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Abstract 

The present article deals with the study of a two dimensional thermoelastic problem of nonhomogeneous thick 

hollow cylinder within the context of fractional order derivative of order 20  . In which convection 

boundary conditions are applied on the curved surface of cylinder with internal heat generation. The material 

properties other then Poisson’s ratio and density are expresses by a simple power law in axial direction. Also 

lower and upper surface are assumed to be thermally insulated.  The affect of inhomogeneity on the both 

thermal and mechanical behavior is determined. Numerical computations are carried out with the help of 

Mathematica software for both homogeneous and nonhomogeneous cylinders as well as illustrated graphically 

in figures. 
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1. Introduction 

Nonhomogeneous materials are those materials 

which have different non-uniform material properties. 

These materials are also known as 

heterogeneous materials, which contain a mixture of 

various metallic elements. Due to superior mechanical 

properties these materials plays significant role in 

design of future intelligent composites which have 

great applications in science and engineering. 

Thermoelastic deformation and stresses in the case of 

semi-infinite nonhomogeneous solids where rigidity 

modulus varies with its depth according to a power law 

function were successfully investigated by Kassir [5]. 

Thermal stress distribution for a nonhomogeneous 

plate where shear modulus and thermal expansions 

coefficient were considered as a function of z under 

steady state temperature condition was investigated by 

Hata [9]. One-dimensional transient temperature 

distribution in a functionally graded composed 

circular hollow cylinder was analyzed numerically by 

Awaji and Sivakumar [15]. The 2 D unsteady state 

thermoelastic problem of an infinite hollow 

functionally graded material circular cylinder with 

dependent properties along radial direction using 

Green’s function approach were calculated by Kim 

and Noda [16]. A new modified integral transform was 

developed to investigate a mixed boundary value 

problem which involves combination of Bessel’s 

function as a kernel by Al-Hajri and Kalla [18].  

Ootao and Tanigawa [20, 25 and 37] studied 

various thermoelastic problems for hollow cylinder 

due to uniform heat supply with nonhomogeneous 

piecewise power law in Laplace transform domain. 

Sugano [10, 11 and 12] derived transient thermal 

stresses in a doubly connected non-homogeneous 

region where Young's modulus and thermal 

conductivity presented in radial coordinate power 

laws. Thermoelastic analysis subjected to partially 

heating on curved surface of a circular plate was 

investigated by Deshmukh and Khobragade [19]. 

Transient thermoelastic solution of functionally 

graded thick hollow cylinders was obtained 

analytically by Hosseini and Akhlaghi [24].  In [28], 

Solution for the temperature and thermal stresses due 

to circumferential loading in a hollow cylinder using 

integral transform was determined successfully. In 

[46], the analysis of thermo elastic stress due to action 

of thermo mechanical loading of a laminated isotropic 

materials cylinder done. In [47] Thermoelastic 

behaviour in a solid cylinder with circumferential 

crack was studied using theory based on C-V heat 

conduction.  In [48], the buckling effect presented for 

a solid circular plate made of porous material. 

Temperature distribution and thermal deflection on the 

mailto:navneet19021984kumar@gmail.com


 

282 / Vol. 23 (No. 4)  Int. Centre for Applied Thermodynamics (ICAT) 

outer curved surface of a semi-infinite hollow circular 

cylinder was studied by Kedar and Deshmukh [54]. 

In year 1822, French mathematician Jean 

Baptiste Fourier gives a relationship between the heat 

flow and the temperature gradient for a stationary, 

homogeneous and isotropic solid with this classical 

theory of heat conduction begin. After some year 

Duhamel’s relates heat conduction boundary value 

problems with time-dependent boundary conditions 

which work as base for mathematical foundation of 

thermoelasticity. Also it is testify that classical Fourier 

law and heat conduction equation in parabolic form 

are no longer accurate in many studies based on 

theoretical and experimental approach of transport 

phenomenon in media with internal structure like 

porous, polymers, dielectrics, semiconductors, 

amorphous etc. So the physical process exist at the 

microscopic level should be held into account. 

Therefore microscopic level is quite essential for 

different physical situations but this ignores during 

processing by the classical Fourier law. This 

encourages for the formulation of nonclassical 

theories, which implies to replace the parabolic heat 

conduction equation and the Fourier law by more 

general equations. Further each heat conduction 

generalization turn out in constitution of generalized 

theory of thermoelasticity. As an example, Lord and 

Shulman [2] modified Fourier law of heat conduction. 

This model gives hyperbolic type heat conduction 

equation with finite speed of thermal wave 

propagation. Lord Shulman theory is also known as 

extended thermoelasticity. Also Green and Lindsay [6] 

referred to as a temperature rate dependent 

thermoelasticity, whereas Green and Naghdi [13] 

investigated the thermoelastic theory without energy 

dissipation. Sherief and Hamza [60] used Laplace 

transform technique to derive solution of one 

dimensional infinite long hollow cylinder under 

generalized thermoelasticity with one relaxation time. 

But in this present article our study is based 

on the heat conduction equation with time-fractional 

differential operator and this operator successfully 

describes memory effect in real life situations. Hence 

due to physical application in real situation fractional 

calculus is used in various fields like engineering, 

physics, mathematics, geology, bioengineering, 

robotics etc. In [14, 26 and 45], a study includes 

modification of many existing physical processes 

based models by using fractional calculus. Caputo [1, 

7] and Caputo and Mainardi [3, 4] studied the 

relationship between the theory of linear 

viscoelasticity and fractional derivative and found that 

the fractional model shows good agreement with 

experimental result. Thermoelastic problem of infinite 

cylinder with time-fractional diffusion-wave equation 

solved by applying Integral transform technique by 

Povstenko [29]. The solution of non-axisymmetric 

time-fractional diffusion-wave equation in a 

cylindrical coordinates was determined by Povstenko 

[30].  A non-axisymmetric solution to time-fractional 

heat conduction equation in cylindrical coordinates for 

a half-space with source was evaluated by Povstenko 

[31]. Ezzat and Karamany [32, 33 and 34] constructed 

a new mathematical model of magneto-

thermoelasticity and electro-thermoelasticity by 

considering a new heat conduction law with time-

fractional order and applied to a perfect conducting 

half-space of elastic material respectively. Further, 

Ezzat [36] expand new mathematical model by 

considering fractional order heat conduction law of 

two-temperature for magneto-thermoelasticity and 

electromagnetic thermo fluid respectively. 

Raslan [55] investigated the theory of 

thermoelasticity based on fractional order for a two 

dimensional thick plate with traction free lower and 

upper surface due to axisymmetric distributions of 

temperature. Sherief and Latief [43] found the 

application of one dimensional thermoelastic problem 

using the fractional calculus methodology in a half 

space.  Xiong and Guo [59] investigated fractional 

order thermoelasticity for a one-dimensional finite 

length generalized magnetothermoelastic problem of a 

thermoelastic rod. In [35, 40, 41, 44, 56, 57 and 58], 

various thermoelastic problems studied which based 

on the theory of fractional-order thermoelastic model. 

In [61and 62], Transient hygrothermal response in a 

time-fractional problem was examined in a cylinder 

and sphere respectively. Sur and Kanoria [39, 49] 

studied two dimensional fractional order theories of 

thermoelastic with wave speed distribution and 

Functionally Graded Variable Material properties. A 

mathematical modeling of a circular disk due to 

partially distributed heat supply in context of 

fractional order theory of thermoelasticity was done by 

Kumar and Khobragade [63-64]. Thermoelastic 

deformation of a solid circular cylinder by application 

of fractional order theory was analyzed by Kumar and 

Khobragade [65-66]. Some other related significant 

contribution to fractional order theory has been 

discussed in [21- 23, 27, 38, 42, 50, 51 and 53]. 

From the above available literature it is 

noticed that maximum of the studies concern with 

steady state temperature distribution on 

nonhomogeneous cylinders with homogeneous 

material properties also heat production lead to various 

technical problems during mechanical applications. 

But from practical point of view thermoelastic 

problems with non homogeneous material properties 

are more realistic and having significant applications 

in high temperature conditions. Further analysis based 

on thermal stresses thermoelastic problems has 

significant growth in design of steam and gas turbines
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 and nuclear reactors. Also the fractional-

order theory of thermoelasticity estimates a lagging 

response to physical stimulus. Hence proposed study 

for nonhomogeneous materials with internal heat 

generation in context of fractional order theory of 

thermoelasticity is useful for researchers working in 

material sciences, designers of new material structure 

where high thermal loading is considered and those 

working to further develop the basic theory of 

thermoelastic problems for non homogeneous 

structural materials by using fractional calculus 

approach. This problem concerned with the thermal 

behavior of a thick hollow cylinder with internal heat 

generation in context of fractional order theory of 

thermoelasticity.  

 In the present paper, we have assumed a 2 D 

thermoelastic problem of a thick cylinder in context of 

fractional thermoelasticity in which sectional heating 

is applied on the curved surface. The material 

properties of cylinder except Poisson’s ratio and 

density are considered to be nonhomogeneous given 

by a simple power law in axial direction. Numerical 

computations are obtained and examined for both the 

homogeneous and nonhomogeneous cases for hollow 

cylinders.  

  

Formulation of the problem 

We assume a nonhomogeneous thick hollow cylinder 

with internal heat generation of radius varying from 

ar   to br   and thickness from 
1hz  to

2hz  , occupying the space
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is framed mathematically for a nonlocal Caputo type 

time fractional heat conduction equation of order
for nonhomogeneous thick hollow cylinder. The 

expression for Caputo type fractional derivative of 

function )(tf is given as [21] 
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with the following Laplace transform rule, where 

Caputo derivative needs the initial values of the 

function )(tf and its corresponding integral 

derivatives of order 1,...,3,2,1  nk  

.1

,)0()}({
)( 1

1

0

)(

nn

sfsfLs
dt

tfd
L k

n

k

k










 















     

                                                                            (2) 

in which s  is the transform parameter and n is a 

positive integer. 

 

Temperature distribution 

The governing transient heat conduction equation in 

the context of fractional-order theory subjected to a 

time dependent heat flux with internal heat generation 

for a two dimensional thermoelastic problem of a 

nonhomogeneous thick hollow cylinder satisfies the 

differential equation, 
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Using the physically convective heat exchange 

boundary conditions at a curved surface by following 

[52] written as                                                                    
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And zero initial conditions are, 

20,0,0  tatT   (8)                                                     
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
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tat
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where  tzrT ,,  denote the temperature function of the 

hollow cylinder at any time t ,  tzrg ,,  denote the 

heat generation function, )(zk  represent the thermal 

conductivity,   refer for the constant density and 

)(zc  denote the calorific capacity of the material for 

the inhomogeneous region. Also  0rr  and 

 0zz   denote the Dirac Delta function having 
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bra  0
 and

201 hzh  ; 
1Q are the heat flux 

with constant strength. Also ),,( tzrTDRL

 for 0  

is the Riemann-Liouville fractional integral

),,( tzrTI 
, 1e , 2e  denote the external heat 

transfer coefficients &
1k ,

2k denote the thermal 

conductivity coefficients.  

 

Displacements and thermal stresses 

For axisymmetric problem of two-dimensional thick 

cylinder the relation between strain displacements can 

be expressed as Hata [9] 






























r

w

z

u
e

z

w
e

r

u
e

r

u
e

rz

zzrr

2

1

,,, 

                     (10)                                   

Where u  and w  are the displacement components in 

the radial and axial directions, respectively. 

Stress-strain relationships are [9] 
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Condition for equilibrium are given as 
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Where zzrr eee ,,   in equation (11) to (14) denotes 

the strain Components, here

)( zzrr eeee   and )(z and )(z

represents the Lame constants, also )(zT refers the 

coefficient of thermal expansion. 

Further shear modulus )(z  and coefficient of 

thermal expansion )(zT  are assumed vary in the 

axial direction given as by following Hata [9],  
p
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constant and 0p . 

Equilibrium equation for displacement are obtained by 
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2 is given by 
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Without the action of body forces the solution of 

equation (17), (18) in the cylindrical coordinate 

system can be expressed by the Goodier's 

thermoelastic displacement potential  and the 

Boussinesq harmonic functions  and  following 
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Where  , and   must satisfy the following 

conditions 
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Where restraint coefficient is 
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Where Michell’s function must satisfy the condition 

given below  
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The corresponding stresses
rr ,  , 

zz  and 
rz  

are given by                                              
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For the traction free surface boundary conditions for 

stress functions are as                                                                                 
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Above equations (3) to (33) represents the 

mathematical modeling of the time fractional 

thermoelastic problem of nonhomogeneous hollow 

cylinder with internal heat generation. 

 
Figure 1. Geometry of nonhomogeneous hollow 

cylinder
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2. Solution of the problem 

Solution of the heat conduction problem 

From equation (3), and considering for sake of brevity 

as 
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We get 
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Where 

 000 /  ck    

With the boundary and initial conditions as,  

0,

,0

21

1

11





















thzh

r

T
DkTe

ar

RL



                     (36)                                                                   

 

0,

,)(

21

01

1

22





















thzh

tzzQ
r

T
DkTe

br

RL 

     

                                                                          (37) 

  0,,0
1




tbraT
hz

               (38) 

  0,,0
2




tbraT
hz

                (39) 
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Here the reference value of thermal conductivity is 

denoted as 0k , calorific capacity as 0c and density by 

0   respectively.  

In order to remove p  from the numerator of equation 

(35), we use the following variable transformation as
    tzrzT p ,,2/1   

Hence, equation (35) becomes  
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here   212 p  

The initial and boundary conditions are 
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In order to solve the differential equation (42) we use 

the extended integral transform defined in Al-Hajri 

and Kalla [18] of order i over the variable z as  
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where )( zS i  represent the kernel of the integral 

transform (49) given as 
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transcendental equation 
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The inversion transformation is given as 
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Hence, equations (42) to (49) become 
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By using the integral transform given in Al-Hajri and 

Kalla [18], the equations (54) and the boundary 

conditions given by equation (55) to (56), we get 
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Here 0J  is Bessel’s function of first kind and 0Y  is of 

second kind, respectively and nq  are the positive 

roots of the transcendental equation.  
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On using Laplace transform and its inversion to 

equation (59) by using the initial condition (60) and 

(61), we get 
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Here  0

* tt   denotes the Heaviside Theta function 

and is given as 
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Applying inverse transform on equation (62), we 

obtain 
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                                                                          (64) 

Now, using the inverse transform defined in equation 

(52) to the equation (64), we obtain
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On using equation (65) in the relation

 tzrzT p ,,2)1(   , we obtain the required 

expression of temperature distribution function as 
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Thermoelastic equations 

The expression of Goodier’s thermoelastic 

displacement potential governed by equation (22) is 

obtained by referring to the heat conduction equation 

(35) and its solution given by equation (66) as  
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We assume the solution for Michell’s function so as to 

satisfy the governed condition equation (26), as 
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Where mC  and mD denotes constants.  

Now, substitute the values of  and M in equation 

(24) and (25) the expression for displacement 

components obtained as 
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The expression of components of stresses can be 

obtained by using the displacement components given 

by equations (69) and (70) in equation (29) to (32). 

Also the values of constants mC  and mD  can be 

determined by using the traction free boundary 

conditions given by equation (33). We have not 

mentioned the large mathematical equations of 

stresses and constants, However numerical 

computations are carried out by using Mathematica 

software. 

 

Numerical calculations 

Mixtures of Copper and Tin metals assumed for 

numerical computations in the ratio 70:30 

respectively, with non-dimensional variables are as [8] 

given below: 
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The constants used during the numerical calculation 

are given as: 

Inner radius of a cylinder cma 1 , Outer radius of a 

cylinder cmb 2 , sec20 t , Thickness of cylinder
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cmh 21  , Thickness of cylinder cmh 52  , 

cmr 5.10  and Reference temperature CTR

032  

For the forgoing analysis mathematical simplicities 

are done by setting the radiation coefficients constants 

as ,86.0,86.0 21  kk and the convective heat 

transfer coefficients 11 e , 12 e  

The other associated values are taken as:  

Thermal diffusivity
 scm /11.1 2 , Coefficient of 

linear thermal expansion C06

0 /1017  , 

Young’s modulus
27 /1041.4 cmNE  , the 

relation between the parameter p , the Poisson’s ratio 

 and Shear modulus 0 is 


v
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21
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Also for sake of simplicity we set: 
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1 hzhzzQ   

Case 1: Homogeneous Case: 0p , 5.0v and 

27

0 /1047.1 cmN  

Case 2: Nonhomogeneous Case: 5.1p ,

286.0v and 
27

0 /10715.1 cmN  

 

Analysis of numerical Solutions 

The obtained mathematical results of temperature 

distribution, radial stress distribution, tangential stress 

distribution, axial stress and shear stress distribution 

for fractional-order parameter 

2,5.1,1,5.0    (depicting 

weak, normal and strong conductivity) computed 

numerically by MATEMATICA software for the 

finite hollow cylinder. 

 

Homogeneous case Nonhomogeneous case 

 

for 5.0* z  

 

for 5.0* z  

 

 

for 5.1* z  

 

for 5.1* z  
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for 5.2* z  
 

for 5.2* z  

 

Figure 2. dimensionless temperature distribution function 

 

Figure 2 represents the dimensionless temperature 

distribution 
*T along the radial direction of thick 

cylinder for different values of the fractional-order 

parameter  with different values of dimensionless 

thickness 5.0* z , 5.1* z and 5.2* z for 

both homogeneous and non homogeneous cylinder. 

Above figure represents that initially temperature 

increases in region 2.11  r and after 2.1r  it 

becomes sinusoidal in nature. At both the radii ends 

1* r and 2* r  the temperature found nonzero 

value which is due to the action of internal heat 

generation and subjected sectional heating on the outer 

curved surface in both the homogeneous and 

nonhomogeneous cases. Also the values of the 

temperature follow a uniform pattern with respect to 

radius. For homogeneous case the magnitude of 

temperature distribution for cylinder is found high as 

compared to nonhomogeneous case. The magnitude of 

temperature is high at the lower surface because of 

sectional heating and is gradually goes on decreasing 

towards the upper surface. Further it is analyzed that 

the speed of thermal signals propagation varying 

directly proportional to the values of the different 

values of fractional-order parameter . 

 

Homogeneous case Nonhomogeneous case 

 

for 5.0* z  

 

for 5.0* z  
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for 5.1* z  

 

for 5.1* z  

 

 

for 5.2* z  

 

for 5.2* z  

 

  Figure 3. Shows dimensionless displacement distributions  

Figure 3 represents dimensionless displacement 
*w  

variation along the radial direction 
*r for different 

values of fractional-order parameter ,5.0

,1 ,5.1 2 with different values of 

dimensionless thickness 5.0* z , 5.1* z and 

5.2* z for both homogeneous and non 

homogeneous cylinder. It is seen that the displacement 

distribution is more at the inner radius for 

nonhomogeneous as compare to homogeneous 

cylinder and is fluctuating in the region uniformly for 

both homogeneous and nonhomogeneous cases. Also 

propagation of the displacement functions is directly 

proportional to the values of the fractional-order 

parameter . 

 

Homogeneous case Nonhomogeneous case 

 

for 5.0* z  

 

for 5.0* z  
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for 5.1* z  

 

for 5.1* z  

 

 

for 5.2* z  

 

for 5.2* z  

Figure 4. shows dimensionless radial stress distribution 

Figure 4 represents the variation of dimensionless 

radial stress 
*

rr  in radial direction 
*r for different 

values of fractional order parameter with different 

values of dimensionless thickness 5.0* z , 

5.1* z and 5.2* z for both homogeneous and 

non homogeneous cylinder. It is seen that the value of 

radial stress is zero at both the radial ends  

1* r and 2* r ,  

which is for both homogeneous and nonhomogeneous 

cylinders that’s clearly agrees with the prescribed 

traction free boundary conditions. It is found that 

thickness directly effects stress variation that is for 

large value of
*z , small distribution of 

*

rr attains, 

Also propagation of the radial stress functions is found 

directly proportional to the values of the fractional-

order parameter . 

Homogeneous case Nonhomogeneous case 

 

for 5.0* z  

 

for 5.0* z  
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for 5.1* z  

 

for 5.1* z  

 

 

for 5.2* z  

 

for 5.2* z  

 

Figure 5. dimensionless tangential stress distributions 

 

Homogeneous case Nonhomogeneous case 

 

for 5.0* z  

 

for 5.0* z  
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for 5.1* z  

 

for 5.1* z  

 

 

 

for 5.2* z  

 

for 5.2* z  

 

Figure 6.  Dimensionless axial stress distributions 

 

Homogeneous case Nonhomogeneous case 

 

for 5.0* z  
 

for 5.0* z  
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for 5.1* z  
 

for 5.1* z  

 

 

for 5.2* z  
 

for 5.2* z  

 

Figure 7.  shows dimensionless shear stress distributions 

Similarly, Figure 5, 6 and 7 represents the variation of 

dimensionless tangential stress
*

  , axial stress 

*

zz   and shear stress 
*

rz  respectively in radial 

direction 
*r  for different values of fractional-order 

parameter 2,5.1,1,5.0    

with different values of dimensionless thickness

5.0* z , 5.1* z and 5.2* z . It is observed 

that on changing values of fractional-order parameter

 for different thickness significantly affect the 

stresses distribution for both homogeneous and non 

homogeneous cylinder. Hence, both the factors can be 

an important factor for designing new materials 

applicable to real life situations.  

 

 
for 1p  

 
for 2p  
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Figure 8. Shows Dimensionless temperature distributions for different inhomogeneity parameter  

 

Figure 8 represents the variation of dimensionless 

temperature 
*T  in radial direction for different values 

of fractional-order parameter

2,5.1,1,5.0     with 

different values of inhomogeneity parameter 1p , 

2p and 3p . It is seen that the temperature has a 

finite value at the inner and outer radius because of 

internal heat generation, which is smoothly increasing 

in the region 3.11 *  r  and then behaves 

sinusoidal towards the outer radius. It is observed that 

with increase in the inhomogeneity parameter, the 

magnitude of temperature is increasing. Also the value 

of fractional-order parameter significantly effects 

the temperature distribution. 

 

 

 

 
for 1p  

 
for 2p  

 

 
for 3p  

 
for 3p  



 

Int. J. of Thermodynamics (IJoT) Vol. 23 (No. 4) / 297 

 

Figure 9 represent variation of dimensionless displacement 
*w  in radial direction 

*r of hollow cylinder for 

different inhomogeneity parameter p   

 

Figure 9 represent the distribution of dimensionless 

displacement w in radial direction for different 

fractional order parameter ,5.0 ,1  

,5.1 2  with inhomogeneity parameter

p . It is seen that the displacement distribution is more 

at the outer radius and also noted that fractional order 

parameter   directly proportional to displacement. 

 

for 1p  

 

for 2p  

 

for 3p  

Figure 10 dimensionless radial stress distributions for different inhomogeneity parameter p   

Figure 10 represent the distribution of dimensionless 

radial stress 
*

rr in radial direction 
*r for different 

values of p  and fractional order parameter

2,5.1,1,5.0     . It is seen that 

initially stresses are more at inner radii and behaves 

sinusoidal towards the outer radii. Also it is observed 

that large value of inhomogeneity parameter p , the 

absolute value of radial stress is found decreasing. 

Also fractional order parameter directly affects the 

plot. 
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for 1p  

 
for 2p  

 

 
for 3p  

 

Figure 11 Variation of dimensionless axial stress 
*

zz  in radial direction 
*r of hollow cylinder for different 

inhomogeneity parameter p   

 

 
for 1p  

 
for 2p  
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for 3p  

 

 

Figure 12 Variation of dimensionless tangential stress 
*

  in radial direction 
*r of hollow for different 

inhomogeneity parameter p   

 

 
for 1p  

 
for 2p  

 

 
for 3p  

 

 

 

Figure 13 Dimensionless shear stress distributions for different inhomogeneity parameter p   

 

Figures 11, 12 and 13 represents  the distribution of 

dimensionless tangential stress, axial stress and shear 

stress respectively in radial direction for different 

values of fractional-order parameter

2,5.1,1,5.0     with 

different values of inhomogeneity parameter 1p , 

2p and 3p . With increase in the 
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inhomogeneity parameter p , it is observed that the 

magnitude of axial stress in less as compared to that of 

tangential stress and shear stress. Also for different 

fractional parameter variation in plot is obtained, 

hence it is concluded that both the parameters play 

significant role in design of new materials applicable 

to real life situations. The behaviour of the curves 

obtained from numerical analysis for the temperature 

and stress functions shows similar characterization as 

done in [24]. Also graphical plotting for  1  with 

convective heat exchange boundary conditions found 

same in previous studies [17].  

 

Conclusion  

In the present paper, we study the time fractional heat 

conduction equation under zero initial conditions. The 

integral transform method is used to calculate thermal 

behaviour with internal heat generation in a thick 

hollow cylinder subjected to sectional heating on the 

curved surface. The material properties are assumed to 

vary by simple power law along axial direction. We 

solve two-dimensional transient conductivity equation 

with internal heat generation and obtained its 

associated thermal stresses for a thick hollow cylinder 

with inhomogeneous material prop 

erties. A mixture of copper and tin metals is chosen for 

numerical purposes, and the numerical results of 

transient state temperature field and thermal stresses 

are examined and illustrated graphically. Investigation 

for inhomogeneity grading is observed for different 

value of p . From graphical plot it is investigated that 

(i) temperature, displacement and all stresses is 

behaved to be sinusoidal along radial direction for 

different values of dimensionless thickness 5.0* z ,  

5.1* z and 5.2* z (ii) for homogeneous 

cylinder magnitude of temperature, displacement and 

stresses found high as compared to nonhomogeneous 

cylinder  

(iii) For different values of inhomogeneity parameter

1p , 2p and 3p , temperature, displacement 

and stresses has a finite value at the inner and outer 

radius due to internal heat generation and then behaves 

sinusoidal towards the outer radius. (iv) Further 

fractional order parameter range 10   

corresponds to weak conductivity and 21 
corresponds to strong conductivity while 1  

corresponds to normal conductivity. (iv) Due to the 

presence of internal heat generation fluctuations in the 

temperature distribution and thermoelastic distribution 

are observed in the neighborhood region of the internal 

heat generation. Hence we say that nonhomogeneous 

hollow cylinder with internal heat generation in 

context of fractional order theory approach predicts 

lagging response to physical stimulus. Hence, we 

conclude that above study useful for the design of new 

materials. 
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