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Abstract. The aim of the present paper is to define and study the notion
of quasi bi-slant submanifolds of almost contact metric manifolds. We mainly
concerned with quasi bi-slant submanifolds of cosymplectic manifolds as a
generalization of slant, semi-slant, hemi-slant, bi-slant and quasi hemi-slant
submanifolds. First, we give non-trivial examples in order to demostrate the
method presented in this paper is effective and investigate the geometry of
distributions. Moreover, We study these types of submanifolds with parallel
canonical structures.

1. Introduction

Study of submanifolds theory has shown an increasing development in image
processing, computer design, economic modeling as well as in mathematical physics
and in mechanics. In this manner, B-Y. Chen [6] initiated the notion of slant
submanifold as a generalization of both holomorphic (invariant) and totally real
submanifold (anti-invariant) of an almost Hermitian manifold. Inspried by B-Y.
Chen’s paper, many geometers have studied this notion in the different kind of
structures: (see [7], [22], [23]). Many consequent results on slant submanifolds
are collected in his book [5]. After this notion, as a generalization of semi-slant
submanifold which was defined by N. Papaghiuc [19] (see also [8]). A. Carriazo [3]
and [4] introduced the notion of bi-slant submanifold under the name anti-slant
submanifold. However, B. Şahin called these submanifolds hemi-slant submanifolds
in [21]. (See also [9] and [10], [20], [24]).
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Furthermore, the submanifolds of a cosymplectic manifold have been studied by
many geometers: See [11], [12], [13], [14], [15], [16], [18]. Taking into account of the
above studies, we are motivated to fill a gap in the literature by giving the notion of
quasi bi-slant submanifolds in which the tangent bundle consist of one invariant and
two slant distributions and the Reeb vector field. In this paper, as a generalization
of slant, semi-slant, hemi-slant, bi-slant and quasi hemi-slant submanifolds, we
introduce quasi bi-slant submanifolds and investigate the geometry of distributions
in detail.
The paper is organized as follows: In section 2, we recall basic formulas and

definitions for a cosymplectic manifold and their submanifolds. In section 3, we
introduce the notion of quasi bi-slant submanifolds, giving a non-tirivial example
and obtain some basic results for the next sections. In section 4, we give some
necessary and suffi cient conditions for the geometry of distributions. Finally, we
study these types of submanifolds with parallel canonical structures.

2. Preliminaries

In this section, we give the definition of cosymplectic manifold and some back-
ground on submanifolds theory.
A (2m+1)-dimensional C∞-manifoldM said to have an almost contact structure

if there exist on M a tensor field ϕ of type (1,1), a vector field ξ and 1-form η
satisfying:

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, ηoϕ = 0, η(ξ) = 1. (2.1)

There always exists a Riemannian metric g on an almost contact manifold M sat-
isfying the following conditions

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ) (2.2)

where X,Y are vector fields on M.
An almost contact structure (ϕ, ξ, η) is said to be normal if the almost complex

structure J on the product manifold M × R is given by

J(X, f
d

dt
) = (ϕX − fξ, η(X)

d

dt
),

where f is a C∞-function on M × R has no torsion i.e., J is integrable. The
condition for normality in terms of ϕ, ξ and η is [ϕ,ϕ] + 2dη ⊗ ξ = 0 on M, where
[ϕ,ϕ] is the Nijenhuis tensor of ϕ. Finally, the fundamental two-form Φ is defined
Φ(X,Y ) = g(X,ϕY ).
An almost contact metric structure (ϕ, ξ, η, g) is said to be cosymplectic, if it is

normal and both Φ and η are closed ( [1], [2], [16]), and the structure equation of
a cosymplectic manifold is given by

(∇Xϕ)Y = 0 (2.3)
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for any X,Y tangent to M, where ∇ denotes the Riemannian connection of the
metric g on M. Moreover, for cosymplectic manifold

∇Xξ = 0. (2.4)

Example. ( [17]) R2n+1 with Cartesian coordinates (xi, yi, z)(i = 1, ..., n) and its
usual contact form

η = dz and ξ =
∂

∂z
,

here ξ is the characteristic vector field and its Riemannian metric g and tensor field
ϕ are given by

g =

n∑
i=1

((dxi)
2 + (dyi)

2) + (dz)2, ϕ =


0 δij 0
−δij 0 0

0 0 0

 , i = 1, ..., n.

This gives a cosymplectic manifold on R2n+1. The vector fields ei = ∂
∂yi

, en+i = ∂
∂xi

,

ξ form a ϕ-basis for the cosymplectic structure. On the other hand, it can be shown
that R2n+1(ϕ, ξ, η, g) is a cosymplectic manifold.

Let M be a Riemannian manifold isometrically immersed in M̄ and induced
Riemannian metric on M is denoted by the same symbol g throughout this paper.
Let A and h denote the shape operator and second fundamental form, respectively,
of immersion of M into M̄ . The Gauss and Weingarten formulas of M into M̄ are
given by [6]

∇̄XY = ∇XY + h(X,Y ) (2.5)
and

∇̄XV = −AVX +∇⊥XV, (2.6)
for any vector fields X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where ∇ is the induced
connection on M and ∇⊥ represents the connection on the normal bundle T⊥M of
M and AV is the shape operator ofM with respect to normal vector V ∈ Γ(T⊥M).
Moreover, AV and h are related by

g(h(X,Y ), V ) = g(AVX,Y ) (2.7)

for any vector fields X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M).
If h(X,Y ) = 0 for all X,Y ∈ Γ(TM), then M is said to be totally geodesic.

3. Quasi bi-slant submanifolds of cosmyplectic manifolds

In this section, we define the concept of quasi bi-slant submanifolds of cosym-
plectic manifolds, giving a non-trivial example and obtain some related results for
later use.

Definition 3.1. A submanifoldM of cosymplectic manifold (M̄, ϕ, ξ, η, ḡ) is called
quasi bi-slant if there exists four orthogonal distributions D, D1 and D2 and ξ of
M, at the point p ∈M such that
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(i) TM = D ⊕D1 ⊕D2⊕ < ξ >
(ii) The distribution D is invariant, i.e. ϕD = D.
(iii) ϕD1 ⊥ D2 and ϕD2 ⊥ D1;
(iv) The distributions D1,D2 are slant with slant angle θ1, θ2, respectively.

Taking the dimension of distributions D, D1 and D2 are m1,m2 and m3, respec-
tively. One can easily see the following cases:

• If m1 6= 0 and m2 = m3 = 0, then M is a invariant submanifold.
• If m1 = m2 = 0 and θ2 = π

2 then M is an anti-invariant submanifold.
• If m1 = 0,m2 6= m3 6= 0, θ1 = 0 and θ2 = π

2 then M is a semi-invariant
submanifold.

• If m1 = m2 = 0 and 0 < θ2 <
π
2 then M is a slant submanifold.

• If m1 = 0,m2 6= m3 6= 0, θ1 = 0 and 0 < θ2 <
π
2 then M is a semi-slant

submanifold.
• If m1 = 0,m2 6= m3 6= 0, θ1 = π

2 and 0 < θ2 <
π
2 then M is a hemi-slant

submanifold.
• If m1 = 0,m2 6= m3 6= 0, and θ1 and θ2 are different from either 0 and π

2 ,
then M is a bi-slant submanifold.

If m1 6= m2 6= m3 6= 0 and θ1, θ2 6= 0, π2 , then M is called a proper quasi
bi-slant submanifold.

Remark 3.2. In this paper, we assume that M is proper quasi bi-slant submanifold
of a cosymplectic manifold M̄.

Now, we present an example of proper quasi bi-slant submanifold in R11.

Example. We will use the canonical contact structure ϕ defined by

ϕ(x1, y1, ..., xn, yn, z) = (y1,−x1, ..., yn,−xn, 0).

Thus we have ϕ(∂xi) = ∂yi, ϕ(∂yj) = −∂xj and ϕ(∂z) = 0, 1 ≤ i, j ≤ 5 where
∂xi = ∂

∂xi
. For any pair of real numbers θ1, θ2 satisfying 0 < θ1, θ2 <

π
2 , let us

consider submanifold Mθ1,θ2 of R11 defined by
πθ1,θ2(u, s, w, k, t, r, z) = (u, s cos θ1, 0, s sin θ1, ω, k cos θ2, 0, k sin θ2, t, r, z). If we

take
e1 = ∂x1, e2 = cos θ1∂y1 + sin θ1∂y2,

e3 = ∂x3, e4 = cos θ2∂y3 + sin θ2∂y4,

e5 = ∂x5, e6 = ∂y5, e7 = ξ = ∂z

then the restriction of e1, ..., e7 to M forms an orthonormal frame of the tangent
bundle TM. Obviously, we get

ϕe1 = ∂y1, ϕe2 = − cos θ1∂x1 − sin θ1∂x2, ϕe3 = ∂y3

ϕe4 = − cos θ2∂x3 − sin θ2∂x4, ϕe5 = ∂y5, ϕe6 = −∂x5.
Let us put D1 = Span{e1, e2}, D2 = Span{e3, e4}, and D = Span{e5, e6}. Then
obviously D1, D2 and D, satisfy the definition of quasi bi-slant submanifold Mθ1,θ2
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defined by πθ1,θ2 is a proper quasi bi-slant submanifold of R11 with θ1, θ2 as its
bi-slant angles.

Let M be a quasi bi-slant submanifold of a cosymplectic manifold M̄. Then, for
any X ∈ Γ(TM), we have

X = PX +QX +RX + η(X)ξ (3.1)

where P,Q andR denote the projections on the distributions D,D1 and D2, recpec-
tively.

ϕX = T X + FX, (3.2)
where T X and FX are tangential and normal components on M. Making now use
of (3.1) and (3.2), we get immediately

ϕX = T PX + T QX + FQX + T RX + FRX, (3.3)

here since ϕD = D, we have FPX = 0. Thus we get

ϕ(TM) = D ⊕ T D1 ⊕ T D2 (3.4)

and
T⊥M = FD1 ⊕FD2 ⊕ µ (3.5)

where µ is the orthogonal complement of FD1 ⊕ FD2 in T⊥M and it is invariant
with recpect to ϕ. Also, for any Z ∈ T⊥M, we have

ϕZ = BZ + CZ, (3.6)

where BZ ∈ Γ(TM) and CZ ∈ Γ(T⊥M).
Taking into account of the condition (iii) in Definition (3.1), (3.2) and (3.6), we

obtain the followings:

Lemma 3.3. Let M be a quasi bi-slant submanifold of a cosymplectic manifold M̄.
Then, we have

(a) TD1 ⊂ D1, (b) TD2 ⊂ D2, (c) BFD1 = D1, (d) BFD2 = D2.

With the help of (3.2) and (3.6), we obtain the following Lemma.

Lemma 3.4. Let M be a quasi bi-slant submanifold of a cosymplectic manifold M̄.
Then, we have

(a) T 2U1 = − cos2 θ1U1, (b) T 2U2 = − cos2 θ2U2,

(c)BFU1 = − sin2 θ1U1, (d)BFU2 = − sin2 θ1U2,

(e) T 2U1 + BFU1 = −U1, (f) T 2U2 + BFU2 = −U2,
(g)FT U1 + CFU1 = 0, (h)FT U2 + CFU2 = 0,

for any U1 ∈ D1 and U2 ∈ D2.

By using (2.3), Definition (3.1), (3.2) and (3.6), we obtain the following Lemma.

Lemma 3.5. Let M be a quasi bi-slant submanifold of a cosymplectic manifold M̄.
Then, we have
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(i) T 2i Ui = − cos2 θiUi,
(ii) g(TiUi, TiVi) = (cos2 θi)g(Ui, Vi),
(iii) g(FiUi,FiVi) = (sin2 θi)g(Ui, Vi)

for any i = 1, 2, U1, V1 ∈ Γ(D1) and U2, V2 ∈ Γ(D2).

We need the following lemma for later use.

Lemma 3.6. Let M be a quasi bi-slant submanifold of a cosymplectic manifold M̄,
then for any Z1, Z2 ∈ Γ(TM), we have the following

∇Z1T Z2 − T ∇Z1Z2 = AFZ2Z1 + Bh(Z1, Z2) (3.7)

and

∇⊥Z1FZ2 −F∇Z1Z2 = Ch(Z1, Z2)− h(Z1, T Z2). (3.8)

Proof. Since M̄ is a cosmyplectic manifold, we have that

(∇̄Z1ϕ)Z2 = 0

which implies that

∇̄Z1ϕZ2 − ϕ∇̄Z1Z2 = 0.

By using (2.5) and (3.2), we get

∇̄Z1T Z2 + ∇̄Z1FZ2 − ϕ(∇Z1Z2 + h(Z1, Z2)) = 0.

Taking into account of (2.5), (2.6), (3.2) and (3.6), we obtain

∇Z1T Z2 + h(Z1, T Z2)−AFZ2Z1 +∇⊥Z1FZ2
− T ∇Z1Z2 −F∇Z1Z2 − BhZ1, Z2 − Ch(Z1, Z2) = 0.

Comparing the tangential and normal components, we have the required results. �

In a similar way, we have:

Lemma 3.7. Let M be a quasi bi-slant submanifold of a cosymplectic manifold M̄,
then we have the following

∇Z1BW1 − B∇⊥Z1W1 = ACW1Z1 − T AW1Z1 (3.9)

and

∇⊥Z1CW1 − C∇⊥Z1W1 = −FAW1Z1 − h(Z1,BW1) (3.10)

for any Z1 ∈ Γ(TM) and W1 ∈ Γ(T⊥M).
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4. Integrability and totally geodesic foliations

In this section we give some necessary and suffi cient conditions for the integra-
bility of the distributions.
First, we have the following theorem:

Theorem 4.1. Let M be a quasi bi-slant submanifold of M̄. The invariant distri-
bution D is integrable if and only if

g(T (∇XT Y −∇Y T X), Z) = g(h(X, T Y )− h(Y, T X), ϕQZ + ϕRZ)

for any X,Y ∈ Γ(D) and Z ∈ Γ(D1 ⊕D2).

Proof. The distribution D is integrable on M if and only if

g([X,Y ], ξ) = 0 and g([X,Y ], Z) = 0

for any X,Y ∈ Γ(D), Z ∈ Γ(D1 ⊕D2) and ξ ∈ Γ(TM). Since M is a cosymplectic
manifold, we immediately have g([X,Y ], ξ) = 0. Thus D is integrable if and only
if g([X,Y ], Z) = 0. Now, for any X,Y ∈ D and Z = QZ +RZ ∈ Γ(D1 ⊕ D2), by
using (2.2), (2.5), we obtain

g([X,Y ], Z) = g(ϕ∇̄XY, ϕZ)− η(∇̄XY )η(Z)− g(ϕ∇̄YX,ϕZ) + η(∇̄YX)η(Z).

Now, using (2.4), (3.2) and FY = 0 for any Y ∈ Γ(D), we have

g([X,Y ], Z) = g(∇̄XϕY, ϕZ)− g(∇̄Y ϕX,ϕZ)

= g(∇̄XT Y, ϕZ)− g(∇̄Y T X,ϕZ).

Taking into account of (2.5) and (3.3) in the above equation, we get

g([X,Y ], Z) = −g(ϕ∇XT Y, Z) + g(h(X, T Y ), ϕZ)

+ g(ϕ∇Y T X,Z)− g(h(Y, T X), ϕZ).

Now again taking into account the equation (3.2), we obtain

g([X,Y ], Z) = g(T (∇Y T X −∇XT Y ), Z)

+ g(h(X, T Y )− h(Y, T X), ϕQZ + ϕRZ)

which completes the proof. �

For the slant distribution D1, we have:

Theorem 4.2. Let M be a quasi bi-slant submanifold of M̄. The slant distribution
D1 is integrable if and only if

g(∇⊥U1FV1 +∇⊥V1FU1,FRZ) = g(AFT V1U1 −AFT U1V1, Z)

+ g(AFV1U1 +AFU1V1, T Z)

for any U1, V1 ∈ Γ(D1), Z ∈ Γ(D ⊕D2).
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Proof. The distribution D1 is integrable on M if and only if

g([U1, V1], ξ) = 0 and g([U2, V2], Z) = 0

for any U1, V1 ∈ Γ(D1), Z ∈ Γ(D ⊕ D2) and ξ ∈ Γ(TM). The first case is trivial.
Thus D1 is integrable if and only if g([U1, V1], Z) = 0. Now, for any U1, V1 ∈ D1
and Z = PZ +RZ ∈ Γ(D ⊕D2), by using (2.2), (2.5), we obtain

g([U1, V1], Z) = −g(∇̄U1ϕT V1, Z)− g(∇̄U1FV1, ϕZ)

+ g(∇̄V1ϕT U1, Z)− g(∇̄V1FU1, ϕZ).

Taking into account the equation lemma (3.5) (i) in the above equation, we get

g([U1, V1], Z) = cos2 θ1g([U1, V1], Z)− g(∇̄U1FT V1 − ∇̄V1FT U1, Z)

− g(∇̄U1FV1 + ∇̄V1FU1, ϕPZ + ϕRZ).

Now, using (2.6) and (3.3), we obtain

g([U1, V1], Z) = cos2 θ1g([U1, V1], Z) + g(AFT V1U1 −AFT U1V1, Z)

+ g(AFV1U1 +AFU1V1, T Z)

− g(∇⊥U1FV1 +∇⊥V1FU1,FRZ)

or

sin2 θ1g([U1, V1], Z) = g(AFT V1U1 −AFT U1V1, Z)

+ g(AFV1U1 +AFU1V1, T Z)

− g(∇⊥U1FV1 +∇⊥V1FU1,FRZ)

which gives the assertion. �
In a similar way, we obtain the following case for the slant distribution D2.

Theorem 4.3. Let M be a quasi bi-slant submanifold of M̄. The slant distribution
D2 is integrable if and only if

T (∇U2T V2 −AFV2U2) ∈ Γ(D2),
B(h(U2, TV2) +∇⊥U2FV2) ∈ Γ(T⊥M)

and
g(AFZV2 −∇V2T Z, T U2) = g(h(V2, T Z) +∇⊥V2FZ,FU2)

for any U2, V2 ∈ Γ(D2), Z = PZ +QZ ∈ Γ(D ⊕D1) and W ∈ Γ(T⊥M).

Theorem 4.4. Let M be a quasi bi-slant submanifold of M̄. The invariant distri-
bution D defines totally geodesic foliation on M if and only if

g(∇XT Y, T Z) = −g(h(X, T Y ),FZ) (4.1)

and
F∇XT Y1 + Ch(X, T Y ) ∈ Γ(TM) (4.2)

for any X,Y ∈ Γ(D), Z = QZ +RZ ∈ Γ(D1 ⊕D2) and W ∈ Γ(T⊥M).
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Proof. The distribution D defines a totaly geodesic foliation on M if and only
if g(∇̄XY, ξ) = 0, g(∇̄XY,Z) = 0 and g(∇̄XY,W ) = 0 for any X,Y ∈ Γ(D),
Z = QZ +RZ ∈ Γ(D1 ⊕ D2) and W ∈ Γ(T⊥M). Then by using (2.2) and (2.4),
we obtain

g(∇̄XY, ξ) = Xg(Y, ξ)− g(Y, ∇̄Xξ) = −g(Y, ∇̄Xξ) = 0. (4.3)

On the other hand, using (2.2), we find

g(∇̄XY,Z) = g(∇̄XϕY, ϕZ) = g(∇̄XT Y, ϕZ)

here we have used FY = 0 for any Y ∈ Γ(D). Now, by using (3.3) and (2.5), we
have

g(∇̄XY, Z) = g(∇XT Y + h(X, T Y ), ϕQZ + ϕRZ)

= g(∇XT Y + h(X, T Y ), T QZ + FQZ + T RZ + FRZ))

= g(∇XT Y, T QZ + T RZ) + g(h(X, T Y ),FQZ + FRZ))

= g(∇XT Y, T Z) + g(h(X, T Y ),FZ) (4.4)

for any X,Y ∈ Γ(D) and Z = QZ +RZ ∈ Γ(D1 ⊕D2). Now, for any X,Y ∈ Γ(D)
and W ∈ Γ(T⊥M), we have

g(∇̄XY,W ) = −g(ϕ∇̄X1ϕY1,W ) = −g(ϕ(∇XT Y + h(X, T Y )),W ))

= −g(T ∇XT Y + F∇XT Y + Bh(X, T Y ) + Ch(X, T Y ),W ))

= −g(F∇XT Y + Ch(X, T Y ),W ). (4.5)

Thus proof follows (4.3), (4.4) and (4.5). �

Theorem 4.5. Let M be a quasi bi-slant submanifold of M̄. The slant distribution
D1 defines totally geodesic foliation on M if and only if

g(AFT V1U1, Z)− g(AFV1U1, T PZ)

= g(AFV1U1, T RZ)− g(∇⊥U1FV1,FRZ) (4.6)

and
FAFV1U1 −∇⊥U1FT V1 − C∇

⊥
U1FV1 ∈ Γ(TM) (4.7)

for any X,Y ∈ Γ(D), Z = QZ +RZ ∈ Γ(D1 ⊕D2) and W ∈ Γ(T⊥M).

Proof. The distribution D1 defines a totaly geodesic foliation on M if and only if
g(∇̄U1V1, ξ) = 0, g(∇̄U1V1, Z) = 0 and g(∇̄U1V1,W ) = 0, for any U1, V1 ∈ Γ(D1),
Z = PZ + RZ ∈ Γ(D1 ⊕ D2) and W ∈ Γ(T⊥M). Since M is a cosymplectic
manifold, we immediately have g(∇̄U1V1, ξ) = 0. Now, for any U1, V1 ∈ Γ(D1), and
Z = PZ +RZ ∈ Γ(D1 ⊕D2), by using (2.2) and (2.4), we obtain

g(∇̄U1V1, Z) = −g(∇̄U1ϕT V1, Z) + g(∇̄U1FV1, ϕPZ + ϕRZ).

Now, by using lemma (3.5) (i), we get

g(∇̄U1V1, Z) = cos2θ1g(∇̄U1V1, Z)− g(−AFT V1U1 +∇⊥U1FT V1, Z)
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+ g(−AFV1U1 +∇⊥U1FV1, T PZ)

+ g(−AFV1U1 +∇⊥U1FV1, T RZ + FRZ)

or

sin2θ1g(∇̄U1V1, Z) = g(AFT V1U1, Z)− g(AFV1U1, T PZ)

− g(AFV1U1, T RZ) + g(∇⊥U1FV1,FRZ). (4.8)

Now, for any U1, V1 ∈ Γ(D) and W ∈ Γ(TM)⊥, we have

g(∇̄U1V1,W ) = −g(∇̄U1ϕT V1,W )− g(ϕ(∇̄U1FV1),W )

− g(ϕ(−AFV1U1 +∇⊥U1FV1),W )

= cos2 θ1g(∇̄U1V1,W )− g(−AFT V1U1 +∇⊥U1FT V1,W )

− g(−T AFV1U1 −FAFV1U1 + B∇⊥U1FV1 + C∇⊥U1FV1,W )

or

sin2 θ1g(∇̄U1V1,W ) = −g(∇⊥U1FT V1,W ) + g(FAFV1U1 − C∇⊥U1FV1,W )

= g(FAFV1U1 −∇⊥U1FT V1 − C∇
⊥
U1FV1,W ). (4.9)

Thus proof follows (4.8) and (4.9). �

Theorem 4.6. Let M be a quasi bi-slant submanifold of M̄. The slant distribution
D2 defines totally geodesic foliation on M if and only if

T (∇U2T V2 −AFV2U2) ∈ Γ(D2), (4.10)

B(h(U2, TV2) +∇⊥U2FV2) ∈ Γ(T⊥M) (4.11)

and

g(∇⊥U2FT V2 −FAV2U2,W ) = g(∇⊥U2FV2, CW ) (4.12)

for any U2, V2 ∈ Γ(D2), Z = PZ +QZ ∈ Γ(D ⊕D1) and W ∈ Γ(T⊥M).

From theorem (4.4), (4.5) and (4.6), we have the following decomposition theo-
rem:

Theorem 4.7. Let M be a proper quasi bi-slant submanifold of a cosmyplectic
manifold M̄. Then M is a local product Riemannian manifold of the form MD ×
MD1 ×MD2 , where MD, MD1 and MD2 are leaves of D, D1 and D2, recpectively, if
and only if the conditions (4.1), (4.2), (4.6), (4.7), (4.10), (4.11) and (4.12) hold.
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5. Quasi bi-slant submanifolds with parallel canonical structures

In this section, we obtain some results for the quasi bi-slant submanifolds with
parallel canonical structure. Let M be a proper quasi bi-slant submanifold of a
cosymplectic manifold M̄. Then we define

(∇̄Z1T )Z2 = ∇Z1T Z2 − T ∇Z1Z2 (5.1)

(∇̄Z1F)Z2 = ∇⊥Z1FZ2 −F∇Z1Z2 (5.2)

(∇̄Z1B)W1 = ∇Z1BW1 − B∇⊥Z1W1 (5.3)

(∇̄Z1C)W1 = ∇⊥Z1CW1 − C∇⊥Z1W1 (5.4)

where Z1, Z2 ∈ Γ(TM) and W1 ∈ Γ(T⊥M).
Then, the endomorphism T (resp. F) and the endomorphism B (resp. C) are par-
allel if ∇̄T ≡ 0 (resp. ∇̄F ≡ 0) and ∇̄B ≡ 0 (resp. ∇̄C ≡ 0), respectively.
Taking into account of (3.7), (3.8), (3.9), (3.10) and (5.1)-(5.4), we have the follow-
ing lemma.

Lemma 5.1. Let M be a quasi bi-slant submanifold of a cosymplectic manifold M̄ .
Then for any Z1, Z2 ∈ Γ(TM) and W1 ∈ Γ(T⊥M) we obtain

(∇̄Z1T )Z2 = AFZ2Z1 + Bh(Z1, Z2) (5.5)

(∇̄Z1F)Z2 = Ch(Z1, Z2)− h(Z1, T Z2) (5.6)

(∇̄Z1B)W1 = ACW1Z1 + T AW1Z1 (5.7)

(∇̄Z1C)W1 = −FAW1
Z1 − h(Z1,BW1). (5.8)

First, we have the following theorem:

Theorem 5.2. Let M be a quasi bi-slant submanifold of a cosymplectic manifold
M̄ . Then, T is parallel if and only if the invariant distribution D is totally geodesic.

Proof. For any X,Y ∈ Γ(D), from (5.5), we have

(∇̄XT )Y = Bh(X,Y ) (5.9)

here we have used AFYX = 0 since FY = 0 for any Y ∈ Γ(D). Thus, our assertion
comes from (5.9). �

Theorem 5.3. Let M be a quasi bi-slant submanifold of a cosymplectic manifold
M̄ . Then if F is parallel if and only if

g(ACV Z2, Z1) = −g(AV Z1, T Z2) (5.10)

for any Z1, Z2 ∈ Γ(TM) and V ∈ Γ(T⊥M).
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Proof. Assume that F is parallel. Now, from (5.6), we have

(∇̄Z1F)Z2 = Ch(Z1, Z2)− h(Z1, T Z2). (5.11)

Now, taking inner product with V ∈ Γ(T⊥M) in the above equation and using
(2.5), we obtain

g((∇̄Z1F)Z2, V ) = g(Ch(Z1, Z2)− h(Z1, T Z2), V )

= g(Ch(Z1, Z2), V )− g(h(Z1, T Z2), V )

= −g(h(Z1, Z2), ϕV )− g(∇̄Z1T Z2, V )

= −g(ACV Z2, Z1) + g(T Z2, ∇̄Z1V )

= −g(ACV Z2, Z1) + g(T Z2,−AV Z)

which gives the assertion. �

Theorem 5.4. Let M be a quasi bi-slant submanifold of a cosymplectic manifold
M̄ . Then F is parallel if and only if B is parallel.

Proof. By using (2.5), (5.6) and (5.7), we get

g((∇̄Z1F)Z2,W1) = g(Ch(Z1, Z2),W1)− g(h(Z1, T Z2),W1)

= −g(h(Z1, Z2), CW1)− g(AW1
Z1, T Z2)

= −g(ACW1Z1, Z2) + g(T AW1Z1, Z2)

= −g(ACW1Z1 − T AW1Z1, Z2)

= −g((∇̄Z1B)W1, Z2)

for any Z1, Z2 ∈ Γ(TM) and W1 ∈ Γ(T⊥M). This proves our assertion. �

Finally, we mention another non-trivial example of quasi bi-slant submanifold of
a cosymplectic manifold.

Example. Let M be a submanifold of R11 defined by

x(u, v, t, r, s, k, z) = (u, v, t,
1√
2
r,

1√
2
r, 0, s, k cosα, k sinα, 0, z).

We can easily to see that the tangent bundle ofM is spanned by the tangent vectors

e1 =
∂

∂x1
, e2 =

∂

∂y1
, e3 =

∂

∂x2
, e4 =

1√
2

∂

∂y2
+

1√
2

∂

∂x3
,

e5 =
∂

∂x4
, e6 = cosα

∂

∂y4
+ sinα

∂

∂x5
, e7 =

∂

∂z
= ξ.

We define the almost contact structurev ϕ of R11, by

ϕ(
∂

∂xi
) =

∂

∂yi
, ϕ(

∂

∂yj
) = − ∂

∂xj
, ϕ(

∂

∂z
) = 0, 1 ≤ i, j ≤ 5.
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For any vector field Z = λi
∂
∂xi

+ µj
∂
∂yj

+ ν ∂
∂z ∈ Γ(TR11), then we have

g(Z,Z) = λ2i + µ2j + ν2, g(ϕZ,ϕZ) = λ2i + µ2j

and

ϕ2Z = −λi
∂

∂xi
− µj

∂

∂yj
= −Z

for any i, j = 1, ..., 5. It follows that g(ϕZ,ϕZ) = g(Z,Z)− η2(Z). Thus (ϕ, ξ, η, g)
is an is an almost contact metric structure on R11. Thus we have

ϕe1 =
∂

∂y1
, ϕe2 =

∂

∂x1
, ϕe3 =

∂

∂y2
, ϕe4 = − 1√

2

∂

∂x2
+

1√
2

∂

∂y3
,

ϕe5 =
∂

∂y4
, ϕe6 = − cosα

∂

∂x4
+ sinα

∂

∂y5
, ϕe7 = 0.

By direct calculations, we obtain the distribution D = span{e1, e2} is an invariant
distribution, the distribution D1 = span{e3, e4} is a slant distribution with slant
angle θ1 = π

4 and the distribution D2 = span{e5, e6} is also a slant distribution
with slant angle θ2 = α, 0 < α < π

2 . Thus M is a 7−dimensional proper quasi
bi-slant submanifold of R11 with its usual almost contact metric structure.
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[21] Şahin, B., Warped product submanifolds of a Kaehler manifold with a slant factor, Annales
Polonici Mathematici, 95 (2009), 107-226.
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