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Abstract

For a given bounded positive (semidefinite) linear operator A on a complex Hilbert space
(H, (-,-)), we consider the semi-Hilbertian space (H, (-,-)a) where (z,y), := (Ax,y) for
every x,y € H. The A-numerical radius of an A-bounded operator T' on H is given by

wa(T) = sup{|<Ta:,:U>A|; re I, (x,x), = 1}.

Our aim in this paper is to derive several A-numerical radius inequalities for 2 x 2 operator
matrices whose entries are A-bounded operators, where A = diag(A, A).
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1. Introduction and preliminaries

Let H be a complex Hilbert space with inner product (-,-) and associated norm || - ||.
Let B(H) stand for the C*-algebra of all bounded linear operators on H. The symbol I
denotes the identity operator on H. Let B(H)™ be the cone of all positive (semi-definite)
operators in B(H), i.e.,

B(H)" ={AeB(X); (Av,z) >0, Vo € H}.

In all what follows, by an operator we mean a bounded linear operator. Moreover, for
T € B(H), we denote by N(T') and R(T') the kernel and the range of T, respectively.
Furthermore, T™ is the adjoint of T'. For a given linear subspace M of H, its closure in the
norm topology of 3 will be denoted by M. In addition, let Ps stand for the orthogonal
projection onto a closed subspace 8§ of H.

Let A € B(K)". Then, A induces the following semi-inner product

(VA HXxH—C, (z,y) — (x,y)a := (Az,y) = <A1/2x,A1/2y)_

Here A'/2 stands for the square root of A. The seminorm induced by (-,-) 4 is given by
||| 4 = [|AY22]|| for all € H. One can verify that || - || 4 is a norm if and only if A is one-

to-one, and that the seminormed space (I, || - || 4) is complete if and only if R(A) = R(A).
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The semi-inner product (-, -) 4 induces on the quotient H/N(A) an inner product which is
not complete unless R(A) is closed. However, a canonical construction due to de Branges
and Rovnyak [10] (see also [15]) shows that the completion of H/N(A) is isometrically
isomorphic to the Hilbert space R(A/?) endowed with the following inner product
<A1/2$,A1/2y>R(A1/2) = <PM.Z',Pmy>, Vl’,y e H. (11)
For the sequel, the Hilbert space (R(AY2), (., ->R(A1/2)) will be denoted by R(AY?). It is
worth noting that R(A) is dense in R(AY?) (see [3]). For an account of results related to

the Hilbert space R(A'/?), the reader is invited to consult [3] and the references therein.
By using (1.1), it can be checked that

(Az, Ay)garrzy = (T, y) 4, Va,y €I (1.2)

Let T € B(H). An operator S € B(H) is said to be an A-adjoint of 7' if for all z,y € K,
the identity (T'z,y)a = (x, Sy)4 holds (see [1]). So, the existence of an A-adjoint of T is
equivalent to the existence of a solution of the equation AX = T*A. Notice that this kind
of equations can be investigated by using a well-known theorem due to Douglas [11] which
briefly says that the operator equation T'X = S has a bounded linear solution X if and
only if R(S) C R(T') which, in turn, equivalent to the existence of a positive number A such
that ||S*z|| < M|T*z|| for all z € H. Furthermore, among its many solutions it has only
one, denoted by @, which satisfies R(Q) C R(T*). Such Q is called the Douglas solution
or the reduced solution of the equation TX = §. Clearly, the existence of an A-adjoint
operator is not guaranteed. If we denote by B4 () the subspace of all operators admitting
A-adjoints, then by Douglas theorem, we have

BA(H) = {T € B(); R(T*A) C R(A)}.

If T € Ba(H), the reduced solution of the equation AX = T*A is a distinguished A-
adjoint operator of T, which is denoted by T#4. Note that, T4 = A'T*A in which A' is
the Moore-Penrose inverse of A (see [2]). Notice that if T € B (), then T#4 € B4(H),

(TFa)ta = Py Preay and ((T#4)fa)8a = T. Moreover, if S € B4(H) then T'S € B4(H)

and (T'S)f4 = S¥aT%4, For results concerning T%4, we refer the reader to [1,2]. An operator
U € B4(H) is called A-unitary if ||Uz|a = |U42||4 = |||/ 4 for all z € I.

An operator T is called A-bounded if there exists A > 0 such that [|Tz|4 < A||z|la, V& €
H. An application of Douglas theorem shows that the subspace of all operators admitting
AY/ 2_adjoints, denoted by B 41/2(3), is equal the collection of all A-bounded operators,
ie.,

Byu/2(H) = {T € BH); IA > 0; [|Talla < Aalla, Vo € 3}

Notice that B4(H) and B 41/2(H) are two subalgebras of B(J3() which are, in general,
neither closed nor dense in B(J). Moreover, we have B4(H) C B 41/2(H) (see [1,3]).
Clearly, (-,-)4 induces a seminorm on B 41,2(H). Indeed, if ' € B 41/2(H), then it holds
that

Tx|la
Thai= sup LA o (70l 2 € 3¢, o], = 1) < .
z€R(A), ] 4
x#0
Notice that it was proved in [12] that for T' € B 41/2(H) we have
T[4 =sup{[{(Tz,y)al; z,y € I, [[z]|la = [lylla=1}. (1.3)

An important observation is that for every T',.S € B 41/2(3(), we have

ITS][a < [T allS]a- (1.4)
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Furthermore, the A-numerical radius of an operator T € B(H) was firstly defined by Saddi
in [20] as

wa(T) = sup{[(Tx,z)a|; z € I, [lzfla =1} .

It should be emphasized that it may happen that ||T|| , and wa(T) are equal to +oo for
some T' € B(FH) \ B 41/2(3) (see [13]). However, these quantities are equivalent seminorms
on B 412 (). More precisely, it was shown in [6] that for every T' € B 41/2(HH), we have

1
SITNa < wa(T) < [IT|a- (1.5)
Notice that if T' € B 41/2(3) and satisfies AT? = 0, then by [13, Corollary 2] we have
1
wa(D) = 1Tl (16)

In addition, the A-numerical radius of semi-Hilbertian space operators satisfies the weak
A-unitary invariance property which asserts that

wA(UPTU) = wa(T), (1.7)
for every A-unitary operator U € B4(H) and T € B 41,2 () (see [5, Lemma 3.8]). For the
sequel, for any arbitrary operator T' € B4 (H), we denote

T + Tta T — Tta
- +T and %A(T) = 27
(3

For simplicity, we will write % (7) and 3% (T) instead of [Ra(T)]? and [S4(T))?, respec-
tively. Also, w?(T) means [wa(T)]?. It has been proved in [23] that for T € B4(H), it
holds

Ra(T) :

wa(T) = supH?RA(ewT)H = supH%A(eiaT)H .

0ER A geR A

Let T € B(J(). Then, it was shown in [3, Proposition 3.6.] that 7" € B 41,2 () if and only
if there exists a unique T' € B(R(A'/2)) such that Z,T = TZ4. Here, Z4 : H — R(AY?)
is defined by Z o = Ax. It has been shown in [3,13] that for every T' € B 41/2(H) we have

(1.8)

ITNa = 1T 5@gearzy and  wa(T) = w(T). (1.9)
Recently, the concept of the A-spectral radius of A-bounded operators has been intro-
duced by the present author in [13] as follows:
1 1
PA(T) = int T3 = Jim (1773 (1.10)

We note here that the second equality in (1.10) is also proved in [13, Theorem 1]. Moreover,
like the classical spectral radius of Hilbert space operators, it was shown in [13] that r4(+)
satisfies the commutativity property, which asserts that

ra(T'S) = ra(sT), (1.11)

for all T,S € B 41/2(3). In addition, the following relation between A-spectral and A-
numerical radii of A-bounded operators is also proved in [13]:

rA(T) < wa(T), VT €B (). (1.12)

An operator T' € B(H) is said to be A-selfadjoint if AT is selfadjoint, that is, AT = T™*A.
Moreover, it was shown in [13] that if T is A-self-adjoint, then

T[4 = wa(T) = ra(T). (1.13)
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In addition, an operator T is called A-positive if AT > 0 and we write T' >4 0. Obviously,
an A-positive operator is always A-selfadjoint since H is a complex Hilbert space. Clearly,
if T € Ba(H) then TT* >4 0, T*AT >4 0 and

IT*AT |4 = ITT* |4 = | TI% = 1T (1%, (1.14)

If T,S € B(H) and satisfies T'— S >4 0, then we will write 7' >4 S. For the sequel,
if A =1 then ||T||, 7(T) and w(T") denote respectively the classical operator norm, the
spectral radius and the numerical radius of an operator 7'. In recent years, several results
covering some classes of operators on a complex Hilbert space (3, (-,-)) were extended
to (H,(-,-)4). Of course, the extension is not trivial since many difficulties arise. For
instance, as it is mentioned above, it may happen that ||T||, = oo for some T' € B(H).
Moreover, not any operator admits an adjoint operator for the semi-inner product (-, -) 4.
In addition, for T € B4(3) we have (T#4)% = P—~TP——. So, in general (T%4)f1 £ T

R(A)” 7 R(A)
The reader is invited to see [5-7,14-16,18,22,23] and the references therein.
In this paper, we consider the 2 x 2 operator diagonal matrix A = <61 El) Clearly,

A eB(H e H)"™. So, A induces the following semi-inner product

(z,y)a = (Az,y) = (z1,y1) 4 + (T2, Y2) 4,

for all z = (z1,22),y = (y1,42) € H & H. Notice that if Tj; are operators in B4(H) for
all 4,7 € {1,2}. Then, it was shown in [5, Lemma 3.1] that the 2 x 2 operator matrix

(T;)2x2 € Ba(H @ H) and
(Tn Tm)ﬁA - (g (1.15)
By o) \TH 1) |

Very recently, several inequalities for the A-numerical radius of 2 x 2 operator matrices
have been established by Bhunia et al. (see [8]). This paper is devoted also to prove
several new A-numerical radius inequalities of certain 2 x 2 operator matrices. Some of
the obtained results cover and extend the following works [9, 19, 21].

2. Results

In this section, we present our results. Throughout this section A is denoted to be the
2 x 2 operator diagonal matrix whose each diagonal entry is the positive operator A. To
prove our two next results, the following lemma concerning A-numerical radius inequalities
is required. Notice that the first assertion is proved in [8] for operators in B4 ().

Lemma 2.1. Let P,Q, R, S € B 41/2(H). Then, the following assertions hold:

@ wn |(§ o) | = maxwa(P)wa)).
(b) wa <§ =z 9]
ouflb ON=l(E 9

Proof. (a) Follows by proceeding as in the proof of [8, Lemma 2.4.].

(b) Clearly we have

PO\ 1/P Q| 1/P —Q
(o S>_2(R S>+2<—R S>' (2.1)
—7 0 — P 0
— i fa — R(A) - A —
Let U ( 0 I> . In view of (1.15) we have U ( 0 P_’R(A)> . So, since PR(A)A
APs— = A, then it can be verified that ||Uz|[y = ||[Uf 2|5 = ||z||s for all z = (21,29) €

R(A)
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H @ H. Hence, U is A-unitary. Thus, by (1.7) we have

(n §)] = (& )]

PP —Pyp
— ( R(A) rJz(A)Q)]

\~Pry® Preayd
[ (P— 0 _
I R(A)) N
p
- |(Cr S
where the last equality follows from the definition of wa(-) together with the fact that
Prr RA )A AP:R( o= = A. So, by taking into consideration (2.1) and the triangle inequality

we prove the desired result.

(_RP —QS>] = wp {(_PR _SQ)} , then by the proof of the assertion (a) we

(5] =[5 )]

Moreover, by using the fact that

(593693 %)

and the subadditivity of the A-numerical radius wy(+), we get the required result. (|

(b) Since wy
deduce that

Also, we need the following lemma.

Lemma 2.2 ([16]). Let T, S € B 41/2(H). Then,

G o)l =1 s,

Now, we are in a position to prove our first result in this paper.

= max{||T|4, || S][a}-

Theorem 2.3. Let T = (P Q) be such that P,Q, R, S € B 41/2(3). Then,

R S
P
M < wa KR g)} < o, (2.2)
where
0 @
A1 = max R 0 ,max{wa(P),wa(S)}
and R
Ay = HQHA;”HA + max {wa(P),wa(S)}.
Proof. Clearly we have
P Q\Y_(P O 0 Q 0 0
(R S) = <0 S) + (0 0) + <R 0)' (2:3)
L . 0 Q\° (00
On the other hand, it is not difficult to see that A 0 o) =\lo o and

2
A (0 O) = (0 0). So, by (1.6) and Lemma 2.2 we have

R 0 0 0
[0 91-216E 9, -
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Similarly, we have wy Kg 8)} = Z||R||a. So, by using the trivial observation (2.3) and

the subadditivity of the A-numerical radius wa (-) together with Lemma 2.1 (a), we get

(Z g)] < max{wa(P),wa(S)} + W. (2.4)

Furthermore, by Lemmas 2.1 and 2.2 we have

WA

o |( §)]zmqen(r 5)] e [0 9)))
—max{wy | §)] maxfun(P)wa(s)}. (2.5)
By combining (2.4) together with (2.5), we reach the desired result. O

In order to prove our next result, we need the following lemma.

Lemma 2.4. Let T, S € B(H) be two A-positive operators. Then,

(5 0)] =57+l 26)

Proof. Since T and S are A-positive, then 7,5 € B 1/2(H). So, by [3, Proposition
3.6.] there exist two unique operators T',S € B(R(A'?)) such that Z,T = TZ, and
ZAS = 87Z4. Moreover, since T' > 4 0, then for all z € H we have

(ATz,z) > 0.

WA

This implies, through (1.2), that
(Tz,2)a = (ATz, Az) g (41/2) = <foan>R(A1/2) >0
for all z € 3. Further, by using the density of R(A) in R(A'?), we obtain
(TAY?2, AVPa)g g12) 2 0, Vo € H.

So, T is a positive operator on the Hilbert space R(A'/2). Similarly, we prove that S > 0.
Therefore, in view of [4, Corollary 3] we have

[ D] 3 Sl = T Sy 2

e~

where the last equality follows since T+ S = T + S (see [15]). Moreover, by [5, Lemma
3.2], we have (g g) € Byi2(HdH) and

0o 7\ (0 T
s 0) \§ o)
This proves the desired result by applying (2.7) together with (1.9). O

We are now in a position to state the following theorem.

Theorem 2.5. Let T = (Z g) be such that P,Q,R,S € BAo(H). Then,

wa(T) < 5 (wa(P) +wal(@)) + %(HI + PP# 4+ QQH L4 + |1 + RE* + S84 4).

DN | =
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Proof. We first prove that

1 1
wn(8) < Gwa(P) + 7T+ PP + QQ™ |4, (2:8)

where S = (g %) Let 6 € R. Tt is not difficult to verify that R, (e¥S) is an A-self-

adjoint operator. So, by (1.13) we have
0 _ 10
ra (Ra(’S)) = R (c”S)] -
Now, by using (1.15), we see that

, 1 . .
TA [%A(ewg)} = §T’A(6198 + e_legm)

1 [w(P @ _io (P™ 0
_§TA e <0 0>+e (QM 0

1 [[efP + ei0pia e?Q
€7i0QﬁA 0

1 [{Pta T\ fe=?T 0
“2\em o (P Q)'

Moreover, an application of (1.11) gives

{?RA( 198)} %m l(eﬁ[ g) (ggj ei‘j[)]

e~ pia I
3"\ ppta L QQta P |

Further, by applying (1.12), we get

1 —ZGPﬁA I
2 PPia QQﬁA e p

< %OJA [( e P ¢ p) (PPﬁA iQQﬁA éﬂ

1
= §w,4 fHI + PP* + QQ* |4 (by Lemmas 2.1 and 2.4).

TA [%A(eieS)}

| /\

1
—W
2A

Hence, we obtain

1 1
IRa(e*S)l1s < 5wa(P) + 7IIT + PP + Q@i 4,

for every 6 € R. So, by taking the supremum over all # € R and then applying (1.8) we ob-

0 Py
tain (2.8) as required. Let U = 01 . In view of (1.15) we have Ut = RA) )
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Further, it can be seen that U is A-unitary operator. So, by using (1.7) we get
O\ /0 0

+ wa \r s

[, (OO
) +uy |0 (R S) U}
I (AT

I 0 P@ 0 O

> R

ren (o )]

wa(T) < wa

[
|
(

o’*uo

O"U
oL o

:WA

(P

Finally, by applying (2.8) we obtain

1 1 1 1
wa(T) < Gwa(P) + I + PP + QQM 4 + swa(S) + 4|1 + S5* + RR| 4
1 1
= 5 (wa(P) +wa(9) + 7 (IPPH# + Q@ L4 + || RR# + S84
This finishes the proof of the theorem. O

The following lemma is useful in proving our next result.

T T2

Lemma 2.6 ([17]). Let T = <T21 15

Then, T € Byi/2(H & H) and

Tilla [Tiolla
T) < 1711
ra(T) <r [(HTmHA | Toalla

) be such that T;j € B 41/2(H) for alli,j € {1,2}.

Theorem 2.7. Let T = (Z g) be such that P,Q,R,S € Bs(H). Then,

1
an(@ < 5 (IPLa+ 18]+ IPP# + Q@+ VIRRA + 551) . (29)

Proof. We first prove that

on(®) < 5 (IPILa+ V1PPE + Q@) (210)

where S = <]g %) Let 8 € R. By proceeding as in the proof of Theorem 2.5 and then

using Lemma 2.6 we see that

IRa(e”S) 14 = ra [Ra(c”S)]

1 e~ pia I
3"\ PPta £ Q4 P

= %’“ KHPPM TCSQ“\A HPl\Aﬂ
= 5 1P+ 1P T Q@A )

This immediately proves (2.10) by applying (1.8). Using an argument similar to that used
in proof of Theorem 2.5, we get the desired result. (|

Before proving our next theorem we have to state the following lemma.
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Lemma 2.8 ([7, Theorem 5.1]). Let T' € B(H) be an A-selfadjoint operator. Then, for
any positive integer n we have

1T |4 = [ITI’3-

Theorem 2.9. Let T = (]]; g) be such that P,Q,R,S € BA(H). Then,

on(T) < [SAP) + 51QLs (40P + 3101 + [0+ SRl (sa(5) + S1RL)

Proof. Let S = (5 g) . We first prove that

on®) < AP + 1l (a(P) + H1L) (2.11)

Let 6 € R. A straightforward calculation shows that

oy _ [Ra(eP) $ePQ
Ra(eS) = (%6_i9QﬁA 0

(RA(ePP) 0 + 0 %er
N 0 0 se Qi 0 )
This implies that

ingy _ (Ra(e”P) 0 (1QQ% 0
%X(e QS) = ( A 0 0> + <4 0 iQﬁAQ)

0 e {?RA(GWP)} Q
* (%e_wQﬁA [%A(eieP)] 2 0 ) .

Thus, by using the triangle inequality together with Lemma 2.2, (1.4) and (1.14) we see
that

[RE(ES)I], < IR PYE + 7 1QI% + IR P)AIQIA
1 1
< WA(P) + 71QI3 + Jwa(P)IQlLa,

where the last inequality follows from (1.8). Since R (e’S) is A-selfadjoint, then an
application of Lemma 2.8 gives

. 1
IRa(e“S) I < A (P) + *IIQHA+ 2wA(P)Qlla,

for every 8 € R. Taking the supremum over all # € R in the above inequality and then
using (1.8) yields that

1
Wi (S) < wi(P) *HQHA"‘ Fwa(P)l@] 4.

This proves (2.11). Using an argument similar to that used in proof of Theorem 2.5, we
get the desired result. O

Next we state the following useful lemmas related to A-selfadjoint operators.
Lemma 2.10. Let T, S € B(H) be two A-selfadjoint operators. If T — S >4 0, then
T4 > S]a-
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Proof. Since T'— S >4 0, then ((T' — S)z,x)4 > 0 for all x € H. This gives
(Tz,z)s > (Sz,x)a, YaeH.

So, by taking the supremum over all z € H with |z]|4 = 1 in the above inequality and
then using (1.13) we obtain the desired result. O

Lemma 2.11 ([14]). Let T € B(H) be an A-selfadjoint operator. Then, T*™ >4 0 for
any positive integer n.

We are now in a position to prove the following theorem.

Theorem 2.12. Let T = (g g) be such that P,Q,R,S € BAo(H). Then,

1 1
(1) < \f24(P) + (PG + [QIZ) +1/25(5) + 1 (IS0 RLa + |RI).

Proof. We first prove that

wn |5 D] = y2m0P) + 5 (1P QUL+ 1@I2). (212
(0 G z

Let 6 € R. By using (1.15), it can be verified that

Ra [eié) (Ig %2)] _ (gze;_(gizﬁz %€;9Q>

0 (1; %2)]:1. (fﬁﬁﬁiég& ;e;ecz)
“(; %)

2 |0 (P Q a2 o (P Q\] g2 |0 (P Q 00
%A{e (0 o) TSa o o) "Rl (o 0)] 2200 o)
Hence, it follows from Lemma 2.10 that
w (P Q 2 [ o (P Q 2 o (P Q
e ( 0 0 Ry e 0o o)l TSalE" (o o
This in turn implies, through Lemma 2.8, that
o (P Q o | i (P Q 2 | (P Q
’%A [e ( 0 0 Ry e 0o ol TSale" (o o
On the other hand, a short calculation reveals that
2 [ o (P Q 2 o (P Q
%A |:6 (0 0 + SA € 0 0

_(RAEP) 94 (7P) 0y, (0 ERR) (98 o
- 0 0 QAP 0 0 QA |-
2 2

and

Moreover, by Lemma 2.11, %i 00

> (0 O). So, we have

R

S ‘
A

A

2
< ’ (2.13)
A

A

Hence, by taking into consideration (2.13) and then applying the triangle inequality to-
gether with Lemma 2.2 and (1.14) we see that

e o )

. . 1 1
< [Ri(eP) + S P) | | + 5 max{|P4Qll, Q" Plla} + S lIQIA

Ra

A

1
< 2A(P) + 5 (max{|[PQ)la. Q¥ Plla} + |QII%) . (2.14)
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where the last inequality holds by applying (1.4) and (1.8). On the other hand, since
P@A - Apﬁ = A, then by applying (1.3), we see that

| P4Qlla = [ Q% Parz P P L

(AP <@H@Am“>Maye%wmA:mm:1}
= sup{|< PreyPe.y)als @,y € 3, Jlalla = llylla =1}

= sup { (AP P2, Qu) 5w,y € 3, [lalla = ylla =1}

= sup {|{Q* P, y)al5 vy € H, llalla = lylla = 1}

= |Q* P 4. (2.15)

So, by taking into account (2.14), it follows that
2

[ 9,

for every 6 € R. So, by taking the supremum over all § € R in the above inequality we
obtain (2.12) as required. Finally, by using an argument similar to that used in proof of
Theorem 2.5, we get the desired inequality. O

-~

1
<25(P)+ 5 (IPQlla +1QI%)

Our next result reads as follows.

Theorem 2.13. Let T = (g g) be such that P,Q,R,S € BA(H). Then,

wa(T) < min{p, v},

where

p=min{[[P+ Q|3 |P — QI%} + 2wa(PQa)
+y/min{ | R+ S|1%, IR — S|2} + 2wa(SR),

and

v = /min{||P + RI, | P — RI%} + 2wa(PiaR)

+ /min{[|Q + SI3. 1Q - S|4} + 2wa(5%4Q).
Proof. By using (1.5) together with (1.14) and Lemma 2.2 we see that

(5 D) =[C D,
-G NE 9y
GO0

:\/ (ppﬁAgQQﬂA 8) )

= \/IPP3 + Q@i | a. (2.16)
Moreover, it is not difficult to verify that

PP 4+ QQM = (P + Q)(P £ Q) F (PQ™ + QP™).

IN

A

A
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So, since PP + QQ* >4 0, it follows from (1.13) that
IPP# + QQM |4 = wa(PPM + QQ™)
= wa((P£Q)(P+ Q)" F (PQ™ + QP*))
<wa((P+Q)(P+Q)™) +wa(PQ™) +wa(QPH)

= [|P £ Q% + wa(PQ*) + wa(QP™),

where the last equality follows by using (1.13) together with (1.14) since the operator
(P £ Q)(P £ Q)" is A-positive. Further, one observes that

wa(PQH) = wa ((QF)9PH)
= wa( Py Q@PreayPH) = wa(Pyy@PH).
This yields that wa(PQ!) = wa(QP*4) since P%A = AP% = A. Thus, we get
IPP# + Q@ |4 < [|P £ Q% + 2wa(PQ™M),
which, in turn, implies that
| PP 4+ QQ* |4 < min ([P + QI 1P = QI% ) +20a(PQS).  (217)

So, a combination of (2.16) together with (2.17) gives

(6 9)] = fmin (1P + @I 1P - QI3 ) +20a(PQ2). (213)

WA

0 I
7 0), we see that

(& 9=l leal(t )
(5 Yl 5 D)
a5 Yl ) o on

<min ([P +Q[%, 1P - QI% ) + 2wa(PQ™)

By considering the A-unitary operator U = (

WA

+min ([[R+ S|, 1R = SI1% ) + 2wa(SR*).
fa fa
By observing that wy [(]}: g)] = wp [(gﬁ . ?ﬂ A)] and using similar arguments as

above we get
P Q\] Pia Ria
“A[(R A9>]__WA[<Q“‘ sm)]
< min ( HpﬁA + RﬁAHZ, HpﬁA _ RﬁAHi) + QWA(PﬁA(RﬁA)ﬁA)
+ min ( HQﬁA + SﬁAHi 7 HQﬁA _ SﬁAHZ) 4 2w (St (QFa)ta)
= min (||P+ B[, ||P = RI? ) + 2wa(R4P)

+min (11Q +SI%,1Q = I3 ) +2wa(@¥5).
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Hence, the proof is complete since ws (R4 P) = wa(P*R) and wa(Q*4S) = wa(S*Q).

O
P Q .
In order to prove a lower bound for wy 0 o)|we need the following lemmas.
Lemma 2.14. Let T,S € Bao(H). Then
max { |7+ S|3, 17 = S|% } = [TT# + $5% |4 < 2wa (T5*). (2.19)

Proof. Let x € H be such that ||z]|4 = 1. If R(2) denotes the real part of the complex
number z, then we see that

froes s’ < s

< <<TTﬁA + SS“) :L‘,a:>A + 2 ‘<TSﬁA:B,:E>A’

o ((sa) )+ st

<wa (TT”A + SSﬁA) + 2wy (TSﬁA)
- HTTﬁA 1 58k HA 1 2w (TSﬁA) ,

where the last equality follows from (1.13) since TT% 4 SS#4 >4 0. So, by taking the
supremum over all € H with ||z||, = 1 in the above inequality and then using the fact
that || X |4 = || X#4| 4 for all X € Bo(H), we get

1T+ 8|5 < ||TT# + 5584 | +2wa (TSH).
Similarly, we prove that
IT = 8|15 < |77 + SsﬁAHA + 2wy (TSH) .
Hence, we obtain the desired inequality (2.19). O

Lemma 2.15. Let T, S € B(H). Then, the following assertions hold
(1) If T>40 and S >4 0, then
1T = Slla < max{[|T] 4, [|S]a}- (2.20)
(2) If T, S € Ba(H), then
2| T*AS||a < ||TT* + 5554 4. (2.21)
Proof. (1) Let Q =T — S. It is not difficult to check that
ITal 2AaT 24 Q and [Slal =245 >4 -Q.

This implies, by Lemma 2.10, that [|@Q[la < ||T']|4a and [|@]|a < ||S]la. This proves the
desired property.

(2) Let T = <€ g) In view of (1.15) we see that
fa fa fa fa
fa _ TTRA 4SS 0 farm TRAT TFRAS
Pe— 0
Let U= (é OI) - By using (1.15), one gets U = ( RéA) p ) . So, we verify that
B )

|Uz||a = [|[Ubz||s = ||z||a for all = (21,22) € H & K. Hence, U is A-unitary operator.
Moreover, clearly we have (U#+)# = U4, In addition, a short calculation shows that

0 Q(SﬂAT)ﬁA> '

farm\ia _ rfia eiamyiatiia —
(T*AT) URA (T*AT)* U (2(TﬁAS)ﬁA 0
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By (2.15), we have ||T#4S||4 = ||S*AT|la. So, by applying Lemma 2.2 and then using
(2.20) we get

2||TﬁA5||A _ H 'H‘ﬁAT UﬁA(TﬁAT)ﬁAUﬁA

< max{ (THT)be

HUﬁA ']rtiA T) fayta

N

= max { TMTHA : HU (T*T) UHA} (by (1.14))

< ||meeT L (since U], =1)

= [T L = ITT5 4+ 555 4,

where the last equality follows from (2.15) and Lemma 2.2. Hence, we prove the desired
result. g

Lemma 2.16. Let T, S € Ba(H). Then,
max {||T + S|%, 17— 514 }

L LT+ 815~ 1 - SI
- 2

Proof. Notice that for any two real numbers  and y we have

t+ max {72 + 2|, [ T#AT + S#4 8| a, | TTH4 + S5% || 4}

1
max{z,y} = §(aj+y+ |m—y\). (2.22)
Now, by using (1.14) together with (2.22) we see that
max {||T + 8|3, 17— S|4 }

1
= 5 (IT + 815+ 1T = 1% + [ |17 + S5 — T - 5|3 )

=2 (@ + 2@+ 8)|, + 1@ — $)T = S)lla+ 1T+ SIE ~ 17— SIA)
> L (@ 5@+ 5) 4 (08— ST -S|+ 1T+ S - 1T 1)
1T+ S11% = 1T - S11%]

; .

By replacing T and S by T4 and S#4, respectively, in (2.23) and then using the fact that
1 X[ = || X4 for every X € B(H) we get

= ||T*aT + stas| + (2.23)

|17+ S11% - 1T - S11%
- .

max {7+ S|%, 1T = S|4} > |77 + 55%| +
On the other hand, by (2.22) one has
max {||T + S|%, |7 - 5|13 }
1
= 5 (1T + I+ 1T = 1% + [ |17 + S5 — |7 - 5|3 )
1
> (|@+s2+@-92|, +1IT+ 81 -7 - SI31)

17+ 813 = |17 = 5113

2
So, the proof of the lemma is complete. O

-fr 1,

Now we are ready to prove the following theorem.
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Theorem 2.17. Let P,Q € Ba(H). Then,

A Klg %m - ;\/max (1P +QI% 1P = QII% ) — 20a(PQA). (2:24)
Proof. We first prove that

max ([P +Q|I%, 1P = QI% ) — 2wa(PQH) > 0. (2.25)

By applying (2.21) together with the second inequality in (1.5), one observes
QwA(pQﬁA) < QHpQﬁAHA < HQﬁA(QﬁA)ﬁA + pﬁA(pﬁA)ﬁAHA — HptiAp + QﬁAQHA_
This implies, through Lemma 2.16, that

WMMP+QﬂwP—m&)szP+QMQL+“W+Qﬁ;“P—Q&

L LIP+als - 1P- 0l
5 .
Hence, (2.25) holds. Now, by using the first inequality in (1.5) we get

e ()

P Q\ [P 0
G (Y, o

(ppﬁA 40_ QQtA 8)

> 2WA(PQﬁA

2
wi

A

[l e S e SN

= 4||PPtiA + QQﬂAHA (by Lemma 2.2)

i (max { 1P+ QII% . 11P = QII% } — 2wa (PQ™)),

where the last inequality follows from Lemma 2.14. This finishes the proof of the theorem.
O

v

The following corollary is an immediate consequence of Theorem 2.17 and (2.18).
Corollary 2.18. Let P,Q € B4(H) be such that APQ* = 0. Then,

smax (1P + QUL IP=@lla) <wn [(o §)] < min (1P+QlLy. 1P -l ).

In particular, if Q@ = 0 we get

1
SIPlLa < wa(P) < 1Pl
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