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Abstract
For a given bounded positive (semidefinite) linear operator A on a complex Hilbert space(
H, ⟨·, ·⟩

)
, we consider the semi-Hilbertian space

(
H, ⟨·, ·⟩A

)
where ⟨x, y⟩A := ⟨Ax, y⟩ for

every x, y ∈ H. The A-numerical radius of an A-bounded operator T on H is given by

ωA(T ) = sup
{∣∣⟨Tx, x⟩A

∣∣ ; x ∈ H, ⟨x, x⟩A = 1
}

.

Our aim in this paper is to derive several A-numerical radius inequalities for 2×2 operator
matrices whose entries are A-bounded operators, where A = diag(A, A).
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1. Introduction and preliminaries
Let H be a complex Hilbert space with inner product ⟨·, ·⟩ and associated norm ∥ · ∥.

Let B(H) stand for the C∗-algebra of all bounded linear operators on H. The symbol I
denotes the identity operator on H. Let B(H)+ be the cone of all positive (semi-definite)
operators in B(H), i.e.,

B(H)+ = {A ∈ B(H) ; ⟨Ax, x⟩ ≥ 0, ∀ x ∈ H } .

In all what follows, by an operator we mean a bounded linear operator. Moreover, for
T ∈ B(H), we denote by N(T ) and R(T ) the kernel and the range of T , respectively.
Furthermore, T ∗ is the adjoint of T . For a given linear subspace M of H, its closure in the
norm topology of H will be denoted by M. In addition, let PS stand for the orthogonal
projection onto a closed subspace S of H.

Let A ∈ B(H)+. Then, A induces the following semi-inner product

⟨·, ·⟩A : H × H −→ C, (x, y) 7−→ ⟨x, y⟩A := ⟨Ax, y⟩ = ⟨A1/2x, A1/2y⟩.
Here A1/2 stands for the square root of A. The seminorm induced by ⟨·, ·⟩A is given by
∥x∥A = ∥A1/2x∥ for all x ∈ H. One can verify that ∥ · ∥A is a norm if and only if A is one-
to-one, and that the seminormed space (H, ∥ · ∥A) is complete if and only if R(A) = R(A).
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The semi-inner product ⟨·, ·⟩A induces on the quotient H/N(A) an inner product which is
not complete unless R(A) is closed. However, a canonical construction due to de Branges
and Rovnyak [10] (see also [15]) shows that the completion of H/N(A) is isometrically
isomorphic to the Hilbert space R(A1/2) endowed with the following inner product

⟨A1/2x, A1/2y⟩R(A1/2) := ⟨P
R(A)x, P

R(A)y⟩, ∀ x, y ∈ H. (1.1)

For the sequel, the Hilbert space
(
R(A1/2), ⟨·, ·⟩R(A1/2)

)
will be denoted by R(A1/2). It is

worth noting that R(A) is dense in R(A1/2) (see [3]). For an account of results related to
the Hilbert space R(A1/2), the reader is invited to consult [3] and the references therein.
By using (1.1), it can be checked that

⟨Ax, Ay⟩R(A1/2) = ⟨x, y⟩A, ∀ x, y ∈ H. (1.2)

Let T ∈ B(H). An operator S ∈ B(H) is said to be an A-adjoint of T if for all x, y ∈ H,
the identity ⟨Tx, y⟩A = ⟨x, Sy⟩A holds (see [1]). So, the existence of an A-adjoint of T is
equivalent to the existence of a solution of the equation AX = T ∗A. Notice that this kind
of equations can be investigated by using a well-known theorem due to Douglas [11] which
briefly says that the operator equation TX = S has a bounded linear solution X if and
only if R(S) ⊆ R(T ) which, in turn, equivalent to the existence of a positive number λ such
that ∥S∗x∥ ≤ λ∥T ∗x∥ for all x ∈ H. Furthermore, among its many solutions it has only
one, denoted by Q, which satisfies R(Q) ⊆ R(T ∗). Such Q is called the Douglas solution
or the reduced solution of the equation TX = S. Clearly, the existence of an A-adjoint
operator is not guaranteed. If we denote by BA(H) the subspace of all operators admitting
A-adjoints, then by Douglas theorem, we have

BA(H) = {T ∈ B(H) ; R(T ∗A) ⊆ R(A)} .

If T ∈ BA(H), the reduced solution of the equation AX = T ∗A is a distinguished A-
adjoint operator of T , which is denoted by T ♯A . Note that, T ♯A = A†T ∗A in which A† is
the Moore-Penrose inverse of A (see [2]). Notice that if T ∈ BA(H), then T ♯A ∈ BA(H),
(T ♯A)♯A = P

R(A)TP
R(A) and ((T ♯A)♯A)♯A = T . Moreover, if S ∈ BA(H) then TS ∈ BA(H)

and (TS)♯A = S♯AT ♯A . For results concerning T ♯A , we refer the reader to [1,2]. An operator
U ∈ BA(H) is called A-unitary if ∥Ux∥A = ∥U ♯Ax∥A = ∥x∥A for all x ∈ H.

An operator T is called A-bounded if there exists λ > 0 such that ∥Tx∥A ≤ λ∥x∥A, ∀ x ∈
H. An application of Douglas theorem shows that the subspace of all operators admitting
A1/2-adjoints, denoted by BA1/2(H), is equal the collection of all A-bounded operators,
i.e.,

BA1/2(H) = {T ∈ B(H) ; ∃ λ > 0 ; ∥Tx∥A ≤ λ∥x∥A, ∀ x ∈ H} .

Notice that BA(H) and BA1/2(H) are two subalgebras of B(H) which are, in general,
neither closed nor dense in B(H). Moreover, we have BA(H) ⊆ BA1/2(H) (see [1, 3]).
Clearly, ⟨·, ·⟩A induces a seminorm on BA1/2(H). Indeed, if T ∈ BA1/2(H), then it holds
that

∥T∥A := sup
x∈R(A),

x ̸=0

∥Tx∥A

∥x∥A
= sup

{
∥Tx∥A ; x ∈ H, ∥x∥A = 1

}
< ∞.

Notice that it was proved in [12] that for T ∈ BA1/2(H) we have

∥T∥A = sup {|⟨Tx, y⟩A| ; x, y ∈ H, ∥x∥A = ∥y∥A = 1} . (1.3)

An important observation is that for every T, S ∈ BA1/2(H), we have

∥TS∥A ≤ ∥T∥A∥S∥A. (1.4)
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Furthermore, the A-numerical radius of an operator T ∈ B(H) was firstly defined by Saddi
in [20] as

ωA(T ) := sup {|⟨Tx, x⟩A| ; x ∈ H, ∥x∥A = 1} .

It should be emphasized that it may happen that ∥T∥A and ωA(T ) are equal to +∞ for
some T ∈ B(H) \BA1/2(H) (see [13]). However, these quantities are equivalent seminorms
on BA1/2(H). More precisely, it was shown in [6] that for every T ∈ BA1/2(H), we have

1
2

∥T∥A ≤ ωA(T ) ≤ ∥T∥A. (1.5)

Notice that if T ∈ BA1/2(H) and satisfies AT 2 = 0, then by [13, Corollary 2] we have

ωA(T ) = 1
2

∥T∥A. (1.6)

In addition, the A-numerical radius of semi-Hilbertian space operators satisfies the weak
A-unitary invariance property which asserts that

ωA(U ♯TU) = ωA(T ), (1.7)

for every A-unitary operator U ∈ BA(H) and T ∈ BA1/2(H) (see [5, Lemma 3.8]). For the
sequel, for any arbitrary operator T ∈ BA(H), we denote

ℜA(T ) := T + T ♯A

2
and ℑA(T ) := T − T ♯A

2i
.

For simplicity, we will write ℜ2
A(T ) and ℑ2

A(T ) instead of [ℜA(T )]2 and [ℑA(T )]2, respec-
tively. Also, ω2

A(T ) means [ωA(T )]2. It has been proved in [23] that for T ∈ BA(H), it
holds

ωA(T ) = sup
θ∈R

∥∥∥ℜA(eiθT )
∥∥∥

A
= sup

θ∈R

∥∥∥ℑA(eiθT )
∥∥∥

A
. (1.8)

Let T ∈ B(H). Then, it was shown in [3, Proposition 3.6.] that T ∈ BA1/2(H) if and only
if there exists a unique T̃ ∈ B(R(A1/2)) such that ZAT = T̃ZA. Here, ZA : H → R(A1/2)
is defined by ZAx = Ax. It has been shown in [3,13] that for every T ∈ BA1/2(H) we have

∥T∥A = ∥T̃∥B(R(A1/2)) and ωA(T ) = ω(T̃ ). (1.9)

Recently, the concept of the A-spectral radius of A-bounded operators has been intro-
duced by the present author in [13] as follows:

rA(T ) := inf
n≥1

∥T n∥
1
n
A = lim

n→∞
∥T n∥

1
n
A . (1.10)

We note here that the second equality in (1.10) is also proved in [13, Theorem 1]. Moreover,
like the classical spectral radius of Hilbert space operators, it was shown in [13] that rA(·)
satisfies the commutativity property, which asserts that

rA(TS) = rA(ST ), (1.11)

for all T, S ∈ BA1/2(H). In addition, the following relation between A-spectral and A-
numerical radii of A-bounded operators is also proved in [13]:

rA(T ) ≤ ωA(T ), ∀ T ∈ BA1/2(H). (1.12)

An operator T ∈ B(H) is said to be A-selfadjoint if AT is selfadjoint, that is, AT = T ∗A.
Moreover, it was shown in [13] that if T is A-self-adjoint, then

∥T∥A = ωA(T ) = rA(T ). (1.13)
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In addition, an operator T is called A-positive if AT ≥ 0 and we write T ≥A 0. Obviously,
an A-positive operator is always A-selfadjoint since H is a complex Hilbert space. Clearly,
if T ∈ BA(H) then TT ♯A ≥A 0, T ♯AT ≥A 0 and

∥T ♯AT∥A = ∥TT ♯A∥A = ∥T∥2
A = ∥T ♯A∥2

A. (1.14)
If T, S ∈ B(H) and satisfies T − S ≥A 0, then we will write T ≥A S. For the sequel,
if A = I then ∥T∥, r(T ) and ω(T ) denote respectively the classical operator norm, the
spectral radius and the numerical radius of an operator T . In recent years, several results
covering some classes of operators on a complex Hilbert space

(
H, ⟨·, ·⟩

)
were extended

to
(
H, ⟨·, ·⟩A

)
. Of course, the extension is not trivial since many difficulties arise. For

instance, as it is mentioned above, it may happen that ∥T∥A = ∞ for some T ∈ B(H).
Moreover, not any operator admits an adjoint operator for the semi-inner product ⟨·, ·⟩A.
In addition, for T ∈ BA(H) we have (T ♯A)♯A = P

R(A)TP
R(A). So, in general (T ♯A)♯A ̸= T .

The reader is invited to see [5–7,14–16,18,22,23] and the references therein.

In this paper, we consider the 2 × 2 operator diagonal matrix A =
(

A 0
0 A

)
. Clearly,

A ∈ B(H ⊕ H)+. So, A induces the following semi-inner product
⟨x, y⟩A = ⟨Ax, y⟩ = ⟨x1, y1⟩A + ⟨x2, y2⟩A,

for all x = (x1, x2), y = (y1, y2) ∈ H ⊕ H. Notice that if Tij are operators in BA(H) for
all i, j ∈ {1, 2}. Then, it was shown in [5, Lemma 3.1] that the 2 × 2 operator matrix
(Tij)2×2 ∈ BA(H ⊕ H) and (

T11 T12
T21 T22

)♯A

=
(

T ♯A
11 T ♯A

21
T ♯A

12 T ♯A
22

)
. (1.15)

Very recently, several inequalities for the A-numerical radius of 2 × 2 operator matrices
have been established by Bhunia et al. (see [8]). This paper is devoted also to prove
several new A-numerical radius inequalities of certain 2 × 2 operator matrices. Some of
the obtained results cover and extend the following works [9, 19,21].

2. Results
In this section, we present our results. Throughout this section A is denoted to be the

2 × 2 operator diagonal matrix whose each diagonal entry is the positive operator A. To
prove our two next results, the following lemma concerning A-numerical radius inequalities
is required. Notice that the first assertion is proved in [8] for operators in BA(H).

Lemma 2.1. Let P, Q, R, S ∈ BA1/2(H). Then, the following assertions hold:

(a) ωA

[(
P 0
0 S

)]
= max{ωA(P ), ωA(S)}.

(b) ωA

[(
P 0
0 S

)]
≤ ωA

[(
P Q
R S

)]
.

(c) ωA

[(
0 Q
R 0

)]
≤ ωA

[(
P Q
R S

)]
.

Proof. (a) Follows by proceeding as in the proof of [8, Lemma 2.4.].
(b) Clearly we have (

P 0
0 S

)
= 1

2

(
P Q
R S

)
+ 1

2

(
P −Q

−R S

)
. (2.1)

Let U =
(

−I 0
0 I

)
. In view of (1.15) we have U♯A =

(
−P

R(A) 0
0 P

R(A)

)
. So, since P

R(A)A =

AP
R(A) = A, then it can be verified that ∥Ux∥A = ∥U♯Ax∥A = ∥x∥A for all x = (x1, x2) ∈
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H ⊕ H. Hence, U is A-unitary. Thus, by (1.7) we have

ωA

[(
P Q
R S

)]
= ωA

[
U♯A

(
P Q
R S

)
U
]

= ωA

[(
P
R(A)P −P

R(A)Q

−P
R(A)R P

R(A)S

)]

= ωA

[(
P
R(A) 0
0 P

R(A)

)(
P −Q

−R S

)]

= ωA

[(
P −Q

−R S

)]
,

where the last equality follows from the definition of ωA(·) together with the fact that
P
R(A)A = AP

R(A) = A. So, by taking into consideration (2.1) and the triangle inequality
we prove the desired result.

(b) Since ωA

[(
−P Q
R −S

)]
= ωA

[(
P −Q

−R S

)]
, then by the proof of the assertion (a) we

deduce that
ωA

[(
P Q
R S

)]
= ωA

[(
−P Q
R −S

)]
.

Moreover, by using the fact that(
0 Q
R 0

)
= 1

2

(
P Q
R S

)
+ 1

2

(
−P Q
R −S

)
,

and the subadditivity of the A-numerical radius ωA(·), we get the required result. �
Also, we need the following lemma.

Lemma 2.2 ([16]). Let T, S ∈ BA1/2(H). Then,∥∥∥∥(0 T
S 0

)∥∥∥∥
A

=
∥∥∥∥(T 0

0 S

)∥∥∥∥
A

= max{∥T∥A, ∥S∥A}.

Now, we are in a position to prove our first result in this paper.

Theorem 2.3. Let T =
(

P Q
R S

)
be such that P, Q, R, S ∈ BA1/2(H). Then,

λ1 ≤ ωA

[(
P Q
R S

)]
≤ λ2, (2.2)

where
λ1 = max

{
ωA

[(
0 Q
R 0

)]
, max{ωA(P ), ωA(S)}

}
and

λ2 = ∥Q∥A + ∥R∥A

2
+ max

{
ωA(P ), ωA(S)

}
.

Proof. Clearly we have(
P Q
R S

)
=
(

P 0
0 S

)
+
(

0 Q
0 0

)
+
(

0 0
R 0

)
. (2.3)

On the other hand, it is not difficult to see that A
(

0 Q
0 0

)2
=
(

0 0
0 0

)
and

A
(

0 0
R 0

)2
=
(

0 0
0 0

)
. So, by (1.6) and Lemma 2.2 we have

ωA

[(
0 Q
0 0

)]
= 1

2

∥∥∥∥(0 Q
0 0

)∥∥∥∥
A

= 1
2

∥Q∥A.
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Similarly, we have ωA

[(
0 0
R 0

)]
= 1

2∥R∥A. So, by using the trivial observation (2.3) and

the subadditivity of the A-numerical radius ωA(·) together with Lemma 2.1 (a), we get

ωA

[(
P Q
R S

)]
≤ max{ωA(P ), ωA(S)} + ∥Q∥A + ∥R∥A

2
. (2.4)

Furthermore, by Lemmas 2.1 and 2.2 we have

ωA

[(
P Q
R S

)]
≥ max

{
ωA

[(
0 Q
R 0

)]
, ωA

[(
P 0
0 S

)]}
= max

{
ωA

[(
0 Q
R 0

)]
, max{ωA(P ), ωA(S)}

}
. (2.5)

By combining (2.4) together with (2.5), we reach the desired result. �

In order to prove our next result, we need the following lemma.

Lemma 2.4. Let T, S ∈ B(H) be two A-positive operators. Then,

ωA

[(
0 T
S 0

)]
= 1

2
∥T + S∥A . (2.6)

Proof. Since T and S are A-positive, then T, S ∈ BA1/2(H). So, by [3, Proposition
3.6.] there exist two unique operators T̃ , S̃ ∈ B(R(A1/2)) such that ZAT = T̃ZA and
ZAS = S̃ZA. Moreover, since T ≥A 0, then for all x ∈ H we have

⟨ATx, x⟩ ≥ 0.

This implies, through (1.2), that

⟨Tx, x⟩A = ⟨ATx, Ax⟩R(A1/2) = ⟨T̃Ax, Ax⟩R(A1/2) ≥ 0

for all x ∈ H. Further, by using the density of R(A) in R(A1/2), we obtain

⟨T̃A1/2x, A1/2x⟩R(A1/2) ≥ 0, ∀ x ∈ H.

So, T̃ is a positive operator on the Hilbert space R(A1/2). Similarly, we prove that S̃ ≥ 0.
Therefore, in view of [4, Corollary 3] we have

ω

[(
0 T̃

S̃ 0

)]
= 1

2

∥∥∥T̃ + S̃
∥∥∥
B(R(A1/2))

= 1
2

∥∥∥T̃ + S
∥∥∥
B(R(A1/2))

, (2.7)

where the last equality follows since T̃ + S = T̃ + S̃ (see [15]). Moreover, by [5, Lemma

3.2], we have
(

0 T
S 0

)
∈ BA1/2(H ⊕ H) and

˜(0 T
S 0

)
=
(

0 T̃

S̃ 0

)
.

This proves the desired result by applying (2.7) together with (1.9). �

We are now in a position to state the following theorem.

Theorem 2.5. Let T =
(

P Q
R S

)
be such that P, Q, R, S ∈ BA(H). Then,

ωA(T) ≤ 1
2

(
ωA(P ) + ωA(Q)

)
+ 1

4

(
∥I + PP ♯A + QQ♯A∥A + ∥I + RR♯A + SS♯A∥A

)
.
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Proof. We first prove that

ωA(S) ≤ 1
2

ωA(P ) + 1
4

∥I + PP ♯A + QQ♯A∥A, (2.8)

where S =
(

P Q
0 0

)
. Let θ ∈ R. It is not difficult to verify that ℜA(eiθS) is an A-self-

adjoint operator. So, by (1.13) we have

rA
(
ℜA(eiθS)

)
= ∥ℜA(eiθS)∥A.

Now, by using (1.15), we see that

rA
[
ℜA(eiθS)

]
= 1

2
rA(eiθS + e−iθS♯A)

= 1
2

rA

[
eiθ
(

P Q
0 0

)
+ e−iθ

(
P ♯A 0
Q♯A 0

)]

= 1
2

rA

[(
eiθP + e−iθP ♯A eiθQ

e−iθQ♯A 0

)]

= 1
2

rA

[(
P ♯A eiθI
Q♯A 0

)(
e−iθI 0

P Q

)]
.

Moreover, an application of (1.11) gives

rA
[
ℜA(eiθS)

]
= 1

2
rA

[(
e−iθI 0

P Q

)(
P ♯A eiθI
Q♯A 0

)]

= 1
2

rA

[(
e−iθP ♯A I

PP ♯A + QQ♯A eiθP

)]
.

Further, by applying (1.12), we get

rA
[
ℜA(eiθS)

]
≤ 1

2
ωA

[(
e−iθP ♯A I

PP ♯A + QQ♯A eiθP

)]

≤ 1
2

ωA

[(
e−iθP ♯A 0

0 eiθP

)]
+ 1

2
ωA

[(
0 I

PP ♯A + QQ♯A 0

)]
= 1

2
ωA(P ) + 1

4
∥I + PP ♯A + QQ♯A∥A (by Lemmas 2.1 and 2.4).

Hence, we obtain

∥ℜA(eiθS)∥A ≤ 1
2

ωA(P ) + 1
4

∥I + PP ♯A + QQ♯A∥A,

for every θ ∈ R. So, by taking the supremum over all θ ∈ R and then applying (1.8) we ob-

tain (2.8) as required. Let U =
(

0 I
I 0

)
. In view of (1.15) we have U♯A =

(
0 P

R(A)
P
R(A) 0

)
.
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Further, it can be seen that U is A-unitary operator. So, by using (1.7) we get

ωA(T) ≤ ωA

[(
P Q
0 0

)]
+ ωA

[(
0 0
R S

)]
= ωA

[(
P Q
0 0

)]
+ ωA

[
U♯A

(
0 0
R S

)
U
]

= ωA

[(
P Q
0 0

)]
+ ωA

[(
P
R(A) 0
0 P

R(A)

)(
S R
0 0

)]

= ωA

[(
P Q
0 0

)]
+ ωA

[(
S R
0 0

)]
.

Finally, by applying (2.8) we obtain

ωA(T) ≤ 1
2

ωA(P ) + 1
4

∥I + PP ♯A + QQ♯A∥A + 1
2

ωA(S) + 1
4

∥I + SS♯A + RR♯A∥A

= 1
2

(
ωA(P ) + ωA(S)

)
+ 1

4

(
∥PP ♯A + QQ♯A∥A + ∥RR♯A + SS♯A∥A

)
.

This finishes the proof of the theorem. �

The following lemma is useful in proving our next result.

Lemma 2.6 ([17]). Let T =
(

T11 T12
T21 T22

)
be such that Tij ∈ BA1/2(H) for all i, j ∈ {1, 2}.

Then, T ∈ BA1/2(H ⊕ H) and

rA (T) ≤ r

[(
∥T11∥A ∥T12∥A

∥T21∥A ∥T22∥A

)]
.

Theorem 2.7. Let T =
(

P Q
R S

)
be such that P, Q, R, S ∈ BA(H). Then,

ωA(T) ≤ 1
2

(
∥P∥A + ∥S∥A +

√
∥PP ♯A + QQ♯A∥A +

√
∥RR♯A + SS♯A∥A

)
. (2.9)

Proof. We first prove that

ωA(S) ≤ 1
2

(
∥P∥A +

√
∥PP ♯A + QQ♯A∥A

)
, (2.10)

where S =
(

P Q
0 0

)
. Let θ ∈ R. By proceeding as in the proof of Theorem 2.5 and then

using Lemma 2.6 we see that

∥ℜA(eiθS)∥A = rA
[
ℜA(eiθS)

]
= 1

2
rA

[(
e−iθP ♯A I

PP ♯A + QQ♯A eiθP

)]

≤ 1
2

r

[( ∥P∥A 1
∥PP ♯A + QQ♯A∥A ∥P∥A

)]
= 1

2

(
∥P∥A +

√
∥PP ♯A + QQ♯A∥A

)
.

This immediately proves (2.10) by applying (1.8). Using an argument similar to that used
in proof of Theorem 2.5, we get the desired result. �

Before proving our next theorem we have to state the following lemma.
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Lemma 2.8 ([7, Theorem 5.1]). Let T ∈ B(H) be an A-selfadjoint operator. Then, for
any positive integer n we have

∥T n∥A = ∥T∥n
A.

Theorem 2.9. Let T =
(

P Q
R S

)
be such that P, Q, R, S ∈ BA(H). Then,

ωA(T) ≤
√

ω2
A(P ) + 1

2
∥Q∥A

(
ωA(P ) + 1

2
∥Q∥A

)
+
√

ω2
A(S) + 1

2
∥R∥A

(
ωA(S) + 1

2
∥R∥A

)
.

Proof. Let S =
(

P Q
0 0

)
. We first prove that

ωA(S) ≤
√

ω2
A(P ) + 1

2
∥Q∥A

(
ωA(P ) + 1

2
∥Q∥A

)
. (2.11)

Let θ ∈ R. A straightforward calculation shows that

ℜA(eiθS) =
(

ℜA(eiθP ) 1
2eiθQ

1
2e−iθQ♯A 0

)

=
(

ℜA(eiθP ) 0
0 0

)
+
(

0 1
2eiθQ

1
2e−iθQ♯A 0

)
.

This implies that

ℜ2
A(eiθS) =

(
ℜ2

A(eiθP ) 0
0 0

)
+
(

1
4QQ♯A 0

0 1
4Q♯AQ

)

+

 0 1
2eiθ

[
ℜA(eiθP )

]
Q

1
2e−iθQ♯A

[
ℜA(eiθP )

]
0

 .

Thus, by using the triangle inequality together with Lemma 2.2, (1.4) and (1.14) we see
that ∥∥ℜ2

A(eiθS)
∥∥
A ≤ ∥ℜA(eiθP )∥2

A + 1
4

∥Q∥2
A + 1

2
∥ℜA(eiθP )∥A∥Q∥A

≤ ω2
A(P ) + 1

4
∥Q∥2

A + 1
2

ωA(P )∥Q∥A,

where the last inequality follows from (1.8). Since ℜA(eiθS) is A-selfadjoint, then an
application of Lemma 2.8 gives

∥ℜA(eiθS)∥2
A ≤ ω2

A(P ) + 1
4

∥Q∥2
A + 1

2
ωA(P )∥Q∥A,

for every θ ∈ R. Taking the supremum over all θ ∈ R in the above inequality and then
using (1.8) yields that

ω2
A(S) ≤ ω2

A(P ) + 1
4

∥Q∥2
A + 1

2
ωA(P )∥Q∥A.

This proves (2.11). Using an argument similar to that used in proof of Theorem 2.5, we
get the desired result. �

Next we state the following useful lemmas related to A-selfadjoint operators.

Lemma 2.10. Let T, S ∈ B(H) be two A-selfadjoint operators. If T − S ≥A 0, then

∥T∥A ≥ ∥S∥A.
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Proof. Since T − S ≥A 0, then ⟨(T − S)x, x⟩A ≥ 0 for all x ∈ H. This gives
⟨Tx, x⟩A ≥ ⟨Sx, x⟩A, ∀ x ∈ H.

So, by taking the supremum over all x ∈ H with ∥x∥A = 1 in the above inequality and
then using (1.13) we obtain the desired result. �
Lemma 2.11 ([14]). Let T ∈ BA(H) be an A-selfadjoint operator. Then, T 2n ≥A 0 for
any positive integer n.

We are now in a position to prove the following theorem.

Theorem 2.12. Let T =
(

P Q
R S

)
be such that P, Q, R, S ∈ BA(H). Then,

ωA(T) ≤
√

2ω2
A(P ) + 1

2
(
∥P ♯AQ∥A + ∥Q∥2

A

)
+
√

2ω2
A(S) + 1

2
(
∥S♯AR∥A + ∥R∥2

A

)
.

Proof. We first prove that

ωA

[(
P Q
0 0

)]
≤
√

2ω2
A(P ) + 1

2
(
∥P ♯AQ∥A + ∥Q∥2

A

)
. (2.12)

Let θ ∈ R. By using (1.15), it can be verified that

ℜA

[
eiθ
(

P Q
0 0

)]
=
(

ℜA(eiθP ) 1
2eiθQ

1
2e−iθQ♯A 0

)
and

ℑA

[
eiθ
(

P Q
0 0

)]
= −i

(
iℑA(eiθP ) 1

2eiθQ
−1

2e−iθQ♯A 0

)
.

Moreover, by Lemma 2.11, ℑ2
A

[
eiθ

(
P Q
0 0

)]
≥A

(
0 0
0 0

)
. So, we have

ℜ2
A

[
eiθ
(

P Q
0 0

)]
+ ℑ2

A

[
eiθ
(

P Q
0 0

)]
− ℜ2

A

[
eiθ
(

P Q
0 0

)]
≥A

(
0 0
0 0

)
.

Hence, it follows from Lemma 2.10 that∥∥∥∥ℜ2
A

[
eiθ
(

P Q
0 0

)]∥∥∥∥
A

≤
∥∥∥∥ℜ2

A

[
eiθ
(

P Q
0 0

)]
+ ℑ2

A

[
eiθ
(

P Q
0 0

)]∥∥∥∥
A

.

This in turn implies, through Lemma 2.8, that∥∥∥∥ℜA

[
eiθ
(

P Q
0 0

)]∥∥∥∥2

A
≤
∥∥∥∥ℜ2

A

[
eiθ
(

P Q
0 0

)]
+ ℑ2

A

[
eiθ
(

P Q
0 0

)]∥∥∥∥
A

. (2.13)

On the other hand, a short calculation reveals that

ℜ2
A

[
eiθ
(

P Q
0 0

)]
+ ℑ2

A

[
eiθ
(

P Q
0 0

)]

=
(

ℜ2
A(eiθP ) + ℑ2

A(eiθP ) 0
0 0

)
+
(

0 P ♯A Q
2

Q♯A P
2 0

)
+
(

QQ♯A

2 0
0 Q♯A Q

2

)
.

Hence, by taking into consideration (2.13) and then applying the triangle inequality to-
gether with Lemma 2.2 and (1.14) we see that∥∥∥∥ℜA

[
eiθ
(

P Q
0 0

)]∥∥∥∥2

A

≤
∥∥∥ℜ2

A(eiθP ) + ℑ2
A(eiθP )

∥∥∥
A

+ 1
2

max{∥P ♯AQ∥A, ∥Q♯AP∥A} + 1
2

∥Q∥2
A

≤ 2ω2
A(P ) + 1

2

(
max{∥P ♯AQ∥A, ∥Q♯AP∥A} + ∥Q∥2

A

)
, (2.14)
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where the last inequality holds by applying (1.4) and (1.8). On the other hand, since
P
R(A)A = AP

R(A) = A, then by applying (1.3), we see that

∥P ♯AQ∥A = ∥Q♯AP
R(A)PP

R(A)∥A

= sup
{

|⟨AP
R(A)x, (Q♯AP

R(A)P )♯Ay⟩| ; x, y ∈ H, ∥x∥A = ∥y∥A = 1
}

= sup
{

|⟨Q♯AP
R(A)Px, y⟩A| ; x, y ∈ H, ∥x∥A = ∥y∥A = 1

}
= sup

{
|⟨AP

R(A)Px, Qy⟩| ; x, y ∈ H, ∥x∥A = ∥y∥A = 1
}

= sup
{

|⟨Q♯APx, y⟩A| ; x, y ∈ H, ∥x∥A = ∥y∥A = 1
}

= ∥Q♯AP∥A. (2.15)

So, by taking into account (2.14), it follows that∥∥∥∥ℜA

[
eiθ
(

P Q
0 0

)]∥∥∥∥2

A
≤ 2ω2

A(P ) + 1
2

(
∥P ♯AQ∥A + ∥Q∥2

A

)
,

for every θ ∈ R. So, by taking the supremum over all θ ∈ R in the above inequality we
obtain (2.12) as required. Finally, by using an argument similar to that used in proof of
Theorem 2.5, we get the desired inequality. �

Our next result reads as follows.

Theorem 2.13. Let T =
(

P Q
R S

)
be such that P, Q, R, S ∈ BA(H). Then,

ωA(T) ≤ min{µ, ν},

where

µ =
√

min{∥P + Q∥2
A, ∥P − Q∥2

A} + 2ωA(PQ♯A)

+
√

min{∥R + S∥2
A, ∥R − S∥2

A} + 2ωA(SR♯A),

and

ν =
√

min{∥P + R∥2
A, ∥P − R∥2

A} + 2ωA(P ♯AR)

+
√

min{∥Q + S∥2
A, ∥Q − S∥2

A} + 2ωA(S♯AQ).

Proof. By using (1.5) together with (1.14) and Lemma 2.2 we see that

ωA

[(
P Q
0 0

)]
≤
∥∥∥∥(P Q

0 0

)∥∥∥∥
A

=

√√√√∥∥∥∥∥
(

P Q
0 0

)(
P Q
0 0

)♯A
∥∥∥∥∥
A

=

√√√√∥∥∥∥∥
(

P Q
0 0

)(
P ♯A 0
Q♯A 0

)∥∥∥∥∥
A

=
√∥∥∥∥(PP ♯A + QQ♯A 0

0 0

)∥∥∥∥
A

=
√

∥PP ♯A + QQ♯A∥A. (2.16)

Moreover, it is not difficult to verify that

PP ♯A + QQ♯A = (P ± Q)(P ± Q)♯A ∓ (PQ♯A + QP ♯A).
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So, since PP ♯A + QQ♯A ≥A 0, it follows from (1.13) that

∥PP ♯A + QQ♯A∥A = ωA(PP ♯A + QQ♯A)

= ωA

(
(P ± Q)(P ± Q)♯A ∓ (PQ♯A + QP ♯A)

)
≤ ωA

(
(P ± Q)(P ± Q)♯A

)
+ ωA(PQ♯A) + ωA(QP ♯A)

= ∥P ± Q∥2
A + ωA(PQ♯A) + ωA(QP ♯A),

where the last equality follows by using (1.13) together with (1.14) since the operator
(P ± Q)(P ± Q)♯A is A-positive. Further, one observes that

ωA(PQ♯A) = ωA

(
(Q♯A)♯AP ♯A

)
= ωA(P

R(A)QP
R(A)P

♯A) = ωA(P
R(A)QP ♯A).

This yields that ωA(PQ♯A) = ωA(QP ♯A) since P
R(A)A = AP

R(A) = A. Thus, we get

∥PP ♯A + QQ♯A∥A ≤ ∥P ± Q∥2
A + 2ωA(PQ♯A),

which, in turn, implies that

∥PP ♯A + QQ♯A∥A ≤ min
(

∥P + Q∥2
A , ∥P − Q∥2

A

)
+ 2ωA(PQ♯A). (2.17)

So, a combination of (2.16) together with (2.17) gives

ωA

[(
P Q
0 0

)]
≤
√

min
(

∥P + Q∥2
A , ∥P − Q∥2

A

)
+ 2ωA(PQ♯A). (2.18)

By considering the A-unitary operator U =
(

0 I
I 0

)
, we see that

ωA

[(
P Q
R S

)]
≤ ωA

[(
P Q
0 0

)]
+ ωA

[(
0 0
R S

)]
= ωA

[(
P Q
0 0

)]
+ ωA

[
U♯A

(
S R
0 0

)
U
]

= ωA

[(
P Q
0 0

)]
+ ωA

[(
S R
0 0

)]
(by (1.7))

≤ min
(

∥P + Q∥2
A , ∥P − Q∥2

A

)
+ 2ωA(PQ♯A)

+ min
(

∥R + S∥2
A , ∥R − S∥2

A

)
+ 2ωA(SR♯A).

By observing that ωA

[(
P Q
R S

)]
= ωA

[(
P ♯A R♯A

Q♯A S♯A

)]
and using similar arguments as

above we get

ωA

[(
P Q
R S

)]
= ωA

[(
P ♯A R♯A

Q♯A S♯A

)]

≤ min
( ∥∥∥P ♯A + R♯A

∥∥∥2

A
,
∥∥∥P ♯A − R♯A

∥∥∥2

A

)
+ 2ωA(P ♯A(R♯A)♯A)

+ min
( ∥∥∥Q♯A + S♯A

∥∥∥2

A
,
∥∥∥Q♯A − S♯A

∥∥∥2

A

)
+ 2ωA(S♯A(Q♯A)♯A)

= min
(

∥P + R∥2
A , ∥P − R∥2

A

)
+ 2ωA(R♯AP )

+ min
(

∥Q + S∥2
A , ∥Q − S∥2

A

)
+ 2ωA(Q♯AS).
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Hence, the proof is complete since ωA(R♯AP ) = ωA(P ♯AR) and ωA(Q♯AS) = ωA(S♯AQ).
�

In order to prove a lower bound for ωA

[(
P Q
0 0

)]
, we need the following lemmas.

Lemma 2.14. Let T, S ∈ BA(H). Then

max
{

∥T + S∥2
A , ∥T − S∥2

A

}
− ∥TT ♯A + SS♯A∥A ≤ 2ωA

(
TS♯A

)
. (2.19)

Proof. Let x ∈ H be such that ∥x∥A = 1. If ℜ(z) denotes the real part of the complex
number z, then we see that∥∥∥T ♯Ax + S♯Ax

∥∥∥2

A
=
∥∥∥T ♯Ax

∥∥∥2

A
+ 2ℜ

(⟨
S♯Ax, T ♯Ax

⟩
A

)
+
∥∥∥S♯Ax

∥∥∥2

A

≤
⟨(

TT ♯A + SS♯A

)
x, x

⟩
A

+ 2
∣∣∣⟨TS♯Ax, x

⟩
A

∣∣∣
≤ ωA

(
TT ♯A + SS♯A

)
+ 2ωA

(
TS♯A

)
=
∥∥∥TT ♯A + SS♯A

∥∥∥
A

+ 2ωA

(
TS♯A

)
,

where the last equality follows from (1.13) since TT ♯A + SS♯A ≥A 0. So, by taking the
supremum over all x ∈ H with ∥x∥A = 1 in the above inequality and then using the fact
that ∥X∥A = ∥X♯A∥A for all X ∈ BA(H), we get

∥T + S∥2
A ≤

∥∥∥TT ♯A + SS♯A

∥∥∥
A

+ 2ωA

(
TS♯A

)
.

Similarly, we prove that

∥T − S∥2
A ≤

∥∥∥TT ♯A + SS♯A

∥∥∥
A

+ 2ωA

(
TS♯A

)
.

Hence, we obtain the desired inequality (2.19). �
Lemma 2.15. Let T, S ∈ B(H). Then, the following assertions hold

(1) If T ≥A 0 and S ≥A 0, then
∥T − S∥A ≤ max{∥T∥A, ∥S∥A}. (2.20)

(2) If T, S ∈ BA(H), then

2∥T ♯AS∥A ≤ ∥TT ♯A + SS♯A∥A. (2.21)

Proof. (1) Let Q = T − S. It is not difficult to check that
∥T∥AI ≥A T ≥A Q and ∥S∥AI ≥A S ≥A −Q.

This implies, by Lemma 2.10, that ∥Q∥A ≤ ∥T∥A and ∥Q∥A ≤ ∥S∥A. This proves the
desired property.

(2) Let T =
(

T S
0 0

)
. In view of (1.15) we see that

TT♯A =
(

TT ♯A + SS♯A 0
0 0

)
and T♯AT =

(
T ♯AT T ♯AS
S♯AT S♯AS

)
.

Let U =
(

I 0
0 −I

)
. By using (1.15), one gets U♯A =

(
P
R(A) 0
0 −P

R(A)

)
. So, we verify that

∥Ux∥A = ∥U♯Ax∥A = ∥x∥A for all x = (x1, x2) ∈ H ⊕ H. Hence, U is A-unitary operator.
Moreover, clearly we have (U♯A)♯A = U♯A . In addition, a short calculation shows that

(T♯AT)♯A − U♯A(T♯AT)♯AU♯A =
(

0 2(S♯AT )♯A

2(T ♯AS)♯A 0

)
.
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By (2.15), we have ∥T ♯AS∥A = ∥S♯AT∥A. So, by applying Lemma 2.2 and then using
(2.20) we get

2∥T ♯AS∥A =
∥∥∥(T♯AT)♯A − U♯A(T♯AT)♯AU♯A

∥∥∥
A

≤ max
{∥∥∥(T♯AT)♯A

∥∥∥
A

,
∥∥∥U♯A(T♯AT)♯AU♯A

∥∥∥
A

}
= max

{∥∥∥T♯AT
∥∥∥
A

,
∥∥∥U(T♯AT)U

∥∥∥
A

}
(by (1.14))

≤
∥∥∥T♯AT

∥∥∥
A

(since ∥U∥A = 1)

=
∥∥∥TT♯A

∥∥∥
A

= ∥TT ♯A + SS♯A∥A,

where the last equality follows from (2.15) and Lemma 2.2. Hence, we prove the desired
result. �
Lemma 2.16. Let T, S ∈ BA(H). Then,

max
{

∥T + S∥2
A, ∥T − S∥2

A

}
≥
∣∣ ∥T + S∥2

A − ∥T − S∥2
A

∣∣
2

+ max
{

∥T 2 + S2∥A, ∥T ♯AT + S♯AS∥A, ∥TT ♯A + SS♯A∥A

}
.

Proof. Notice that for any two real numbers x and y we have

max{x, y} = 1
2

(
x + y + |x − y|

)
. (2.22)

Now, by using (1.14) together with (2.22) we see that

max
{

∥T + S∥2
A, ∥T − S∥2

A

}
= 1

2

(
∥T + S∥2

A + ∥T − S∥2
A +

∣∣ ∥T + S∥2
A − ∥T − S∥2

A

∣∣)
= 1

2

(∥∥∥(T ♯A + S♯A)(T + S)
∥∥∥

A
+ ∥(T ♯A − S♯A)(T − S)∥A +

∣∣ ∥T + S∥2
A − ∥T − S∥2

A

∣∣)
≥ 1

2

(∥∥∥(T ♯A + S♯A)(T + S) + (T ♯A − S♯A)(T − S)
∥∥∥

A
+
∣∣ ∥T + S∥2

A − ∥T − S∥2
A

∣∣)

=
∥∥∥T ♯AT + S♯AS

∥∥∥
A

+

∣∣∣ ∥T + S∥2
A − ∥T − S∥2

A

∣∣∣
2

. (2.23)

By replacing T and S by T ♯A and S♯A , respectively, in (2.23) and then using the fact that
∥X∥A = ∥X♯A∥A for every X ∈ BA(H) we get

max
{

∥T + S∥2
A, ∥T − S∥2

A

}
≥
∥∥∥TT ♯A + SS♯A

∥∥∥
A

+

∣∣∣ ∥T + S∥2
A − ∥T − S∥2

A

∣∣∣
2

.

On the other hand, by (2.22) one has

max
{

∥T + S∥2
A, ∥T − S∥2

A

}
= 1

2

(
∥T + S∥2

A + ∥T − S∥2
A +

∣∣ ∥T + S∥2
A − ∥T − S∥2

A

∣∣)
≥ 1

2

(∥∥∥(T + S)2 + (T − S)2
∥∥∥

A
+
∣∣ ∥T + S∥2

A − ∥T − S∥2
A

∣∣)

=
∥∥∥T 2 + S2

∥∥∥
A

+

∣∣∣ ∥T + S∥2
A − ∥T − S∥2

A

∣∣∣
2

.

So, the proof of the lemma is complete. �
Now we are ready to prove the following theorem.
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Theorem 2.17. Let P, Q ∈ BA(H). Then,

ωA

[(
P Q
0 0

)]
≥ 1

2

√
max

(
∥P + Q∥2

A , ∥P − Q∥2
A

)
− 2ωA(PQ♯A). (2.24)

Proof. We first prove that

max
(

∥P + Q∥2
A , ∥P − Q∥2

A

)
− 2ωA(PQ♯A) ≥ 0. (2.25)

By applying (2.21) together with the second inequality in (1.5), one observes

2ωA(PQ♯A) ≤ 2∥PQ♯A∥A ≤
∥∥∥Q♯A(Q♯A)♯A + P ♯A(P ♯A)♯A

∥∥∥
A

=
∥∥∥P ♯AP + Q♯AQ

∥∥∥
A

.

This implies, through Lemma 2.16, that

max
(

∥P + Q∥2
A , ∥P − Q∥2

A

)
≥
∥∥∥P ♯AP + Q♯AQ

∥∥∥
A

+
∣∣ ∥P + Q∥2

A − ∥P − Q∥2
A

∣∣
2

≥ 2ωA(PQ♯A) +
∣∣ ∥P + Q∥2

A − ∥P − Q∥2
A

∣∣
2

.

Hence, (2.25) holds. Now, by using the first inequality in (1.5) we get

ω2
A

[(
P Q
0 0

)]
≥ 1

4

∥∥∥∥(P Q
0 0

)∥∥∥∥2

A

= 1
4

∥∥∥∥∥
(

P Q
0 0

)(
P ♯A 0
Q♯A 0

)∥∥∥∥∥
A

(by (1.14))

= 1
4

∥∥∥∥(PP ♯A + QQ♯A 0
0 0

)∥∥∥∥
A

= 1
4

∥PP ♯A + QQ♯A∥A (by Lemma 2.2)

≥ 1
4

(
max

{
∥P + Q∥2

A , ∥P − Q∥2
A

}
− 2ωA

(
PQ♯A

))
,

where the last inequality follows from Lemma 2.14. This finishes the proof of the theorem.
�

The following corollary is an immediate consequence of Theorem 2.17 and (2.18).

Corollary 2.18. Let P, Q ∈ BA(H) be such that APQ♯A = 0. Then,
1
2

max
(

∥P + Q∥A , ∥P − Q∥A

)
≤ ωA

[(
P Q
0 0

)]
≤ min

(
∥P + Q∥A , ∥P − Q∥A

)
.

In particular, if Q = 0 we get
1
2

∥P∥A ≤ ωA(P ) ≤ ∥P∥A.
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