e1 + e2, 2 − e2},
where ej = ζj9 + ζ−j9 , for j = 1, 2, thenM is a submodule of OK of index 6 and

δ(σα(M)) =
tn/2

2n[OL :M]
√
N(α)|dK|

=
183/2

236
√
|34|

=
1

4
√

2
,

i.e., with the same center density of the lattice D3. The norm equation |NK/Q(y)| = 2 has no solution in
OK [9], however |NK/Q(y)| = 3 when y = 2 − e2 ∈ M. Thus, min

06=y∈M
|NK/Q(y)| = 3. and the minimum

norm in D3 is µ = 2. As NK/Q(α) = 1 and σα(M) is a scaled version of D3 with scale factor
√

9, from
Equation (4), it follows that

dp,rel(σα(M)) =

(
1√
18

)3√
1× 3 = 0.03928,

and therefore,

3

√
dp,rel(σα(M)) = 0.33994.

4.2. Construction of the D5-lattice

If K = Q(ζ11 + ζ−111 ), then [K : Q] = 5 and dK = 114. If α = 2 − e1, where e1 = ζ11 + ζ−111 , then α
is a totally positive element of Z[ζ11 + ζ−111 ] and N(α) = 11. If M is a submodule of OK generated by
{2+e1,−e1,−e2,−e3,−e4}, where ej = ζj11 + ζ−j11 , for j = 1, 2, 3, 4, then σα(M) is a lattice of rank 5 and

δ(σα(M)) =
tn/2

2n[OL :M]
√
N(α)|dK|

=
225/2

26
√

115
=

1

8
√

2
,

i.e., with the same center density of the lattice D5. In this case, min
06=y∈M

|NK/Q(y)| = 1, because NK/Q(y) =

1, where y = 2 + e1 ∈M. The minimum norm in D5 is µ = 2. As NK/Q(α) = 11 and σα(M) is a scaled
version of D5 with scale factor

√
11, by Equation (4), it follows that

dp,rel(σα(M)) =

(
1√
22

)5√
11.1 = 0.00146,
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and therefore,

5

√
dp,rel(σα(M)) = 0.27097.

4.3. Construction of the E7-lattice

If K is a subfield of L = Q(ζ29) such that [K : Q] = 7 and 〈σ〉 = Gal(K/Q), where σ : ζ29 7→ ζ729,
then K = Q(θ), where

θ = TrL/K(ζ29) = ζ29 + ζ−129 + ζ1229 + ζ−1229 .

If

α = NL/K(1− ζ29) =
∏

i∈{1,−1,12,−12}

(1− ζi29) =

= −(6θ + 4σ(θ) + 4σ2(θ) + 4σ3(θ) + 4σ4(θ) + 3σ5(θ) + 4σ6(θ)),

then

TrK/Q(α) = NK/Q(α) = 29.

If

M = {a0θ + a1σ(θ) + · · ·+ a6σ
6(θ) ∈ OK; aj ≡ 0 (mod 2), for j = 0, 1, 2, 4},

then M is a Z-submodule of OK and M is not an ideal of OK, because for x = σ(θ) ∈ OK and y =
σ3(θ) ∈ M it follows that xy = −3θ − 2σ(θ) − 4σ2(θ) − 2σ3(θ) − 3σ4(θ) − 3σ5(θ) − 4σ6(θ) /∈ M. Since
dK = 296, it follows that

δ(σα(M)) =
tn/2

2n[OK :M]
√
N(α)|dK|

=
(22.29)7/2

27.16
√

29|296|
=

1

16
,

i.e., with the same center density of the lattice E7. As E7 is the only lattice with such center density
in R7, it follows that σα(M) is a rotated version of E7. In this case, min

06=y∈M
|NK/Q(y)| = 1, since for

y = −2θ − 2σ2(θ) + σ3(θ) − σ6(θ) ∈ M, NK/Q(y) = 1. Now, the minimum norm in E7 is µ = 2. As
NK/Q(α) = 29 and σα(M) is a scaled version of E7 with scale factor

√
58, by Equation (4), it follows that

dp,rel(σα(M)) =

(
1√
116

)7√
29.1 = 3.203× 10−7,

and consequently,

7

√
dp,rel(σα(M)) = 0.11809.

4.4. Construction of the Λ9 and Λ10-lattice

Let K be a number field such that K = Q(ζ180 + ζ−1180). In this case, [K : Q] = 24, taking e0 = 1

and ej = ζj180 + ζ−j180, for j = 1, 2, . . . , 23, we have that {1, e1, e2, . . . , e22, e23} is a basis of K. Let
α = 165 + 129e2 + 153e4 + 120e6 + 119e8 + 105e10 + 67e12 + 82e14 + 25e16 + 49e18 + 3e20 + 17e22 be a
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totally positive element of Z[ζ180 + ζ−1180] and let M1 be a submodule of OK generated by the linearly
independent vectors {w1, w2, · · · , w10}, where w = Mv,w = (w1, w2, · · · , w10)T , v = (1, e1, e2, · · · , e23)T

and the matrix M is given by



8 −24 8 8 0 8 16 −16 24 0 −16 0 8 −24 16 8 −32 32 −8 8 −8 0 −24 8
8 −16 −8 24 −16 0 8 −72 8 24 −16 64 8 −56 16 8 −16 40 −8 −48 16 8 8 32

−8 −16 8 24 16 16 −8 −8 −8 24 16 16 −8 −40 −16 −8 16 24 8 −16 −16 −24 −8 0
0 −16 −8 24 0 8 8 −40 0 24 8 40 8 −48 −8 0 0 32 −24 −32 0 −8 16 16

−8 48 0 −32 16 −8 0 96 −8 −16 24 −56 0 88 −16 −24 8 −88 −16 32 −16 −16 8 −48
−16 −8 −8 24 16 16 −16 0 −32 32 40 24 −8 −32 −32 −16 40 8 −8 −24 −8 −32 32 −8
−56 −16 −16 16 56 8 −56 −24 −96 16 128 24 −32 −32 −104 0 136 24 −8 −16 −40 −8 80 8

0 8 −16 0 −16 8 −8 40 −16 8 0 −16 0 16 0 −16 16 −24 0 8 24 −24 32 −24
24 48 16 −52 −8 8 24 84 44 −36 −32 −48 12 88 24 −20 −56 −72 0 40 −8 0 −48 −36

−16 52 0 −60 8 −4 −24 104 −16 −36 20 −56 −12 96 −12 −28 28 −80 48 0 4 −8 20 −44


.

In this case, σα(M1) is a lattice of rank 10 in R24 and forall x ∈M1 we have that σα(x) = γTA, where
γ = (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10),

T = 4



2 −6 8 2 0 2 4 −4 6 0 −4 0 2 −6 4 2 −8 8 −2 2 −2 0 −6 2
2 −4 −2 6 −4 0 2 −18 2 6 −4 16 2 −14 4 2 −4 10 −2 −12 4 2 2 8

−2 −4 2 6 4 4 −2 −2 −2 6 4 4 −2 −10 −4 −2 4 6 2 −4 −4 −6 −2 0
0 −4 −2 6 0 2 2 −10 0 6 2 10 2 −12 0 0 −2 8 −6 −8 0 −2 4 4

−2 12 0 −8 4 −2 0 24 −2 −4 6 −14 0 22 −4 −6 2 −22 −4 8 −4 −4 2 −12
−4 −2 −2 6 4 4 −4 0 −8 8 10 6 −2 −8 −8 −4 10 2 −2 −6 −2 −8 8 −2

−14 −4 −4 4 14 2 −14 −6 −24 4 32 6 −8 −8 −26 0 34 6 −2 −4 −10 −2 20 2
0 2 −4 0 −4 2 −2 10 −4 2 0 −4 0 4 0 −4 4 −6 0 2 6 −6 8 −6
6 12 4 −13 −2 −2 6 21 11 −9 −8 −12 3 22 6 −5 −14 −18 0 10 −2 0 −12 −9

−4 13 0 −15 2 −1 −6 26 −4 −9 5 −14 −3 24 −3 −7 7 −20 0 12 1 −2 5 −11


and

A =


√
σ1(α)σ1(1) · · ·

√
σ24(α)σ24(1)√

σ1(α)σ1(e1) · · ·
√
σ24(α)σ24(e1)

...
. . .

...√
σ1(α)σ1(e23) · · ·

√
σ24(α)σ24(e23)

 ,

where A is a generator matrix of lattice σα(OK), since {1, e1, e2, . . . , e22, e23} is a Z-basis for OK. We have
that B1 = TA is a generator matrix for σα(M1), and as B1 has rank 10, it follows that the lattice σα(M1)

has rank 10. A Gram matrix for the lattice σα(M1) is Q = TGT t, where G =
(
TrK|Q(αeiej)

)23
i,j=0

is a
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Gram matrix for the lattice σα(OK). From Proposition 3.10, it follows that the matrix G is given by

90



47 0 68 0 89 0 72 0 80 0 76 0 69 0 76 0 62 0 71 0 55 0 64 0
0 162 0 157 0 161 0 152 0 156 0 145 0 145 0 138 0 133 0 126 0 119 0 , 112
68 0 183 0 140 0 169 0 148 0 149 0 152 0 131 0 147 0 117 0 135 0 103 0
0 157 0 166 0 148 0 165 0 141 0 156 0 138 0 140 0 131 0 126 0 119 0 111
89 0 140 0 174 0 144 0 158 0 148 0 142 0 147 0 124 0 140 0 110 0 127 0
0 161 0 148 0 170 0 137 0 165 0 134 0 151 0 131 0 133 0 124 0 , 118 0 109
72 0 169 0 144 0 163 0 144 0 151 0 143 0 135 0 140 0 117 0 132 0 100 0
0 152 0 165 0 137 0 170 0 130 0 160 0 127 0 144 0 124 0 125 0 114 0 109
80 0 148 0 158 0 144 0 156 0 139 0 144 0 136 0 128 0 132 0 107 0 123 0
0 156 0 141 0 165 0 130 0 165 0 123 0 153 0 120 0 136 0 114 0 116 0 106
76 0 149 0 148 0 151 0 139 0 149 0 132 0 137 0 128 0 118 0 123 0 99 0
0 145 0 156 0 134 0 160 0 123 0 158 0 116 0 145 0 110 0 127 0 106 0 102
69 0 152 0 142 0 143 0 144 0 132 0 142 0 124 0 127 0 119 0 110 0 109 0
0 145 0 138 0 151 0 127 0 153 0 116 0 150 0 106 0 136 0 102 0 113 0 100
76 0 131 0 147 0 135 0 136 0 137 0 124 0 132 0 115 0 119 0 105 0 104 0
0 138 0 140 0 131 0 144 0 120 0 145 0 106 0 141 0 98 0 122 0 96 0 96
62 0 147 0 124 0 140 0 128 0 128 0 127 0 115 0 124 0 101 0 113 0 88 0
0 133 0 131 0 133 0 124 0 136 0 110 0 136 0 98 0 127 0 92 0 105 0 93
71 0 117 0 140 0 117 0 132 0 118 0 119 0 119 0 101 0 118 0 84 0 110 0
0 126 0 126 0 124 0 125 0 114 0 127 0 102 0 122 0 92 0 110 0 89 0 87
55 0 135 0 110 0 132 0 107 0 123 0 110 0 105 0 113 0 84 0 115 0 66 0
0 119 0 119 0 118 0 114 0 116 0 106 0 113 0 96 0 105 0 89 0 92 0 82
64 0 103 0 127 0 100 0 123 0 99 0 109 0 104 0 88 0 110 0 66 0 108 0
0 112 0 111 0 109 0 109 0 106 0 102 0 100 0 96 0 93 0 87 0 82 0 80



,

and consequently,

Q = TGT t = 5760



4 −2 0 0 0 0 0 0 0 0
−2 4 −2 2 0 0 0 0 0 0

0 −2 4 0 0 2 0 0 0 0
0 2 0 4 2 2 0 0 0 0
0 0 0 2 4 2 0 0 2 1
0 0 2 2 2 4 2 2 1 2
0 0 0 0 0 2 4 2 0 2
0 0 0 0 0 2 2 4 0 2
0 0 0 0 2 1 0 0 4 2
0 0 0 0 1 2 2 2 2 4


,

such that det(Q) = 278321510. By Proposition 3.9, the trace form of x ∈M1 is given by

TrK/Q(αx2) = 23040a21 − 23040a1a2 + 23040a22 − 23040a2a3 + 23040a23 + 23040a2a4 + 23040a24
+11520a10a5+23040a4a5+23040a25+23040a10a6+23040a3a6+23040a4a6+23040a5a6
+ 23040a26 + 23040a10a7 + 23040a6a7 + 23040a27 + 23040a10a8 + 23040a6a8 + 23040a7a8
+ 23040a28 + 23040a10a9 + 23040a5a9 + 11520a6a9 + 23040a29 + 23040a210.

Thus, t = min{TrK/Q(αx2); x ∈ M1, x 6= 0} = 23040 with a1 = 1 and aj = 0, for j 6= 1. By Equation
(1) it follows that the center density of lattice σα(M1) is given by

δ(σα(M1)) =
tm/2

2m
√

det(Q)
=

(23040)10/2

210
√

278321510
=

1

16
√

3
.

Therefore, σα(M1) is a lattice of rank 10 with the same center density of Λ10. As
1

5760
Q is a standard

Gram matrix of Λ10 [12], it follows that
1√

5760
σα(M1) is a rotated version of Λ10. Using a computer,
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we observed that min
0 6=y∈M

|NK/Q(y)| ≤ 4.13 × 1020. Now, the minimum norm in Λ10 is µ = 4. As

NK/Q(α) = 8.3× 109 and σα(M) is a scaled version of Λ10 with scale factor
√

5760, by Equation (4)

dp,rel(σα(M)) ≤
(

1√
23040

)24√
8.3× 109 × 4.13× 1020 = 1.68× 10−27,

and consequently,

10

√
dp,rel(σα(M)) ≤ 0.00210.

Now, let M2 be a submodule of OK generated by the linearly independent vectors {w1, w2, . . . , w9},
following the same steps as the construction of Λ10, it follows that

T = 4



2 −6 8 2 0 2 4 −4 6 0 −4 0 2 −6 4 2 −8 8 −2 2 −2 0 −6 2
2 −4 −2 6 −4 0 2 −18 2 6 −4 16 2 −14 4 2 −4 10 −2 −12 4 2 2 8

−2 −4 2 6 4 4 −2 −2 −2 6 4 4 −2 −10 −4 −2 4 6 2 −4 −4 −6 −2 0
0 −4 −2 6 0 2 2 −10 0 6 2 10 2 −12 0 0 −2 8 −6 −8 0 −2 4 4

−2 12 0 −8 4 −2 0 24 −2 −4 6 −14 0 22 −4 −6 2 −22 −4 8 −4 −4 2 −12
−4 −2 −2 6 4 4 −4 0 −8 8 10 6 −2 −8 −8 −4 10 2 −2 −6 −2 −8 8 −2

−14 −4 −4 4 14 2 −14 −6 −24 4 32 6 −8 −8 −26 0 34 6 −2 −4 −10 −2 20 2
0 2 −4 0 −4 2 −2 10 −4 2 0 −4 0 4 0 −4 4 −6 0 2 6 −6 8 −6
6 12 4 −13 −2 −2 6 21 11 −9 −8 −12 3 22 6 −5 −14 −18 0 10 −2 0 −12 −9


,

and consequently a Gram matrix for the lattice σα(M2) is given by

Q = TGT t = 5760



4−2 0 0 0 0 0 0 0
−2 4−2 2 0 0 0 0 0

0−2 4 0 0 2 0 0 0
0 2 0 4 2 2 0 0 0
0 0 0 2 4 2 0 0 2
0 0 2 2 2 4 2 2 1
0 0 0 0 0 2 4 2 0
0 0 0 0 0 2 2 4 0
0 0 0 0 2 1 0 0 4


,

such that det(Q) = 27231859. By Proposition 3.9 the trace form of x ∈M2 is given by

TrK/Q(αx2) = 23040a21 − 23040a1a2 + 23040a22 − 23040a2a3 + 23040a23 + 23040a2a4 + 23040a24
+ 23040a4a5 + 23040a25 + 23040a3a6 + 23040a4a6 + 23040a5a6 + 23040a26 + 23040a6a7
+ 23040a27 + 23040a6a8 + 23040a7a8 + 23040a28 + 23040a5a9 + 11520a6a9 + 23040a29.

Thus, t = min{TrK/Q(αx2); x ∈ M2, x 6= 0} = 23040 with a1 = 1 and aj = 0, for j 6= 1. By Equation
(1) it follows that the center density of lattice σα(M2) is given by

δ(σα(M2)) =
tm/2

2m
√

det(Q)
=

(23040)9/2

29
√

27231859
=

1

16
√

2
.

Therefore, σα(M2) is a lattice of rank 9 with the same center density of Λ9. As
1

5760
Q is a standard Gram

matrix of Λ9 [12], it follows that
1√

5760
σα(M2) is a rotated version of Λ9. Using a computer, we observed

156



A. J. Ferrari et al. / J. Algebra Comb. Discrete Appl. 7(2) (2020) 141–160

that min
06=y∈M

|NK/Q(y)| ≤ 2.28× 1021. Now, the minimum norm in Λ9 is µ = 4. As NK/Q(α) = 8.3× 109

and σα(M) is a scaled version of Λ9 with scale factor
√

5760, by Equation (4)

dp,rel(σα(M)) ≤
(

1√
23040

)24√
8.3× 109 × 2.28× 1021 = 9.29× 10−27,

and consequently,

9

√
dp,rel(σα(M)) ≤ 0.00128.

4.5. Construction of the Λ11-lattice

Let L = Q(ζ23), K the subfield of L such that [K : Q] = 11, and 〈σ〉 = Gal(K/Q), where σ : ζ23 7→ ζ223.
Then K = Q(θ) where θ = TrL/K(ζ23) = ζ23 + ζ−123 . A Z-basis for OK, the ring of integers of K, is
{σi(θ)}10i=0. By Proposition 3.11, the trace form of K is given by

TrK/Q(x2) = 23(a20 + a21 + · · ·+ a210)− 2(a0 + a1 + · · ·+ a10)2,

where x = a0θ + a1σ(θ) + · · ·+ a10σ
10(θ). Let

γ = NL/K(1− ζ23) = (1− ζ23)(1− ζ−123 ) = −θ − 2

10∑
i=0

σi(θ).

It follows that

TrK/Q(γ) = NK/Q(γ) = 23.

Furthermore, let

ε = 6

10∑
i=0

σi(θ) + 4σ6(θ) + σ7(θ)

be a unit in OK. The element α = εγ is totally positive and NK/Q(α) = 23. Let Λ0

denote the lattice σα(OK), where σα : K → R11 is the twisted homomorphism given by
σα(x) = (

√
σ0(α)σ0(x),

√
σ(α)σ(x), . . . ,

√
σ10(α)σ10(x)) and M be the Z-submodule of OK defined

by

M = {a0θ + a1σ(θ) + · · ·+ a10σ
10(θ) ∈ OK; aj ≡ 0 (mod 2), for j = 2, 4, 6, 8, 10},

then the Gram matrix of σα(M) is given by

G = 23



4−2 0 2−2−2 0 2 0 0−2
−2 4 0−1 4 0 0−1−4−1 2

0 0 12 0 0−2 0 4−8−2−4
2−1 0 4−6−2−2 0 0 2 0
−2 4 0−6 24 0 0 0−4−6 0
−2 0−2−2 0 4 4−2 0−1 0

0 0 0−2 0 4 12−2−4−4 0
2−1 4 0 0−2−2 4−2 0−4
0−4−8 0−4 0−4−2 16 4 4
0−1−2 2−6−1−4 0 4 4 0
−2 2−4 0 0 0 0−4 4 0 8


.
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We have that t = min{TrK/Q(αx2) : x ∈M, x 6= 0} = 22 × 23, with a0 = 1, a1 = a2 = · · · = a10 = 0 and
[OK :M] = 32. Since dK = 2310, the center density of the lattice σα(M) is given by

δ(σα(M)) =
tn/2

2n[OK :M]
√
N(α)|dK|

=
(22.23)11/2

211 × 32
√

23|2310|
=

1

32
,

i.e., the same as that of the Λmax
11 lattice [12, Chapter 6, Section 4]. The above lattice is a rotated version

of Λmax
11 . Indeed, G′ = 1

23UGU
t, where

G′ =



4−2 0 0 0 0 0 0 0 0 0
−2 4−2 2 0 0 0 0 0 0 0

0−2 4 0 0 2 0 0 0 0 0
0 2 0 4 2 2 0 0 0 0 0
0 0 0 2 4 2 0 0 2 1 0
0 0 2 2 2 4 2 2 1 2 0
0 0 0 0 0 2 4 2 0 2 0
0 0 0 0 0 2 2 4 0 2 0
0 0 0 0 2 1 0 0 4 2 0
0 0 0 0 1 2 2 2 2 4 2
0 0 0 0 0 0 0 0 0 2 4


is a Gram matrix of Λmax

11 and

U =



−1 0 0 3 1 2 1 3 0 2 1
0 0 0−2−1−2−1−2 0−2−1
−1−2−1−1 0−2 0−1−1 0 0

1 0 1 1 1 2 0 1 0 2 1
3 2 2 1 1 3 0−1 1 2 0
0 0 0−1 0−2 0−2 0 0−1
−2 0−1−2−1−4 0−2 0−2−2
−1 0−1−2−1−4 0−2 0−2−2
−1 1 0 2 0 0 0 0 1−2−1
−2 0−1−1−1−4 0−2 0−3−2
−2−2−1−2−1−4 0−2−1−2−1


is an element of GL(11,Z). Thus, min

06=y∈M
|NK/Q(y)| = 1, since for y = −θ ∈ M, NK/Q(y) = 1. Now, the

minimum norm in Λ11 is µ = 4. As NK/Q(α) = 23 and σα(M) is a scaled version of Λ11 with scale factor√
23, by Equation (4)

dp,rel(σα(M)) =

(
1√
92

)11√
23.1 = 7.58× 10−11,

and consequently,

11

√
dp,rel(σα(M)) = 0.12022.

5. Conclusions

In this section, we assess the performance of the lattices presented in this paper in terms of center
density and relative minimum product distance. These parameters are associated with the efficiency in
signal transmission over Gaussian and Rayleigh fading channels, respectively. Table 1 shows a comparison
between the best known relative product distance of rotated Zn-lattices, obtained via cyclotomic, cyclic
and mixed constructions [5] and via Krüskemper method [18] (First column), the densest lattices Λ0
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(D3, D5 and E7) obtained in [15, 16] (Second column), and the densest lattices Λn (Λ3 = D3, Λ5 = D5,
Λ7 = E7 and Λ12 = K12) from our construction (Third column). The center density δ of these lattices
are also displayed.

For the lattice D3 the minimum product distance 0.36964 presented in [16, Table 3] is higher than
that from our construction, while for dimension 5 our construction yields the same value. In dimension
7 (see [15, Remark 4.13]) the authors obtained a lower bound on the minimum product distance whereas
for our construction the bound holds. For dimensions 9 and 10, we constructed the lattices Λ9 and Λ10

with an upper bound for their minimum product distance. Although the bounds are not very high, the
lattices in those two dimensions and in dimension 11 are new and are not known in the literature (as
algebraic lattices). In particular, the value that we obtained in dimension 11 is half of the one obtained
for Zn (cyclotomic and cyclic constructions in [5]).

A broader question to be investigated is whether algebraic constructions of lattices, mainly in dimen-
sions 9, 10 and 11, as the ones approached here, can provide greater relative minimum product distance
for rotated densest lattices.

It is noticed that the relative minimum product distances dp,rel(Λn) of the rotated lattices obtained
in the present paper are smaller than the relative minimum product distances dp,rel(Zn) of rotated Zn-
lattices constructed for the Rayleigh channels in [5, 18]. Nevertheless, if the goal is to construct lattices
which have good performance on both Gaussian and Rayleigh channels, were may assert that taking into
account the trade-off center density versus product distance, there are some advantages in considering
the rotated Λn-lattices instead of rotated Zn-lattices.

Table 1. Relative minimum product distance versus center density (from [5, 15, 16, 18] and the
results presented here)

n n
√
dp,rel(Zn) n

√
dp,rel(Λ0) n

√
dp,rel(Λn) δ(Zn) δ(Λ)

3 0.52275 ≥ 0.36964 ≥ 0.33994 0.12500 0.17677

5 0.38321 ≥ 0.27097 ≥ 0.27097 0.03125 0.08838

7 0.30080 ≥ 0.11809 ≥ 0.11809 0.00781 0.06250

9 0.27018 - ≤ 0.00128 0.00195 0.04419

10 0.25627 - ≤ 0.00210 0.00097 0.03608

11 0.24045 - ≥ 0.12022 0.00048 0.03125
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