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Abstract: This Monte Carlo study assessed Type I error in differential item 

functioning analyses using Lord’s chi-square (LC), Likelihood Ratio Test (LRT), 

and Mantel-Haenszel (MH) procedure. Two research interests were investigated: 

item response theory (IRT) model specification in LC and the LRT and continuity 

correction in the MH procedure. This study enhances the literature by investigating 

LC and the LRT using correct and incorrect model-data fit and comparing those 

results to the MH procedure. There were three fixed factors (number of test items, 

IRT parameter estimation method, and item parameter equating) and four varied 

factors (IRT model used to generate data and fit the data, sample size, and impact). 

The findings suggested the MH procedure without the continuity correction is best 

based on Type I error rate. 

1. INTRODUCTION 

In the field of psychometrics, item bias and test fairness are important issues that must be 

addressed (Kane, 2013). Item bias, differential item functioning (DIF), and impact are related 

but not synonymous (Zumbo, 1999). Item impact occurs when groups simply differ in 

performance on an item; when impact persists after controlling for overall skill on the construct 

being measured DIF is present; bias is pernicious DIF. Thus, DIF is the key to identifying 

possibly biased items. 

Statistical tests of DIF are prone to both false positives (Type I errors) and false negatives (Type 

II errors. Roussos and Stout (1996) presented three reasons to research Type I error rates of DIF 

methods. First, removing a non-DIF item, or making a Type I error, unnecessarily wastes 

resources. Second, false positives explain why some testing organizations can neither 

understand nor ascertain the source of DIF in certain items. Finally, highly discriminating items 

can be mistakenly flagged for DIF (Li et al., 2012). Items with high discrimination indices 

contain higher information indices and are better able to discern differences between examinees 
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with higher and lower levels of the underlying latent trait. Hence, false positives for these items 

are especially problematic and should not be needlessly removed.  

1.1. Description of DIF Methods 

According to Camilli and Shepard (1994) there are three theoretical reasons to prefer item 

response theory (IRT) methods over classical test theory (CTT) methods for DIF detection: 

item parameter estimates derived from IRT are less confounded and influenced with sample 

specific characteristics; IRT provides more accurate statistical properties of items than CTT to 

ascertain where the item functions differently (i.e., difficulty, discrimination, or pseudo-

guessing); finally, the item characteristic curve (ICC) for each group can be graphed enhancing 

the understanding of items displaying DIF. According to Thissen et al. (1983) another 

advantage of IRT over CTT is that the fit between the data and the IRT model can be assessed 

statistically.  

Lord’s chi-square (LC) compares the performance of two groups on an item by examining item 

parameter differences depending on the specified IRT model (Lord, 1980). The group that is 

hypothesized to be favored, or have a higher probability of getting the item right, is the reference 

group (Camilli & Shepard, 1994; de Ayala, 2009). The group that is hypothesized to be 

disadvantaged, or have a lower probability of getting the item right, is the focal group (Camilli 

& Shepard, 1994; de Ayala, 2009). For LC, the item parameters are estimated separately for 

each group and are not directly comparable. Therefore, they need to be equated before 

meaningful comparisons can be made (Rupp & Zumbo, 2006; Stocking & Lord, 1983). LC 

follows a χ2 distribution with degrees of freedom equal to the number of estimated parameters 

based on the IRT model implemented. Theoretically, LC is analogous to testing the equality of 

ICCs between the reference and focal groups. When the probability difference of getting an 

item right between the reference and focal groups is systematically the same across all ability 

levels, the item displays uniform DIF. Graphically, item characteristic curves for the groups are 

parallel (Camilli & Shepard, 1994). Non-uniform DIF occurs when the item favors one group 

over another for certain ability levels but reverses for other ability levels. Graphically, the item 

characteristic curves are not parallel. A benefit of using LC is that it can detect both uniform 

and non-uniform DIF.   

The likelihood ratio test (LRT) assesses whether allowing the parameters for the studied item 

to vary across groups significantly improves the fit of the model. If so, then the studied item 

displays DIF. Judgments concerning fit are based on a comparison of the compact and 

augmented models. In the augmented model, an IRT model is fit such that all the item 

parameters are the same for the two groups except for the one item being studied, which varies 

across groups. In the compact model, the same IRT model specified in the augmented model is 

fit to the data such that all item parameters including the studied item are constrained to be the 

same in both groups (Thissen et al., 1988). The LRT test statistic is computed by G2 = -2LLc  - 

(-2LLA) where -2LLc and -2LLA  denote the negative two log-likelihood (-2LL) of the compact 

and augmented models, respectively. The test statistic is compared to a χ2 distribution with 

degrees of freedom equal to the number of estimated item parameters. An advantage of the LRT 

over LC is that item parameters are estimated together for both groups and do not need to be 

equated. However, a disadvantage is that the procedure takes a long time to implement because 

n + 1 models must be assessed for an n item test  (Thissen et al., 1988). From a theoretical 

perspective, due to the asymptotic nature of the test statistic, the LRT and LC should yield the 

same conclusions provided the sample size is large ((Millsap & Everson, 1993; Thissen et al., 

1993). This study adds to the literature by assessing this claim. 

The Mantel-Haenszel (MH) procedure examines the relationship between item performance 

and group membership after taking into account total test performance (Dorans & Holland, 

1993). This method examines whether item responses are independent of group membership 
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after controlling for observed score. The MH test statistic is compared to a χ2 distribution with 

one degree of freedom and tests if the odds of members of the focal group getting the item right 

are the same as the odds of the reference group (Dorans & Holland, 1993). The MH statistic 

has been widely accepted because it is relatively easy to understand and implement, provides a 

χ2 statistical significance test, and uses the odds-ratio as an effect size measure (Holland & 

Thayer, 1988; Millsap & Everson, 1993). Furthermore, an IRT model does not need to be fit to 

the data and the procedure does not require large sample sizes (Raju et al., 1993). One 

disadvantage of the MH is that it was designed to  primarily detect uniform DIF (de Ayala, 

2009; Millsap & Everson, 1993). However, in some cases MH can detect non-uniform DIF 

(Marañón et al., 1997; Mazor et al., 1994). Narayanan and Swaminathan (1996) note, that the 

MH procedure is ineffective in detecting non-uniform DIF that is also not ordinal. 

1.2. Purposes of the Study 

It is important to study DIF because certain measurement techniques require DIF analyses as a 

prerequisite (Shepard et al., 1985). For example, equating and test adaption are measurement 

approaches; that allow researchers to compare group estimates (i.e., item and/or person 

parameters) across separate test administrations, test forms, or groups (Cook & Eignor, 1991). 

When equating or adapting, truly biased items should not be present because these items are 

not measuring the concept similarly across groups. Hence, these items are uninformative and 

in fact can harm results(Kim & Cohen, 1992; Shepard et al., 1985).  

Another import reason for studying DIF is that it addresses the validity of test score use because 

without it a test score is meaningless. In the United States the 1999 Standards (American 

Educational Research Association et al., 1999)  called attention to test validity, which assesses 

whether a test is accurately measuring what it was designed to measure. According to the 

National Research Council (2007) in order to evaluate the trustworthiness and accuracy of 

score-based decisions testing companies must provide two types of evidence: the degree to 

which stated outcomes and purposes are achieved (i.e., intended effects) and the presence, or 

lack thereof, of adverse impact across groups of examinees. Furthermore, one particular type 

of evidence for validity is construct validity or the degree to which a test score is an accurate 

measure of the underlying latent variable it purports to measure (Creswell, 2009). According to 

Messick (1995) the value implications, interpretations, and meanings resulting from a test 

scores are a consequential aspect of construct validity. That is, when test scores are used in 

applied settings such as performance assessment, certification exam, licensure, course 

placement, college admittance, subject mastery and so forth there needs to be evidence of 

construct validity (Kane, 2009; Messick, 1995). In particular, DIF analyses statistically assess 

a potential threat to construct validity at the item level (Camilli, 2006; Kane, 2013). 

When assessing DIF, there is a disparity between textbook presentations of IRT DIF methods 

and their frequency of use not only in practice but also in the Monte Carlo (MC) literature. IRT 

methods have a theoretical superiority to detect DIF (Camilli & Shepard, 1994; Thissen et al., 

1993), yet they may not be as widely implemented in the simulation or MC literature on DIF as 

the MH and logistic regression procedures (Narayanan & Swaminathan, 1996). Raju (1990) 

commented that  

regardless of a particular investigator’s decision for a given study, there is certainly a 

need for monte carlo [sic] and empirical studies to assess the degree of robustness and 

uniformity of item bias results obtained with the likelihood ratio, 𝜒2, and area proce-

dures (p. 206).  

This sentiment was again echoed by Raju et al. (1993) who stated that  

because this study was based on an empirical data set, it was not possible to know how 

many items were truly biased. There is obviously a need for a comprehensive Monte 
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Carlo investigation to determine . . . the behavior of the IRT based methods with respects 

to false positives and false negatives (p. 310).  

Despite these early calls, a recent (1/27/2021) search of the literature on scholar.google.com 

using the exact phrase terms “item response theory” and “differential item functioning” in the 

title returned 110 results, the majority of which focused on specific applications or software. 

When “Type-I” was added, there was only one citation, a dissertation concerning missing data. 

Another search using the terms “misspecification” and “item response theory” in the title 

returned only 2 results, neither related to DIF. The existing MC studies of DIF which have 

examined IRT and non-IRT DIF methods offer varied and sometimes conflicting research 

recommendations (Cohen et al., 1996; Cohen & Kim, 1993; DeMars, 2010; Kim et al., 1994; 

Herrera & Gómez, 2008; Lautenschlager & Park, 1988; Li et al., 2012; Lim & Drasgow, 1990; 

McLaughlin & Drasgow, 1987; Paek, 2010; Rudner et al., 1980; Sari & Huggins, 2015; Shepard 

et al., 1985; Wang & Yeh, 2003; Wells et al., 2009). Therefore, there still remain unknown 

aspects regarding these DIF methods such as IRT model fit, IRT model specification and 

misspecification, sample size, item discrimination variability, and item impact, which are 

addressed in this study and fill in the gap identified by Raju et al. (1993).  

The main purpose of this study was to investigate and compare Type I error rates of DIF 

detection using LC, the LRT, and the MH procedures. Using multiple DIF methods, a form of 

psychometric triangulation, is a useful approach to investigate DIF in practice because each 

DIF detection method has different strengths and this adds to the research literature by allowing 

for comparisons to be made across DIF methods. Type I error was evaluated based on Bradley's 

(1978) stringent criterion interval [0.045, 0.055], which is equivalent to 𝛼 ± 0.1𝛼, when α =.05. 

Within the main purpose, two additional research interests guided this study: (1) the role of 

correct or incorrect IRT model specification in LC and the LRT, which was addressed using 

two simulations and (2) the role of the continuity correction in the MH procedure, which was 

addressed using one simulation. This MC study will add to and clarify the existing literature by 

determining the importance of correctly or incorrectly choosing the IRT model when computing 

LC and the LRT and comparing those results to the MH procedure. Correct and incorrect IRT 

model specification was added to enrich this study by providing guidance and recommendations 

to not only applied researchers but also to evaluators. In applied research determining the true 

and best IRT model to select when using LC and the LRT for a given dataset is never 

deterministically known (as it is in MC research) but is statistically assessed. Hence, these 

findings are useful to theoretical and applied researchers.  

1.3. Variables in Monte Carlo DIF Studies 

In the present study, the number of test items, IRT parameter estimation method, and item 

parameter equating were fixed while the IRT model used to generate data, IRT model used to 

fit the data, sample size, and impact varied based on the existing literature. For each DIF 

method, the MC literature surrounding the relationship between these variables of interest and 

the DIF method is discussed.  

1.3.1. Number of test items 

To obtain an accurate measure of ability for an individual, tests should include a sufficient 

number of items (Rogers & Swaminathan, 1993). From an IRT perspective, the minimum 

number of items needed to ensure accurate sampling error for item discrimination in the three-

parameter logistic (3PL) model is 50 (Lord, 1968). From a CTT perspective, as test length 

increases standard error decreases resulting in a more accurate measurement of an examinees’ 

ability using the observed score (Rogers & Swaminathan, 1993).  

For much of the MC literature on DIF, the number of test items varied from 20 to 60. For LC, 

Wells et al. (2009) found test length did not influence Type I error rate while Cohen and Kim 
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(1993) found that Type I error was inflated for a 20 item test.  For the LRT, Finch (2005) found 

an inconsistent relationship between Type I error and test length. For the MH procedure, Finch 

(2005) simulated test lengths of 20 and 50 items finding Type I error was consistently 

conservative but closer to the nominal level with the longer test. DeMars (2009) simulated three 

test lengths of 20, 40 and 60 items finding shorter tests led to higher Type I error rates for MH. 

Paek (2010) found Type I error for MH with the continuity correction was consistently 

conservative regardless of the number of test items. Similarly, Paek and Wilson (2011) found 

Type I error was consistently conservative regardless of the number of test items. 

1.3.2. Item parameter equating 

Item parameter equating is needed for LC only. The literature did not provide sufficient 

evidence to discern how item parameter equating influenced Type I error rate for two reasons. 

First, several studies fixed the item parameter equating technique (Kim & Cohen, 1995; Kim et 

al., 1994; Wells et al., 2009). Second, Candell and Drasgow (1988) investigate two equating 

methods but simulated impact in every cell of their design so their results could be confounded 

by impact. They used the weighted mean and sigma method developed by (Linn et al., 1981) 

and the test characteristic method of equating (Stocking & Lord, 1983) finding Type I error rate 

was consistently higher with this method.  

1.3.3. Sample size 

Sample size has varied widely in the MC DIF literature, ranging from 250 to 20,000. To obtain 

an accurate measure of the item parameters for both the 1PL and 2PL a sample size of 500 is 

adequate (Holland & Wainer, 1993; Sari & Huggins, 2015). For all three DIF methods the 

research literature suggests different and sometimes conflicting findings regarding the 

relationship between sample size and Type I error. For LC, there was no difference in Type I 

error across sample size (Wells et al., 2009).  Kim et al. (1994) found more accurate results 

with larger sample sizes, while other studies found more accurate results with smaller sample 

sizes (Lim & Drasgow, 1990; McLaughlin & Drasgow, 1987). Finally, two studies did not find 

consistent results (Candell & Drasgow, 1988; Kim & Cohen, 1992).  

For the LRT, Cohen et al. (1996) generated sample sizes of 250 and 1,000 while Stark et al. 

(2006) generated sample sizes of 500 and 1,000 both finding no marked differences in Type I 

error rates across sample sizes. Two additional studies found Type I error rate depended on 

whether group sample size was balanced or not. Finch (2005) found Type I error depended on 

the number of test items and group ability difference for the balanced condition. For the 

unbalanced condition Type I error was within the nominal level. Finch and French (2007) found 

with balanced group sample sizes of 250 and unbalanced group sample size results were within 

the nominal level. With balanced group sample size of 500, Type I error was conservative. 

However, with unbalanced sample size Type I error was inflated.  

For the MH procedure, Narayanan and Swaminathan (1996) found Type I error was maintained 

across sample size. Other research has found conflicting results. Some studies have shown that 

larger sample sizes led to Type I error inflation (DeMars, 2009; Herrera & Gómez, 2008; 

Roussos & Stout, 1996) while other studies have shown both smaller and larger sample sizes 

resulted in conservative Type I error (Finch, 2005; Güler & Penfield, 2009; Herrera & Gómez, 

2008; Paek 2010; Paek & Wilson, 2011; Rogers & Swaminathan, 1993). Due to the conflicting 

evidence and the need to obtain accurate item parameter estimates for the IRT DIF methods, 

the present study generated sample sizes of 500 and 1,000.   

1.3.4. Model misspecification 

The MC research literature was sparse concerning how IRT model selection affected Type I 

error rates. Most MC studies generated data and analyzed DIF based on fitting the true 
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underlying IRT model (e.g., Candell & Drasgow, 1988; Cohen & Kim, 1993; DeMars, 2009; 

Finch & French, 2007; Wang & Yeh, 2003). For LC, Lautenschlager and Park (1988) addressed 

model misspecification but the findings were not applicable to the current study because they 

generated multidimensional ability values (Lautenschlager & Park, 1988). For the LRT, Bolt 

(2002) addressed model misspecification for polytomous item response data finding that the 

IRT model selected impacted Type I error rate especially in the presence of impact.  

The MH procedure uses the observed score to match the groups on ability so the underlying 

IRT model used to simulate data matters because the observed score is only a sufficient statistic 

for ability, θ, when the data follow the Rasch model and the one-parameter logistic (1PL) model  

(de Ayala, 2009; Zwick, 1990). Therefore, using the observed score in place of θ may cause 

problems for two-parameter logistic (2PL) and 3PL data. Narayanan and Swaminathan (1996) 

found Type I error was within Bradley’s (1978) stringent criterion using 3PL data for all but 

one instance (i.e., reference group sample size of 500 and focal group sample size of 1,000). 

Roussos and Stout (1996) found Type I error was maintained when impact was not present but 

inflated when impact was present using 3PL data. Conversely, Rogers and Swaminathan (1993) 

found 2PL and 3PL data did not impact the number of Type I errors. The present study fit data 

using both the correct (same model used for data generation) and incorrect (different model 

used for data generation) IRT model. Note that when data created using the 1PL model are 

fitted using the 2PL model there is a case of overfitting and when data created using the 2PL 

model are fitted using the 1PL model there is a case of underfitting. 

1.3.5. Impact 

Impact occurs when the ability distribution of the groups being analyzed is not the same 

(Camilli, 2006; Camilli & Shepard, 1994; Clauser & Mazor, 1998; Dorans & Holland, 1993). 

Zumbo (1999) defined impact as different group probabilities of getting the item right because 

of true group ability differences on the underlying latent trait designed to be measured by the 

item. The MC research literature suggested an inconsistent relationship between impact and 

Type I error rate for LC, the LRT, and the MH procedure. In some instances, Type I error was 

conservative or maintained while in other cases it was inflated. For LC, Cohen and Kim (1993) 

did not find a clear relationship between impact and Type I error because their results depended 

on the nominal alpha level and estimation method. For the LRT, Finch and French (2007) found 

Type I error did not depend on impact. Finch (2005) found Type I error was generally closer to 

the nominal level when impact was present. Stark et al. (2006) found Type I error depended on 

impact and sample size. For MH, when simulating impact from 0.0 for 1.0 with intervals of 

0.25 or 0.1 SD unit, Type I error increased as impact increased (DeMars, 2009; Li et al., 2012). 

However other studies found Type I error was conservative or maintained (Finch, 2005; 

Narayanan & Swaminathan, 1996; Paek, 2010; Paek & Wilson, 2011). The present study used 

three levels of impact: 0.0, 0.5, and 1.0.   

2. METHOD 

The open-source software R (R Core Team, 2013) was used to generate the data, run statistical 

analyses, and compute Type I error while BILOG-MG 3  (Zimowski et al., 2003) was used to 

estimate IRT models for LC and the LRT. In BILOG-MG, the number of cycles and quadrature 

points were both changed from the default of 10 to 20 and the number of Newton cycles was 

changed from the default of two to five to aid in more accurate item parameter estimates. The 

convergence criterion was changed from the default of 0.01 to 0.1 to aid model convergence 

for the LRT. Generally, the −2LL value was greater than 1,000 so this small change did not 

greatly change the test statistic. In BILOG-MG, neither marginal maximum likelihood 

estimation (MMLE) nor Bayesian estimation can provide estimates for perfect items 

(proportion correct of 0.0 or 1.0). A condition was added to exclude datasets with perfect items. 
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Bayesian estimation, maximum marginal a posterior estimation, was chosen for parameter 

estimation. Four factors, sample size, group ability differences, IRT model used to generate 

data, and IRT model used to estimate item parameters, were manipulated in this study. The 

values selected for each factor were based upon theoretical and empirical rationale. This 

methodology fits the current trend for replication by providing sufficient detail, which will be 

discussed. It is at best difficult to compare the results of studies that do not provide sufficient, 

or sufficiently precise, details needed for replication or comparison. For all simulated 

conditions, the number of replications was fixed at 10,000 which is a relatively large number 

of replications as the number of replications in the literature ranges from one to 10,000 (Candell 

& Drasgow, 1988; Kim & Cohen, 1992; Li et. al, 2012). 

In the present study, NR  and NF denoted the number of examinees in the reference group and 

focal group, respectively. Two conditions, NR  = NF  = 500 and NR  = NF  = 1,000, were selected 

to represent moderate and large sample sizes. IRT DIF methods require larger sample sizes to 

accurately compute the variance-covariance matrix and the −2LL value. Due to the complexity 

of computing these IRT DIF statistics, larger sample sizes were used. 

Three levels of group mean ability difference, denoted μj, were manipulated. Theoretically, DIF 

analyses with group ability differences should not result in Type I error inflation, but prior 

research has shown that Type I error increased as impact increased (DeMars, 2009; Li et al., 

2012). In this study, the reference group mean of the ability distribution was 0.0, 0.5, and 1.0 

while the focal group mean of the ability distribution was fixed at 0. In all conditions SD was 

set at 1.0 for both groups.  

A function was written in R to simulate dichotomous item response data (0 for incorrect and 1 

for correct) based on a 50 item test with no DIF items for the reference and focal group 

separately with specified item parameters (ai, bi, and ci) and person parameter (θj) following the 

1PL and 2PL models. Test length was fixed at 50 items, the outer range of previous research 

(Cohen et al., 1996; Finch, 2005; McLaughlin & Drasgow, 1987). The higher number of items 

was simulated to obtain an accurate measure of ability for an individual and item difficulty and 

discrimination estimates for LC and the LRT (Lord, 1968; Rogers & Swaminathan, 1993). The 

3PL model was not included as it would constitute another larger paper. The item difficulty 

parameter function inputs for the 1PL model were generated to follow a normal distribution 

while the pseudo guessing parameter was fixed at zero, which was consistent with prior research 

(Herrera & Gomez, 2008; Paek, 2010). For the 2PL model, the item discrimination parameter 

followed a normal distribution (M = 1.1, SD = 0.25), which was similar to Paek (2010) (i.e., a 

normal distribution with (M = 1.0, SD = 0.3)) This produced a range from 0.35 to 1.85 for 99% 

of values making it highly unlikely to encounter a negatively discriminating item. The item 

difficulty parameter followed a standard normal distribution, which was consistent with prior 

research (Herrera & Gomez, 2008; Paek, 2010). For the 1PL model, the item discrimination 

parameter was fixed at 1.1. This value was chosen for consistency because it was the mean of 

the item discrimination parameter in the 2PL model. Furthermore, this selection did not 

introduce any complications when comparing results across models. That is, if the item 

discrimination parameter had been chosen to be fixed at another value such as 0.8 or 1.2 it 

would have been more difficult to compare findings based on the IRT model due to the 

misalignment of item discrimination. In addition, this enhanced the generalizability of findings 

as data were generated from a different set of parameters each time as opposed to generating 

item response data based on a single test (Cohen et al., 1996; Sari & Huggins, 2015; Wang & 

Yeh, 2003). As previously noted, the number of items was fixed at 50 and no DIF items were 

simulated. For DIF detection, the choices for several parameters for data simulation are, 

admittedly, arbitrary. IRT model parameters were estimated using both the correct IRT model 

and incorrect IRT model.  
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Simulation I examined Type I error rates for LC and the LRT based on the 1PL and 2PL models 

under varied levels of sample size and impact when the fitting the correct IRT model. There 

were two types of correct model-data fit: (a) generating 1PL model data and fitting the 1PL 

model (hereafter denoted GEN1FIT1) and (b) generating 2PL model data and fitting the 2PL 

model (hereafter denoted GEN2FIT2). Fully crossing sample size, impact, and correct IRT 

model fit to data resulted in 12 cells for Simulation I, which are displayed in Table 1.  

Table 1. Summary of data collection procedure. 

Cell IRT Model Sample Size Impact 

1 1PL model 500 0.0 

2 1PL model 500 0.5 

3 1PL model 500 1.0 

4 1PL model 1,000 0.0 

5 1PL model 1,000 0.5 

6 1PL model 1,000 1.0 

7 2PL model 500 0.0 

8 2PL model 500 0.5 

9 2PL model 500 1.0 

10 2PL model 1,000 0.0 

11 2PL model 1,000 0.5 

12 2PL model 1,000 1.0 

 

To compute Type I error the first item was fixed and selected as the studied item reflecting 

previous studies (Güler & Penfield, 2009; Li et al., 2012; Roussos & Stout, 1996). Because the 

data are generated to be in random order, choosing to study the first item is equivalent to choos-

ing a random item. The function difLord in the R package difR (Magis et al., 2010), was used 

for LC since simulation within R is advantageous for speed, efficiency, and potential replica-

tion. Item parameter estimates from BILOG-MG 3 were used as the inputs to compute LC for 

both the 1PL and 2PL models. A mean-sigma equating was used to place the focal group item 

parameter estimates onto the scale of the reference group (Cook & Eignor, 1991). Item param-

eter equating method was deliberately fixed to control both complexity of the study and the 

time needed to conduct the simulation. For the LRT, the −2LL of the compact and augmented 

model denoted L(C) and L(A), respectively, from BILOG-MG were each saved as vectors in R. 

All the test items except the studied item were used as the anchor. The LRT was computed by 

comparing the difference of the two models (G2 = L(C) – L(A)) to a χ2 test with 1 df and 2 df 

for the 1PL and 2PL model, respectively. When -2LL differences were negative, implying the 

counterintuitive result that the compact model provided better fit, results were retained. The p 

value for these negative items was always 1.0 implying they were never rejections. This method 

was chosen for its consistency with results from IRTLRDIF (Thissen, 2001). As with LC, R 

was used to compute the LRT. For the MH procedure, the difMH function in R package difR 

(Magis et al., 2010) was used with the default of total score, or thin matching, to match the 

reference and focal group (item purification was judged unnecessary as no DIF items were 

simulated).  

Simulation II examined Type I error rates for LC and the LRT based on the same levels of 

sample size and group ability difference used in Simulation I, but with the incorrect model 

fitted. Fully crossing sample size, impact, and incorrect IRT model fit to data also resulted in 

12 cells for Simulation II. The only difference between Simulations I and II was whether the 
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specified IRT model was correctly fitted. There are two types of incorrect model-data fit: (a) 

generating 1PL model data and fitting the 2PL model (or overfitting, hereafter denoted 

GEN1FIT2) and (b) generating 2PL model data and fitting the 1PL model (or underfitting, 

hereafter denoted GEN2FIT1). Based on the previous literature, there was little guidance 

concerning how incorrect IRT model selection influenced IRT DIF analyses.  

Lastly, Simulation III addressed the role of the continuity correction in the MH procedure. Sim-

ulation III examined Type I error rates in the MH procedure with and without the continuity 

correction under the same conditions, used in Simulations I and II. Given the conservative find-

ings of Paek (2010), we included both forms of the MH procedure for completeness. Fully 

crossing sample size, impact, and IRT model used to generate data resulted in 12 cells for Sim-

ulation III. The code is available upon request from the authors.  

3. RESULTS / FINDINGS 

For Simulation I, the results for LC are displayed in Table 2. First, for GEN1FIT1, LC was 

consistently conservative, pretty stable, and not far from .05 regardless of sample size and 

impact using Bradley's (1978) stringent criterion. Second, for GEN2FIT2 Type I error rate 

increased as impact increased ranging from 0.042 to 0.098. Third, for GEN2FIT2 Type I error 

increased for LC as sample size increased regardless of impact. For GEN2FIT2 Type I error 

increased as both sample size and impact increased.  

Table 2. Type I error rates for LC and the LRT when fitting the correct IRT model. 

IRT 

Model 

Sample 

Size Impact LC LRT MH MH_CC 

1PL model 500 0.0 0.041*  0.049 0.049 0.040* 

  0.5 0.043* 0.056** 0.053 0.041* 

  1.0 0.041* 0.064** 0.045 0.033* 

 1,000 0.0 0.043* 0.050 0.050 0.042* 

  0.5 0.040* 0.067** 0.048 0.040* 

  1.0 0.043* 0.095** 0.050 0.042* 

2PL model 500 0.0 0.042* 0.045 0.049 0.037* 

  0.5 0.052 0.053 0.051 0.039* 

  1.0 0.077** 0.059** 0.049 0.038* 

 1,000 0.0 0.050 0.048 0.050 0.041* 

  0.5 0.060** 0.063** 0.051 0.044* 

  1.0 0.098** 0.075** 0.052 0.044* 

Note. MH = the MH procedure without continuity correction; MH_CC = the MH procedure with continuity 

correction. Values marked with an * are conservative based on Bradley’s (1978) stringent criterion; Values marked 

with ** are inflated based on Bradley’s (1978) stringent criterion. The degrees of freedom are 1 and 2 for the 1PL 

and 2PL models, respectively.  

 

The results for the LRT are also displayed in Table 2. First, when the groups were matched on 

ability Type I error was maintained, ranging from 0.045 to 0.050, for all four combinations of 

IRT model and sample size. Second, when the groups were not matched on ability (impact of 

0.5 and 1.0) Type I error was inflated in all instances except one. The exception was GEN2FIT2 

with a group sample size of 500 and impact of 0.5, which resulted in maintained Type I error. 

The actual Type I error rates ranged from 0.053 to 0.095 when impact was present. Third, Type 
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I error increased as sample size increased for all conditions in the LRT. The same results 

(conservative, maintained, or inflated) were seen across sample size in all but one condition. 

The exception was GEN2FIT2 with impact of 0.5. For this condition Type I error was 

maintained with a sample size of 500 but inflated with a sample size of 1,000.  

For Simulation II, the results for LC are displayed in Table 3. First, in both cases of model 

misspecification Type I error for LC increased as impact increased across sample size ranging 

from 0.049 to 0.244. Second, in both cases of model misspecification Type I error rate for LC 

was consistently higher for the larger sample size condition compared to the smaller sample 

size condition. Third, Type I error was higher for GEN2FIT1 compared GEN1FIT2 in all 

combinations of sample size and impact except one. The exception was a sample size of 1,000 

with impact of 0.0. Moreover, Type I error ranged from 0.041 to 0.091 compared to 0.044 to 

0.244 based on GEN1FIT2 and GEN2FIT1, respectively. Fourth, the same Type I error results 

(conservative, maintained, and inflated) were seen for LC in all combinations of sample size 

and impact of GEN1FIT2 and GEN2FIT1 except one. The exception was a sample size of 500 

and impact of 0.5 where Type I error was maintained for GEN1FIT2 but inflated for 

GEN2FIT1.  

Table 3. Type I error rates for LC and the LRT when fitting the incorrect IRT model. 

IRT Model Used 

to Generate Data 

IRT Model Fit 

to Data 

Sample 

Size Impact 
 

LC LRT MH MH_CC 

1PL model 2PL model 500 0.0 0.041* 0.044* 0.049 0.037* 

   0.5 0.049 0.053 0.051 0.039* 

   1.0 0.081** 0.055 0.049 0.038* 

  1,000 0.0 0.047 0.048 0.050 0.041* 

   0.5 0.059** 0.056** 0.051 0.044* 

   1.0 0.091** 0.079** 0.052 0.044* 

2PL model 1PL model 500 0.0 0.044* 0.073** 0.049 0.040 * 

   0.5 0.081** 0.131** 0.053 0.041* 

   1.0 0.152** 0.212** 0.045 0.033* 

  1,000 0.0 0.045 0.100** 0.050 0.042* 

   0.5 0.110** 0.227** 0.048 0.040* 

      1.0 0.244** 0.347** 0.05 0.042* 

Note. MH = the MH procedure without continuity correction; MH_CC = the MH procedure with continuity 

correction. Values marked with an *are conservative based on Bradley’s (1978) stringent criterion; Values marked 

with ** are inflated based on Bradley’s (1978) stringent criterion. The degrees of freedom are based on the IRT 

model fit to the data (i.e., 1 and 2 for the 1PL and 2PL models, respectively). 

 

The results for the LRT are also displayed in Table 3 demonstrating one clear pattern: for all 

conditions Type I error rate increases as impact increases. There are five additional points worth 

noting. First, for GEN2FIT1 Type I error was inflated for all conditions of sample size and 

impact. Second, for GEN1FIT2 Type I error conclusions depended on sample size and impact. 

That is, with a sample size of 500 Type I error was conservative when groups were matched on 

ability but maintained when impact was present. However, with a sample size of 1,000 Type I 

error was maintained when the groups were matched on ability but inflated when impact was 

present. Third, Type I error rates were larger in GEN2FIT1 compared to GEN1FIT2 for all 

conditions of sample size and impact. Fourth, within each model misspecification category 

Type I error was higher for the larger sample size condition compared to the smaller sample 
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size condition. Fifth, the difference in Type I error rate from the larger sample size to the smaller 

sample size was larger in GEN2FIT1 compared to GEN1FIT2 regardless of impact.  

For Simulation III, the results for the standard MH procedure using the continuity correction 

and the MH procedure without the continuity correction are given in Tables 1 and 2. In both 

tables the MH results are the same and were added to facilitate comparisons among the three 

DIF methods. For both forms of the MH procedure there was one consistent finding when using 

Bradley’s (1978) stringent criterion across all simulated conditions: Type I error rates were 

conservative for the traditional MH procedure while Type I error rates were maintained for the 

MH procedure without the continuity correction. Furthermore, for both forms of the MH 

procedure impact, sample size, IRT model used to generate the data, and no combination of 

these three variables influenced Type I error rates to any great extent.  

4. DISCUSSION and CONCLUSIONS 

This study adds to the research literature by investigating IRT model specification or correct 

and incorrect model-data fit. Portions of the simulation results agree with previous research 

while other portions disagree. It is difficult to compare the results of this study with prior 

literature because many studies do not provide the methodological details needed for replication 

and comparison (e.g., two studies that examined LC [Lim & Drasgow, 1990; McLaughlin & 

Drasgow, 1987] did not mention item parameter equating). Overall, the results demonstrated 

two conclusions. First, when using large sample sizes of 500 and 1,000 per group regardless of 

impact and IRT model used to generate data the MH procedure is the preferred DIF method due 

to its Type I error performance consistency. Second, when using IRT DIF methods correct and 

incorrect IRT model specification and the effect of group differences cannot be ignored.  

For LC in Simulation I GEN1FIT1 Type I error rates did not depend on sample size and impact 

using Bradley’s (1978) stringent criterion, which is consistent with previous research (Wells et 

al., 2009). For GEN2FIT2, Type I error increased as sample size increased, which is consistent 

with research by Lim and Drasgow (1990) and McLaughlin and Drasgow (1987), but 

inconsistent with Kim et al. (1994). For GEN2FIT2 Type I error rate increased with impact, 

which did not agree with previous literature by Cohen and Kim (1993).  

For the LRT in Simulation I Type I error was reasonably maintained when the groups were 

matched on ability for all four conditions of model-data fit and sample size. This was 

inconsistent with previous research (Finch, 2005; Finch & French, 2007; Stark et al., 2006). 

When the groups were not matched on ability (impact of 0.5 and 1.0) Type I error was inflated 

in seven of the eight model-data fit and sample size conditions. The exception was GEN2FIT2 

with a group sample size of 500 and impact of 0.5 in which Type I error was maintained. These 

results were reasonably consistent with previous research (Finch, 2005; Stark et al., 2006). 

When impact was present with GEN2FIT2 Finch (2005) found Type I error was maintained 

with a group sample size of 500 while Stark et al. (2006) found Type I error somewhat 

conservative with a group sample size of 1,000. Although Type I error increased as sample size 

increased for all conditions, similar conclusions were generally made across sample size. This 

was inconsistent with some previous research (Cohen et al., 1996; Finch, 2005; Stark et al., 

2006). There are several reasons why the present study may have inconsistencies with prior 

work. For example, the estimation methods differed for Cohen et al. (1996) and Finch and 

French (2007) and prior studies used 50-1,000 replications while the present study used 10,000.  

For Simulation II, Type I error conclusions for GEN1FIT2 were generally consistent for LC 

and the LRT across the conditions with one exception. The exception was GEN1FIT2 with a 

group sample size of 500 and impact of 1.0 in which Type I error was inflated for LC and 

maintained for the LRT. However, for GEN2FIT1 the Type I error conclusions were only 

consistent when impact was present. Type I error increased as impact increased for all 
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conditions in both DIF methods. Type I error was generally inflated in both GEN1FIT2 and 

GEN2FIT1, but was more pronounced in GEN2FIT1. Finally, Type I error rates were lower for 

LC than the LRT in GEN2FIT1 but varied in GEN1FIT2. There was little research with which 

to compare these findings.  

In Simulation III, Type I error rate was consistently somewhat conservative for the MH 

procedure. Impact did not lead to Type I error inflation when other variables were manipulated, 

which was both consistent and inconsistent with previous research (DeMars, 2009; Finch, 2005; 

Narayanan & Swaminathan, 1996; Paek, 2010; Roussos & Stout, 1996). Sample size did not 

influence Type I error rates when other variables were manipulated, which was also both 

consistent and inconsistent with prior research (DeMars, 2009; Herrera & Gómez, 2008; 

Narayanan & Swaminathan, 1996; Paek & Wilson, 2011; Roussos & Stout, 1996). The IRT 

model used to generate the data did not influence Type I error rates when other variables were 

manipulated. This was an interesting finding because the MH procedure matches the groups on 

observed score and not the underlying latent variable, θ. This finding was consistent with 

Rogers and Swaminathan (1993) who investigated how the 2PL model and 3PL model impacted 

the distributional shape of the MH test statistic and found no drastic differences in the number 

of Type I errors made for model-data fit. The finding also was consistent with Paek (2010) who 

simulated 1PL, 2PL, and 3PL data finding that Type I error was consistently conservative 

regardless of the IRT model used to generate data. This is noteworthy because the default 

method for the MH procedure in SPSS uses the continuity correction. Researchers and 

practitioners need to be mindful of this when interpreting their DIF results as they may be 

conservative. Furthermore, this study adds to the literature by extending the findings of Paek 

(2010). Paek (2010) examined the MH procedure under a variety of conditions while the present 

study included the MH procedure in conjunction with IRT DIF methods so that comparisons 

can be made between the two types of methods. 

A key observation for the MH procedure was that no combination of IRT model used to 

generate the data, sample size, and impact, influenced Type I error rates to any great extent. 

This finding agrees with some previous research (Paek, 2010; Paek & Wilson, 2011), but was 

inconsistent with other research (DeMars, 2009; Herrera & Gómez, 2008; Narayanan & 

Swaminathan, 1996; Roussos & Stout, 1996).  

4.1. Recommendations 

There are six main recommendations based on this study. Recommendation one applies to 

statistical software for DIF analyses. Recommendations two through four apply to the results 

of the MH procedure and LC and the LRT using correct and incorrect model-data fit. The fifth 

recommendation compares the results of all three DIF procedures while recommendation six is 

a more general reflection on simulation studies. 

First, it is important to empirically validate any R packages of interest prior to use. The authors 

of this study were not able to replicate the item parameter estimates from ltm at the time of data 

generation (Rizopoulos, 2006) which were used to implement LC. Thus, BILOG-MG was used 

in place of ltm.  

Second, DeMars (2010) pointed out that when groups are not matched on ability Type I error 

can become inflated for the MH procedure. Previous research has shown this was true (DeMars, 

2009; Li et al., 2012; Roussos & Stout, 1996). This study, however, demonstrates that this is 

not always the case. The Type I error for the MH procedure without the continuity correction 

was reasonably unaffected by group differences (impact) for all simulated conditions. This 

finding is important because the MH procedure is theoretically easy to understand, easy to 

implement, does not require knowledge of IRT, and is often used for DIF detection (Holland & 

Thayer, 1988; Wainer, 2010). Furthermore, this finding is particularly valuable to 
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psychometricians and applied researchers because it supports the use of the MH procedure for 

DIF analyses in the presence of impact based on Type I error rate. 

Third, both studied IRT procedures generally showed inflated (and sometimes highly inflated) 

Type I errors with the combination of item impact and model misspecification. However, if the 

groups are matched on ability the LRT may be slightly preferred to LC when fitting the correct 

IRT model. Moreover, when the data are fit to the correct IRT model LC is often too 

conservative while the LRT is often too inflated based on Bradley’s (1978) stringent criterion. 

When the data are fit to the incorrect IRT model, Type I error increased and became inflated as 

impact increased for both sample sizes. Therefore, choosing an appropriate IRT model for 

existing data is an important consideration (e.g., Bolt et al., 2014; Köse, 2014; Maydeu-

Olivares, 2013) and, done well, can be arduous. In their chapter on the assessment of model-

data fit, Hambleton et al. (1991) recommend a comprehensive set of procedures for assessing 

IRT model fit including checking model assumptions, parameter invariance, and model 

predictions. Furthermore, this IRT DIF finding is noteworthy because implementing LC based 

upon fitting the 1PL model is the only DIF procedure implemented in BILOG-MG 3. Therefore, 

psychometricians and applied researchers conducting DIF analyses using BILOG-MG 3 must 

be careful that their data correctly fit the 1PL model. That is, if a psychometrician or applied 

researcher is using BILOG-MG 3 for DIF analyses and the true underlying IRT model is the 

2PL DIF results should be interpreted with caution as serious Type I error inflation can occur 

especially in the presence of impact.   

Moreover, this recommendation is important because Type I error inflation is a serious problem 

as test items are expensive to construct. Luecht (2005) states that the: “ACPI [average-cost-per-

item] typically runs from several hundred to more than fifteen hundred dollars per item” (p. 8). 

That is, making a Type I error by falsely removing a non DIF item is a serious financial 

consequence, which cannot be taken lightly.  

Fourth, this study did not identify any unique advantage for using IRT methods over CTT 

methods based on Type I error rates. That is, based on Type I error rates the findings of this 

study do not support the theoretical advantages of using IRT for DIF analyses despite the 

recommendations of Camilli and Shepard (1994).  

Fifth, taken together, recommendations two, three, and four agree with the principle of 

parsimony that the simpler method in comparison to the more complex method is better. That 

is, based on Type I error rate the MH procedure, a non-IRT based DIF method, should be use 

for DIF analyses instead of the more complex IRT DIF methods (LC and the LRT), which 

agrees with prior recommendations (Holland & Thayer, 1988; Wainer, 2010). Furthermore, this 

finding is particularly valuable to psychometricians and applied researchers because it supports 

a simpler method to implement and does not rely on correct IRT model selection. That is, the 

MH procedure overcomes the problem of Type I error inflation of LC and the LRT when 

selecting the incorrect IRT model.  

Sixth, it is critically important that simulation studies in all areas provide sufficient detail for 

both comparison with prior research and replication. More bluntly, Monte Carlo research can 

be much more than a collection of case studies. 
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