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Abstract: In this paper, at first we introduce the concepts of filter- annihilator, LI- ideal- annihilator, right- 

filter- annihilator, left- filter- annihilator, right- LI- ideal- annihilator, and left- LI- ideal- annihilator. Then 

by using of these concepts, are constructed six new types of graphs in a lattice implication 

algebra(𝐿, ˅, ˄, ´, →, 0, 𝐼) which are denoted by Ф𝐹(𝐿), Ф𝐴(𝐿), ∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 𝛴𝐴(𝐿), 

respectively. Then basic properties of graph theory such as connectivity, regularity, and planarity on the 

structure of these graphs are investigated. Secondly, by utilizing of binary operations ⊕ and ⊗ we 

construct graphs 𝛹𝐹(𝐿) and 𝛹𝐴(𝐿), respectively. Thirdly, via the binary operations ⊕ and ⊗,  concept of 

annihilator we construct graphs Ω𝐹(𝐿) and Ω𝐴(𝐿), respectively.  Finally, by utilizing of binary operations ˄  

and ˅, we construct graphs 𝛶𝐹(𝐿) and 𝛶𝐴(𝐿), respectively, some their interesting properties are presented. 

Keywords: Lattice implication algebra, Diameter, Chromatic number, Euler graph.  

1. Introduction 

Algebraic combinatorics is an area of mathematics that employs methods of abstract algebra 

in various combinatorial contexts and vice versa. Associating a graph to an algebraic structure 

is a research subject in this area and has attracted considerable attention. In fact, the research 

in this subject aims at exposing the relationship between algebra and graph theory and at 

advancing the application of one to the other. The story goes back to a paper of Beck [1] in 

1998, where he introduced the idea of a zero-divisor graph of a commutative ring with 

identity. He defined 𝛤(𝑅) to be the graph whose vertices are elements of 𝑅 and in which two 

vertices 𝑥 and 𝑦 are adjacent if and only if 𝑥𝑦 = 0. Recently, Halas and Jukl in [2] introduced 

the zero divisor graphs of posets. The study of the zero-divisor graphs of posets was then 
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continued by Xue and Liu in [3], Maimani et al. in [4]. More recently, a different method of 

associating a zero-divisor graph to a poset 𝑃 was proposed by Lu and Wu in [5]. In order to 

research the logical system whose propositional value is given in a lattice, Xu [6] proposed the 

concept of lattice implication algebras, and discussed some of their properties. Xu and Qin [7] 

introduced the notions of filter in a lattice implication algebra, and investigated their 

properties. In [8], Y. B. Jun et al. proposed the concept of an LI- ideal of a lattice implication 

algebra. In this paper, we deal with zero-divisor graphs of lattice implication algebras based 

on filter and LI- ideal. Jun and Lee [9] defined the concept of associated graph of BCK- 

algebra and verified some properties of this graph. Zahiri and Borzooei [10] associated a new 

graph to a BCI-algebra which is denoted by 𝐺(𝑋), this definition is based on branches of 𝑋. 

The study of graphs of BCI/ BCK- algebras was then continued by Tahmasbpour such that in 

[11, 12] studied chordality of graph defined by Zahiri and Borzooei, introduced four types of 

graphs of BCK- algebras which are constructed by equivalence classes determined by ideal   

𝐼 and dual ideal 𝐼˅. Also, in [13, 14] introduced two new graphs of lattice implication algebras 

based on LI-ideal. Furthermore, in [15, 16] introduced two new graphs of BCK- algebras 

based on fuzzy ideal 𝜇𝐼 and fuzzy dual ideal 𝜇𝐼˅, two new graphs of lattice implication 

algebras based on fuzzy filter 𝜇𝐹 and fuzzy LI- ideal 𝜇𝐴. In this paper, the graphs defined are 

slightly different from the graphs defined in [11, 12, 13, 14, 15, 16]. Also, this paper is 

divided into eight parts. 

In Section 2, we recall some concepts of graph theory such as connected graph, planar graph, 

outerplanar graph, Eulerian graph, and chromatic number, among others. 

Section 3, is an introduction to a general theory of lattice implication algebras. We will first 

give the notions of lattice implication algebras, and investigate their elementary and 

fundamental properties, and then deal with a number of basic concepts, such as filter, and LI- 

ideal, among others. 

In Section 4, inspired by ideas from Behzadi et al. [17], we study the graphs of lattice 

implication algebras which are constructed from filter-annihilator and  LI- ideal-annihilator, 

denoted by Ф𝐹(𝐿) and Ф𝐴(𝐿).  

In Section 5, inspired by ideas from Behzadi et al. [17], we study the graphs of lattice 

implication algebras which are constructed from right- filter- annihilator, left- filter- 

annihilator, right- LI- ideal-annihilator, left- LI- ideal- annihilator, denoted by 

∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 𝛴𝐴(𝐿), respectively. 
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In Section 6,we introduce the associated graphs 𝛹𝐹(𝐿) and 𝛹𝐴(𝐿) which are constructed from 

binary operations ⊕ and ⊗, respectively. 

In Section 7,we introduce the associated graphs Ω𝐹(𝐿) and Ω𝐴(𝐿) which are constructed from 

concept annihilator, binary operations ⊕ and ⊗, respectively. 

 In Section 8, inspired by ideas from Alizadeh et al. [18], we introduce the associated graphs   

𝛶𝐹(𝐿) and 𝛶𝐴(𝐿),  which are constructed from binary operations ˅ and ˄ , respectively.  

2. Introduction to Graph Theory 

In this section, for convenience of the reader, we recall some definitions and notations 

concerning graphs and posets for later use.  

Definition 2.1. ([18, 19]) For a graph 𝐺, we denote the set of vertices of 𝐺 as 𝑉(𝐺) and the set 

of edges as 𝐸(𝐺). A graph 𝐺 is said to be complete if every two distinct vertices are joined by 

exactly one edge. The greatest induced complete subgraph denotes a clique. If graph 𝐺 

contains a clique with 𝑛 elements, and every clique has at most 𝑛 elements, we say that the 

clique number of 𝐺 is 𝑛 and write 𝜔(𝐺) = 𝑛. Also, a graph 𝐺 is said to be connected if there 

is a path between any given pairs of vertices, otherwise the graph is disconnected. For distinct 

vertices 𝑥 and 𝑦 of 𝐺, let 𝑑(𝑥, 𝑦) be the length of the shortest path from 𝑥 to 𝑦 and if there is 

no such path we define 𝑑(𝑥, 𝑦) ≔ ∞. The diameter of 𝐺 is 𝑑𝑖𝑎𝑚(𝐺) ≔ sup{𝑑(𝑥, 𝑦); 𝑥, 𝑦 ∈

𝑉(𝐺)}. Also, the girth of a graph 𝐺, is denoted by 𝑔𝑟(𝐺), is the length of the shortest cycle in 

𝐺 if 𝐺 has a cycle; otherwise, we get 𝑔𝑟(𝐺) ≔ ∞. The neighborhood of a vertex 𝑥 is the set 

𝑁𝐺({𝑥}) = {𝑦 ∈ 𝑉(𝐺); 𝑥𝑦 ∈ 𝐸(𝐺)}. Graph 𝐻 is called a subgraph of 𝐺 if 𝑉(𝐻) ⊆ 𝑉(𝐺) and 

𝐸(𝐻) ⊆ 𝐸(𝐺). A graph 𝐺 is called regular of degree 𝑘 when every vertex has precisely 𝑘 

neighbors. A cubic graph is a graph in which all vertices have degree three. In other words, a 

cubic graph is a 3- regular graph. Moreover, for distinct vertices 𝑥 and 𝑦, we use the notation 

𝑥 − 𝑦 to show that is 𝑥 connected to 𝑦. Let 𝑃 = (𝑉, ≤) be a poset. If 𝑥 ≤ 𝑦 but 𝑥 ≠ 𝑦, then 

we write 𝑥 < 𝑦. If 𝑥 and 𝑦 are in 𝑉, then 𝑦 covers 𝑥 in 𝑃 if 𝑥 < 𝑦 and there is no 𝑧 ∈ 𝑉, with 

𝑥 < 𝑧 < 𝑦. Two sets {𝑥 ∈ 𝑃; 𝑥 𝑐𝑜𝑣𝑒𝑟𝑠 0} and {𝑥 ∈ 𝑃; 1 𝑐𝑜𝑣𝑒𝑟𝑠 𝑥}, denoted by 𝑎𝑡𝑜𝑚(𝑃) and 

𝑐𝑜𝑎𝑡𝑜𝑚(𝑃), respectively. Let 𝐿 ⊆ 𝑃, we say 𝐿 is a chain if for all 𝑥, 𝑦 ∈ 𝐿, 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥. 

Chain 𝐿 is maximal if for all chain 𝐿′, 𝐿 ⊆ 𝐿′ implies that 𝐿 = 𝐿′. 

Definition 2.2. ([1]) If 𝐾 is the smallest number of colors needed to color the vertices of 𝐺 so 

that no two adjacent vertices share the same color, we say that the chromatic number of 𝐺 is 𝐾 

and write 𝜒(𝐺) = 𝐾. Moreover, we have 𝜒(𝐺) ≥ 𝜔(𝐺). 
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Definition 2.3. ([19]) A closed walk in a graph 𝐺 containing all the edges of 𝐺 is called an 

Euler line in 𝐺. A graph containing an Euler line is called an Euler graph. We know that a 

walk is always connected. Since the Euler line (which is a walk) contains all the edges of the 

graph, an Euler graph is connected. Euler’s theorem says that the connected graph 𝐺 is 

Eulerian if and only if all vertices of 𝐺 are of even degree. 

Definition 2.4.  ([20]) A subdivision of a graph is any graph that can be obtained from the 

original graph by replacing edges by paths. Graph 𝐺 is planar if it can be drawn in a plane 

without the edges having to cross. Proving that a graph is planar amounts to redrawing the 

edges in such a way that no edges will cross. One may need to move the vertices around and 

the edges may have to be drawn in a very indirect fashion. Kuratowski’s theorem says that a 

finite graph is planar if and only if it does not contain a subdivision of 𝐾5 or 𝐾3,3. The clique 

number of any planar graph is less than or equal to four. 

Definition 2.5. ([21]) Let 𝐺 be a plane graph. A face is a region bounded by edges. An 

undirected graph is an outerplanar graph if it can be drawn in the plane without crossing in 

such a way that all of the vertices belong to the unbounded face of the drawing. There is a 

characterization of outerplanar graphs that says a graph is outerplanar if and only if it does not 

contain a subdivision of 𝐾4 or 𝐾2,3. 

Definition 2.6. ([22]) The number 𝑔 is called the genus of the surface if it is homeomorphic to 

a sphere with 𝑔 handles or equivalently holes. Also, the genus 𝑔 of a graph 𝐺 is the smallest 

genus of all surfaces in such a way that the graph 𝐺 can be drawn on it without any edge-

crossing. The graphs of genus zero are precisely the planar graphs since the genus of a plane is 

zero. The graphs that can be drawn on a torus without edge- crossing are called toroidal. They 

have a genus of one since the genus of a torus is one. The notation 𝛾(𝐺) stands for the genus 

of a graph 𝐺. 

Theorem 2.7. ([23]) For the positive integers 𝑚 and 𝑛, we have: 

(𝑖) 𝛾(𝐾𝑛) = ⌈
1

12
(𝑛 − 3)(𝑛 − 4)⌉ if 𝑛 ≥ 3, 

(𝑖𝑖) 𝛾(𝐾𝑚,𝑛) = ⌈
1

4
(𝑚 − 2)(𝑛 − 2)⌉ if 𝑚, 𝑛 ≥ 2. 
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3. Introduction to Lattice Implication Algebras 

Definition 3.1. ([24]) By a lattice implication algebra we mean a bounded lattice (𝐿, ˅, ˄, 0, 𝐼) 

with order-reversing involution ′ and a binary operation → satisfying the following axioms: 

(𝐼1)𝑥 → (𝑦 → 𝑧) = 𝑦 → (𝑥 → 𝑧), 

(𝐼2)𝑥 → 𝑥 = 𝐼, 

(𝐼3)𝑥 → 𝑦 = 𝑦′ → 𝑥′, 

(𝐼4)𝑥 → 𝑦 = 𝑦 → 𝑥 = 𝐼 ⇒ 𝑥 = 𝑦, 

(𝐼5)(𝑥 → 𝑦) → 𝑦 = (𝑦 → 𝑥) → 𝑥, 

(𝐿1)(𝑥˅𝑦) → 𝑧 = (𝑥 → 𝑧)˄(𝑦 → 𝑧), 

(𝐿2)(𝑥˄𝑦) → 𝑧 = (𝑥 → 𝑧)˅(𝑦 → 𝑧), 

 for all 𝑥, 𝑦, 𝑧 ∈ 𝐿. 

Note that the conditions (𝐿1) and (𝐿2) are equivalent to the conditions 

(𝐿3)𝑥 → (𝑦˄𝑧) = (𝑥 → 𝑦)˄(𝑥 → 𝑧), and 

(𝐿4)𝑥 → (𝑦˅𝑧) = (𝑥 → 𝑦)˅(𝑥 → 𝑧), respectively. 

We can define a partial ordering ≤ on a lattice implication algebra 𝐿 by 𝑥 ≤ 𝑦 if and only if 

𝑥 → 𝑦 = 𝐼. Therefore, the following statements hold: 

(𝑖) If 𝑥 ≤ 𝑦, then 𝑥 → 𝑧 ≥ 𝑦 → 𝑧 and 𝑧 → 𝑥 ≤ 𝑧 → 𝑦. 

(𝑖𝑖) If 𝑥 ≤ 𝑦, then 𝑦′ ≤ 𝑥′. 

Definition 3.2. ([24]) A subset 𝐹 of 𝐿 is called  a filter of 𝐿 if it satisfies the following 

conditions: 

(𝑖)𝐼 ∈ 𝐹, 

(𝑖𝑖)(∀𝑥, 𝑦 ∈ 𝐿), (𝑥 → 𝑦 ∈ 𝐹, 𝑥 ∈ 𝐹 → 𝑦 ∈ 𝐹). 

A filter 𝑃 of 𝐿 is prime if 𝑥˅𝑦 ∈ 𝑃 implies 𝑥 ∈ 𝑃 or 𝑦 ∈ 𝑃. 

Definition 3.3. ([24]) A nonempty subset 𝐴 of a lattice implication algebra 𝐿 is said to be an 

LI- ideal of 𝐿 if 

(𝑖)0 ∈ 𝐴. 

(𝑖𝑖) (𝑥 → 𝑦)′ ∈ 𝐴 and 𝑦 ∈ 𝐴 imply 𝑥 ∈ 𝐴, for any 𝑥, 𝑦 ∈ 𝐿. 
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An LI- ideal 𝐴 of 𝐿 is prime if 𝑥˄𝑦 ∈ 𝐴 implies 𝑥 ∈ 𝐴 or 𝑦 ∈ 𝐴. 

Definition 3.4. ([24]) Binary operations ⊕ and ⊗ as follows: 

𝑥 ⊕ 𝑦 = 𝑥′ → 𝑦, 𝑥 ⊗ 𝑦 = (𝑥 → 𝑦′)′. 

Theorem 3.5. ([24]) The following statements hold for any 𝑥, 𝑦, 𝑎, 𝑏 ∈ 𝐿: 

(𝑖)𝑥 ⊗ 𝑦 = 𝑦 ⊗ 𝑥, 𝑥 ⊕ 𝑦 = 𝑦 ⊕ 𝑥. 

(𝑖𝑖)𝑥 ⊗ 𝑦 ≤ 𝑥 ≤ 𝑥 ⊕ 𝑦, 𝑥 ⊗ 𝑦 ≤ 𝑦 ≤ 𝑥 ⊕ 𝑦. 

(𝑖𝑖𝑖)0 ⊗ 𝑥 = 0, 𝐼 ⊗ 𝑥 = 𝑥, 𝑥 ⊗ 𝑥′ = 0, 0 ⊕ 𝑥 = 𝑥, 𝐼 ⊕ 𝑥 = 𝐼, 𝑥 ⊕ 𝑥′ = 𝐼. 

(𝑖𝑣) If 𝑥 ≤ 𝑎, 𝑦 ≤ 𝑏, then 𝑥 ⊗ 𝑦 ≤ 𝑎 ⊗ 𝑏, 𝑥 ⊕ 𝑦 ≤ 𝑎 ⊕ 𝑏. 

4. Graphs of lattice implication algebras based on filter and LI- 

ideal via the concepts of filter- annihilator and LI- ideal- 

annihilator 

Definition 4.1. Let 𝑀 be a nonempty subset of 𝐿, 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, 

respectively. Then, the set of all zero-divisors of 𝐴 by 𝐹 and 𝐴 are defined as follows: 

(𝑖) 𝐴𝑛𝑛𝐹𝑀 = {𝑥 ∈ 𝐿; 𝑥 → 𝑚 ∈ 𝐹 𝑜𝑟 𝑚 → 𝑥 ∈ 𝐹, ∀ 𝑚 ∈ 𝑀}. 

(𝑖𝑖) 𝐴𝑛𝑛𝐴𝑀 = {𝑥 ∈ 𝐿; (𝑥 → 𝑚)′ ∈ 𝐴 𝑜𝑟(𝑚 → 𝑥)′ ∈ 𝐴, ∀ 𝑚 ∈ 𝑀}. 

Proposition 4.2. Let 𝑀 and 𝑁 be nonempty subsets of 𝐿, 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, 

respectively. Then, the following statements hold: 

(𝑖) 𝐹 ∪ {0} ⊆  𝐴𝑛𝑛𝐹𝑀, 𝐴 ∪ {𝐼} ⊆  𝐴𝑛𝑛𝐴𝑀. 

(𝑖𝑖) If 𝑀 ⊆ 𝑁, then 𝐴𝑛𝑛𝐹𝑁 ⊆ 𝐴𝑛𝑛𝐹𝑀 and 𝐴𝑛𝑛𝐴𝑁 ⊆  𝐴𝑛𝑛𝐴𝑀. 

(𝑖𝑖𝑖) If 0 ∈ 𝑀, then 𝐴𝑛𝑛𝐹𝑀 = 𝐴𝑛𝑛𝐹(𝑀 − {0}) and 𝐴𝑛𝑛𝐴𝑀 = 𝐴𝑛𝑛𝐴(𝑀 − {0}). 

(𝑖𝑣) If 𝐼 ∈ 𝑀, then 𝐴𝑛𝑛𝐹𝑀 =  𝐴𝑛𝑛𝐹(𝑀 − {𝐼}) and 𝐴𝑛𝑛𝐴𝑀 = 𝐴𝑛𝑛𝐴(𝑀 − {𝐼}). 

(𝑣) 𝐴𝑛𝑛𝐹𝐹 = 𝐿 and 𝐴𝑛𝑛𝐴𝐴 = 𝐿. 

(𝑣𝑖) If 𝐹 = {𝐼}, 𝐴 = {0}, then we have  

𝐴𝑛𝑛𝐹𝑀 = {𝑦; 𝑦 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒 𝑡𝑜 𝑎𝑛𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑀}, 𝐴𝑛𝑛𝐴𝑀 =

{𝑦; 𝑦 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒 𝑡𝑜 𝑎𝑛𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑀}. 

Proof. (𝑖) Let 𝑥 ∈ 𝐹, then by Definition 3.1 (𝑖𝑖𝑖), we have 𝑚 → 𝑥 ∈ 𝐹, ∀ 𝑚 ∈ 𝑀. Also, 0 →

𝑥 = 𝐼, ∀𝑥 ∈ 𝐿, So 𝐹 ∪ {0} ⊆ 𝐴𝑛𝑛𝐹𝑀. Similarly, we can prove 𝐴 ∪ {𝐼} ⊆ 𝐴𝑛𝑛𝐴𝑀. 
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(𝑖𝑖) Suppose that 𝑥 ∈  𝐴𝑛𝑛𝐹𝑁, then 𝑥 → 𝑛 ∈ 𝐹 or 𝑛 → 𝑥 ∈ 𝐹, ∀ 𝑛 ∈ 𝑁, but 𝑀 ⊆ 𝑁, therefore 

𝑥 → 𝑛 ∈ 𝐹 or 𝑛 → 𝑥 ∈ 𝐹, ∀𝑛 ∈ 𝑀. i.e 𝑥 ∈  𝐴𝑛𝑛𝐹𝑀, hence 𝐴𝑛𝑛𝐹𝑁 ⊆  𝐴𝑛𝑛𝐹𝑀. Similarly, we 

can prove 𝐴𝑛𝑛𝐴𝑁 ⊆ 𝐴𝑛𝑛𝐴𝑀. 

(𝑖𝑖𝑖) According to Definition 4.1 (𝑖), we have 𝐴𝑛𝑛𝐹𝑀 =∩𝑚∈𝑀 𝐴𝑛𝑛𝐹𝑚. Also, 𝐴𝑛𝑛𝐹{0} = 𝐿. 

Then, 𝐴𝑛𝑛𝐹𝑀 = 𝐴𝑛𝑛𝐹(𝑀 − {0}). Similarly, we can prove 𝐴𝑛𝑛𝐴𝑀 = 𝐴𝑛𝑛𝐴(𝑀 − {0}). 

(𝑖𝑣) According to Definition 4.1 (𝑖), we have 𝐴𝑛𝑛𝐹𝑀 =∩𝑚∈𝑀 𝐴𝑛𝑛𝐹𝑚. Also, 𝐴𝑛𝑛𝐹{𝐼} = 𝐿. 

Then, 𝐴𝑛𝑛𝐹𝑀 = 𝐴𝑛𝑛𝐹(𝑀 − {𝐼}). Similarly, we can prove 𝐴𝑛𝑛𝐴𝑀 = 𝐴𝑛𝑛𝐴(𝑀 − {𝐼}). 

(𝑣) Let 𝑥 ∈ 𝐿,  we know by Definition 3.2, 𝑥 → 𝑚 ∈ 𝐹, ∀ 𝑚 ∈ 𝐹, then 𝑥 ∈  𝐴𝑛𝑛𝐹𝐹, hence 

𝐴𝑛𝑛𝐹𝐹 = 𝐿. Similarly,  we can prove 𝐴𝑛𝑛𝐴𝐴 = 𝐿 

(𝑣𝑖) The proof is easy. 

Definition 4.3. Let 𝐹 and A be a filter, an LI-  ideal of 𝐿, respectively. Then, we have: 

(𝑖) Ф𝐹(𝐿) is a simple graph, with vertex set 𝐿 and two distinct vertices 𝑥 and 𝑦 being adjacent 

if and only if 𝐴𝑛𝑛𝐹{𝑥, 𝑦} = 𝐹 ∪ {0}. 

(𝑖𝑖) Ф𝐴(𝐿) is a simple graph, with vertex set 𝐿 and two distinct vertices 𝑥 and 𝑦 being 

adjacent if and only if 𝐴𝑛𝑛𝐴{𝑥, 𝑦} = 𝐴 ∪ {𝐼}. 

Example 4.4. Let 𝐿 = {0, 𝑎, 𝑏, 𝑐, 𝑑, 𝐼} and the operation → be defined by the following table: 

TABLE 1.  Binary operation → for Example 4.4 

 

Therefore, (𝐿, ˄, ˅, ´, →, 0, 𝐼) is a lattice implication algebra. One can see that 𝐹 =

{𝑏, 𝑐, 𝐼}, 𝐴 = {0, 𝑐} are a filter, an LI- ideal of 𝐿, respectively. Also, we have 𝐴𝑛𝑛𝐹{0} =

𝐴𝑛𝑛𝐹{𝑎} = 𝐴𝑛𝑛𝐹{𝑏} = 𝐴𝑛𝑛𝐹{𝑐} = 𝐴𝑛𝑛𝐹{𝑑} = 𝐴𝑛𝑛𝐹{𝐼} = 𝐿 and 𝐴𝑛𝑛𝐴{0} = 𝐴𝑛𝑛𝐴{𝑎} =

𝐴𝑛𝑛𝐴{𝑏} = 𝐴𝑛𝑛𝐴{𝑐} = 𝐴𝑛𝑛𝐴{𝑑} = 𝐴𝑛𝑛𝐴{𝐼} = 𝐿. Therefore, the graphs Ф𝐹(𝐿) and Ф𝐴(𝐿) 

are empty graphs. 
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Theorem 4.5. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then the following 

statements hold: 

(𝑖) 𝑁𝐺({0}) = 𝑁𝐺({𝐼}) = ∅, where 𝐺 = Ф𝐹(𝐿). 

(𝑖𝑖)𝑁𝐺({0}) = 𝑁𝐺({𝐼}) = ∅, where 𝐺 = Ф𝐴(𝐿). 

Proof. (𝑖) We know 𝐴𝑛𝑛𝐹{0} = 𝐿 and 𝐴𝑛𝑛𝐹{𝐼} = 𝐿. Also, for all 𝑥 ∈ 𝐿, 𝑥 ≠ 0, 𝐼, we have, 

 𝐹 ∪ {0, 𝑥} ⊆ 𝐴𝑛𝑛𝐹{𝑥}.  Then 𝐹 ∪ {0, 𝑥} ⊆ 𝐴𝑛𝑛𝐹{0, 𝑥} and 𝐹 ∪ {0, 𝑥} ⊆  𝐴𝑛𝑛𝐹{𝑥, 𝐼}, for all 

𝑥 ∈ 𝐿, 𝑥 ≠ 0, 𝐼. So, by Definition 4.3 (𝑖) of graph Ф𝐹(𝐿), for all 𝑥 ∈ 𝐿, 𝑥 ≠ 0, 𝐼, if 𝑥 is 

connected to elements 0, 𝐼, then 𝑥 ∈ 𝐹. So by proposition 4.2 (𝑣), 𝐴𝑛𝑛𝐹{𝑥} = 𝐿. So, 0, 𝐼 are 

not connected to 𝑥, for all 𝑥 ∈ 𝐿. 

(𝑖𝑖) We know 𝐴𝑛𝑛𝐴{0} = 𝐿 and 𝐴𝑛𝑛𝐴{𝐼} = 𝐿. Also, for all 𝑥 ∈ 𝐿, 𝑥 ≠ 0, 𝐼, we have, 𝐴 ∪

{0, 𝑥} ⊆ 𝐴𝑛𝑛𝐴{𝑥}. Then 𝐴 ∪ {0, 𝑥} ⊆ 𝐴𝑛𝑛𝐴{0, 𝑥} and 𝐴 ∪ {0, 𝑥} ⊆ 𝐴𝑛𝑛𝐴{𝑥, 𝐼}, for all 𝑥 ∈

𝐿, 𝑥 ≠ 0, 𝐼. So, by Definition 4.3 (𝑖𝑖) of graph Ф𝐴(𝐿), for all 𝑥 ∈ 𝐿, 𝑥 ≠ 0, 𝐼, if 𝑥  is connected 

to elements 0, 𝐼, then 𝑥 ∈ 𝐴. So by Proposition 4.2 (𝑣), 𝐴𝑛𝑛𝐴{𝑥} = 𝐿. So, 0, 𝐼 are not 

connected to 𝑥, for all 𝑥 ∈ 𝐿. 

Theorem 4.6. Let 𝐿 = {0, 𝐼} ∪ 𝑎𝑡𝑜𝑚(𝐿), 𝐹 = {𝐼} and 𝐴 = {0} be a filter, an LI- ideal of 𝐿, 

respectively. Then,  𝐸(Ф𝐹(𝐿)) = 𝐸(Ф𝐴(𝐿)) = {𝑥𝑦; 𝑥, 𝑦 ∈ 𝑎𝑡𝑜𝑚(𝐿)}. 

Proof. We know 𝐴𝑛𝑛{𝐼}{𝐼} = 𝐿, 𝐴𝑛𝑛{𝐼}{0} = 𝐿, by Proposition 4.2 (𝑣𝑖), since 𝐿 =

𝑎𝑡𝑜𝑚(𝐿) ∪ {0, 𝐼}, we have, for all 𝑥 ∈ 𝑎𝑡𝑜𝑚(𝐿), 𝐴𝑛𝑛{𝐼}{𝑥} = {0, 𝑥, 𝐼}. On the other hand we 

know 𝐴𝑛𝑛{𝐼}{𝑥, 𝑦} = 𝐴𝑛𝑛{𝐼}{𝑥} ∩ 𝐴𝑛𝑛{𝐼}{𝑦}. Then by Definition 4.3 (𝑖) of graph Ф{𝐼}(𝐿), 𝑥 

and 𝑦 are adjacent if and only if 𝑥, 𝑦 ∈ 𝑎𝑡𝑜𝑚(𝐿). Similarly, we have 𝐴𝑛𝑛{0}{𝐼} = 𝐿,

𝐴𝑛𝑛{0}{0} = 𝐿 and for all 𝑥 ∈ 𝑎𝑡𝑜𝑚(𝐿), 𝐴𝑛𝑛{0}{𝑥} = {0, 𝑥, 𝐼}. Then by Definition 4.3 (𝑖𝑖) of 

graph Ф{0}(𝐿), 𝑥 and 𝑦 are adjacent if and only if 𝑥, 𝑦 ∈ 𝑎𝑡𝑜𝑚(𝐿). 

Theorem 4.7. Let 𝐿 = {0, 𝐼} ∪ 𝑎𝑡𝑜𝑚(𝐿), 𝐹 = {𝐼} and 𝐴 = {0} be a filter, an LI- ideal of 𝐿, 

respectively. Then, 𝜔 (Ф{𝐼}(𝐿)) = 𝜔 (Ф{0}(𝐿)) = |𝑎𝑡𝑜𝑚(𝐿)|. 

Proof. Straightforward by Theorem 4.6. 

Theorem 4.8. Let 𝐹 = {𝐼} and 𝐴 = {0} be a filter, an LI- idealof 𝐿, respectively. Then the 

following statements hold: 

(𝑖)𝑁𝐺({𝑥}) = {𝑦; 𝑦 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒 𝑡𝑜 𝑥}, where 𝐺 = Ф𝐹(𝐿), 𝑥 ≠ 0, 𝐼. 

(𝑖𝑖)𝑁𝐺({𝑥}) = {𝑦; 𝑦 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒 𝑡𝑜 𝑥}, where 𝐺 = Ф𝐴(𝐿), 𝑥 ≠ 0, 𝐼. 
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Proof. (𝑖) We have, for all 𝑥 ∈ 𝐿, 𝑥 ≠ 0, 𝐼, 𝐴𝑛𝑛{𝐼}{𝑥} = {𝑦; 𝑦 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒 𝑡𝑜 𝑥}. On the 

other hand, we know 𝐴𝑛𝑛{𝐼}{𝑥, 𝑦} = 𝐴𝑛𝑛{𝐼}{𝑥} ∩ 𝐴𝑛𝑛{𝐼}{𝑦}. Then by Definition 4.3 (𝑖) of 

graph Ф{𝐼}(𝐿), 𝑥 and 𝑦 are adjacent if and only if 𝑥 and 𝑦 are not comparable to each other. 

(𝑖𝑖) We have, for all 𝑥 ∈ 𝐿, 𝑥 ≠ 0, 𝐼, 𝐴𝑛𝑛{0}{𝑥} = {𝑦; 𝑦 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒 𝑡𝑜 𝑥}. On the other 

hand, we know 𝐴𝑛𝑛{0}{𝑥, 𝑦} = 𝐴𝑛𝑛{0}{𝑥} ∩ 𝐴𝑛𝑛{0}{𝑦}. Then by Definition 4.3 (𝑖𝑖) of graph 

Ф{0}(𝐿), 𝑥 and 𝑦 are adjacent if and only if 𝑥 and 𝑦 are not comparable to each other. 

Theorem 4.9. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then the following 

statements hold: 

(𝑖)𝛼(Ф𝐹(𝐿)) ≥ |𝐹|. 

(𝑖𝑖)𝛼(Ф𝐴(𝐿)) ≥ |𝐴|. 

Proof. (𝑖) We suppose that 𝑥, 𝑦 ∈ 𝐹. Then by Proposition 4.2 (𝑣), we have, 𝐴𝑛𝑛𝐹{𝑥} = 𝐿,

𝐴𝑛𝑛𝐹{𝑦} = 𝐿. Therefore, by Definition 4.3 (𝑖) of graph Ф𝐹(𝐿), 𝑥𝑦 ∉ 𝐸(Ф𝐹(𝐿)). Therefore, 

by Definition 2.1 of independent set, we have 𝛼(Ф𝐹(𝐿)) ≥ |𝐹|. 

(𝑖𝑖)We suppose that 𝑥, 𝑦 ∈ 𝐴. Then by Proposition 4.2 (𝑣), we have, 𝐴𝑛𝑛𝐴{𝑥} = 𝐿,

𝐴𝑛𝑛𝐴{𝑦} = 𝐿. Therefore, by Definition 4.3 (𝑖𝑖) of graph Ф𝐴(𝐿), 𝑥𝑦 ∉ 𝐸(Ф𝐴(𝐿)). Therefore, 

by Definition 2.1 of independent set, we have 𝛼(Ф𝐴(𝐿)) ≥ |𝐴|. 

Theorem 4.10.  Let 𝐹  be a  prime filter, 𝐴 be a prime LI- ideal of 𝐿, |𝐿 − 𝐹| > 1, |𝐿 − 𝐴| >

1. Then the following statements hold: 

(𝑖)Ф𝐹(𝐿) is an empty graph. 

(𝑖𝑖)Ф𝐴(𝐿) is an empty graph. 

Proof. (𝑖) We suppose, on the contrary, that Ф𝐹(𝐿) is not an empty graph. Therefore, there 

exist 𝑥, 𝑦 ∈ 𝐿, such that 𝑥𝑦 ∈ 𝐸(Ф𝐹(𝐿)). So, by Definition 4.3 (𝑖) of graph Ф𝐹(𝐿), we have, 

𝐴𝑛𝑛𝐹{𝑥, 𝑦} = 𝐹 ∪ {0}. On the other hand, since |𝐿 − 𝐹| > 1, we can choose 𝑧 ∈ 𝐿, 𝑧 ∉ 𝐹, 𝑧 ≠

0. Since 𝐹 is a prime filter, then 𝑧 → 𝑥 ∈ 𝐹 or 𝑥 → 𝑧 ∈ 𝐹, and 𝑧 → 𝑦 ∈ 𝐹 or 𝑦 → 𝑧 ∈ 𝐹, hence 

𝑧 ∈ 𝐴𝑛𝑛𝐹{𝑥, 𝑦} that is contradiction, complete proof. 

(𝑖𝑖) We suppose, on the contrary, that Ф𝐴(𝐿) is not an empty graph. Therefore, there exist 

𝑥, 𝑦 ∈ 𝐿, such that 𝑥𝑦 ∈ 𝐸(Ф𝐴(𝐿)). So, by Definition 4.3 (𝑖𝑖) of graph Ф𝐴(𝐿), we have, 

𝐴𝑛𝑛𝐴{𝑥, 𝑦} =  𝐴 ∪ {𝐼}. On the other hand, since |𝐿 − 𝐴| > 1, we can choose 𝑧 ∈ 𝐿, 𝑧 ∉ 𝐴, 𝑧 ≠

𝐼. Since 𝐴 is a prime LI- ideal, then (𝑧 → 𝑥)′ ∈ 𝐴 or (𝑥 → 𝑧)′ ∈ 𝐴, and (𝑧 → 𝑦)′ ∈ 𝐴or 

(𝑦 → 𝑧)′ ∈ 𝐴, hence 𝑧 ∈ 𝐴𝑛𝑛𝐴{𝑥, 𝑦} that is contradiction, complete proof. 
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5. Graphs of lattice implication algebras based on filter and LI- 

ideal via the concepts of right- filter- annihilator, left- filter- 

annihilator, right- LI- ideal- annihilator, and left- LI- ideal- 

annihilator 

Definition 5.1. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Denote 𝐴𝑛𝑛𝐹
𝑅{𝑥} =

{𝑦 ∈ 𝐿; 𝑥 → 𝑦 ∈ 𝐹}, 𝐴𝑛𝑛𝐹
𝐿 {𝑥} = {𝑦 ∈ 𝐿; 𝑦 → 𝑥 ∈ 𝐹}, 𝐴𝑛𝑛𝐴

𝑅{𝑥} = {𝑦 ∈ 𝐿; (𝑥 → 𝑦)′ ∈ 𝐴},

𝐴𝑛𝑛𝐴
𝐿{𝑥} = {𝑦 ∈ 𝐿; (𝑦 → 𝑥)′ ∈ 𝐴}, which are called right- filter- annihilator, left- filter- 

annihilator, right- LI- ideal- annihilator, left- LI- ideal- annihilator, respectively. 

Definition 5.2. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then, we have: 

(𝑖) ∆𝐹(𝐿) is a simple graph, with vertex set 𝐿 and two distinct vertices 𝑥 and 𝑦 being adjacent 

if and only if 𝐴𝑛𝑛𝐹
𝑅{𝑥} ⊆ 𝐴𝑛𝑛𝐹

𝑅{𝑦} or 𝐴𝑛𝑛𝐹
𝑅{𝑦} ⊆ 𝐴𝑛𝑛𝐹

𝑅{𝑥}, there is an edge between 𝑥 and 𝑦 

in the graph 𝛴𝐹(𝐿) if and only if 𝐴𝑛𝑛𝐹
𝐿 {𝑥} ⊆ 𝐴𝑛𝑛𝐹

𝐿 {𝑦} or 𝐴𝑛𝑛𝐹
𝐿 {𝑦} ⊆ 𝐴𝑛𝑛𝐹

𝐿 {𝑥}. 

(𝑖𝑖) ∆𝐴(𝐿) is a simple graph, with vertex set 𝐿 and two distinct vertices 𝑥 and 𝑦 being adjacent 

if and only if 𝐴𝑛𝑛𝐴
𝑅{𝑥} ⊆ 𝐴𝑛𝑛𝐴

𝑅{𝑦} or 𝐴𝑛𝑛𝐴
𝑅{𝑦} ⊆ 𝐴𝑛𝑛𝐴

𝑅{𝑥}, there is an edge between 𝑥 and 𝑦 

in the graph 𝛴𝐴(𝐿) if and only if 𝐴𝑛𝑛𝐴
𝐿{𝑥} ⊆ 𝐴𝑛𝑛𝐴

𝐿{𝑦} or 𝐴𝑛𝑛𝐴
𝐿{𝑦} ⊆ 𝐴𝑛𝑛𝐴

𝐿{𝑥}. 

 

Example 5.3.  Let 𝐿 = {0, 𝑎, 𝑏, 𝑐, 𝐼}. Define the partially ordered relation on 𝐿 as 0 < 𝑎 <

𝑏 < 𝑐 < 𝐼, and define , ′′ → ′′ as follows: 

TABLE 2. Binary operation → for Example 5.3 

 

Then (𝐿, ˅, ˄, ´, →) is a lattice implication algebra. Let 𝐹 = {𝐼} and 𝐴 = {0}. Therefore, we 

have 𝐴𝑛𝑛𝐹
𝑅{0} = 𝐴𝑛𝑛𝐴

𝑅{0} = 𝐿, 𝐴𝑛𝑛𝐹
𝑅{𝑎} = 𝐴𝑛𝑛𝐴

𝑅{𝑎} = {𝑎, 𝑏, 𝑐, 𝐼}, 𝐴𝑛𝑛𝐹
𝑅{𝑏} = 𝐴𝑛𝑛𝐴

𝑅{𝑏} =

{𝑏, 𝑐, 𝐼}, 𝐴𝑛𝑛𝐹
𝑅{𝑐} = 𝐴𝑛𝑛𝐴

𝑅{𝑐} = {𝑐, 𝐼}, 𝐴𝑛𝑛𝐹
𝑅{𝐼} = 𝐴𝑛𝑛𝐴

𝑅{𝐼} = {𝐼}.   

Also, 𝐴𝑛𝑛𝐹
𝐿 {0} = 𝐴𝑛𝑛𝐴

𝐿{0} = {0}, 𝐴𝑛𝑛𝐹
𝐿 {𝑎} = 𝐴𝑛𝑛𝐴

𝐿{𝑎} = {0, 𝑎}, 𝐴𝑛𝑛𝐹
𝐿 {𝑏} = 𝐴𝑛𝑛𝐴

𝐿{𝑏} =

{0, 𝑎, 𝑏}, 𝐴𝑛𝑛𝐹
𝐿 {𝑐} = 𝐴𝑛𝑛𝐴

𝐿{𝑐} = {0, 𝑎, 𝑏, 𝑐}, 𝐴𝑛𝑛𝐹
𝐿 {𝐼} = 𝐴𝑛𝑛𝐴

𝐿{𝐼} = 𝐿.  
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Therefore graphs ∆𝐹(𝐿), ∆𝐴(𝐿), 𝛴𝐹(𝐿), and 𝛴𝐴(𝐿) are complete graphs, respectively. 

Proposition 5.4. Let 𝐹 and 𝐴 be a filter , an LI- ideal of 𝐿, respectively. Then, the following 

statements hold: 

(𝑖)𝜔(∆𝐹(𝐿)) ≥ 𝑚𝑎𝑥{|𝐴|; 𝐴 𝑖𝑠 𝑎 𝑐ℎ𝑎𝑖𝑛 𝑖𝑛 𝐿}. 

(𝑖𝑖)𝜔(𝛴𝐹(𝐿)) ≥ 𝑚𝑎𝑥{|𝐴|; 𝐴 𝑖𝑠 𝑎 𝑐ℎ𝑎𝑖𝑛 𝑖𝑛 𝐿}. 

(𝑖𝑖𝑖)𝜔(∆𝐴(𝐿)) ≥ 𝑚𝑎𝑥{|𝐴|; 𝐴 𝑖𝑠 𝑎 𝑐ℎ𝑎𝑖𝑛 𝑖𝑛 𝐿}. 

(𝑖𝑣)𝜔(𝛴𝐴(𝐿)) ≥ 𝑚𝑎𝑥{|𝐴|; 𝐴 𝑖𝑠 𝑎 𝑐ℎ𝑎𝑖𝑛 𝑖𝑛 𝐿}. 

Proof. (𝑖) According to Definition 3.1 (𝑖),  if  𝑥 ≤ 𝑦 then, 𝑦 → 𝑧 ≤ 𝑥 → 𝑧. On the other hand 

now we let 𝑥 ≤ 𝑦, 𝑧 ∈ 𝐴𝑛𝑛𝐹
𝑅{𝑦}. Then, by Definition 5.1, 𝑦 → 𝑧 ∈ 𝐹. So, by Definition 3.2 of 

filter, 𝑥 → 𝑧 ∈ 𝐹. So, 𝑧 ∈ 𝐴𝑛𝑛𝐹
𝑅{𝑥}. Then, 𝐴𝑛𝑛𝐹

𝑅{𝑦} ⊆ 𝐴𝑛𝑛𝐹
𝑅{𝑥}, 𝑥𝑦 ∈ 𝐸(∆𝐹(𝐿)), complete 

proof. 

(𝑖𝑖) According to Definition 3.1 (𝑖), if 𝑥 ≤ 𝑦 then, 𝑧 → 𝑥 ≤ 𝑧 → 𝑦. On the other hand now we 

let 𝑥 ≤ 𝑦, 𝑧 ∈ 𝐴𝑛𝑛𝐹
𝐿 {𝑥}. Then, by Definition 5.1, 𝑧 → 𝑥 ∈ 𝐹. So, by Definition 3.2 of filter, 

𝑧 → 𝑦 ∈ 𝐹. So, 𝑧 ∈ 𝐴𝑛𝑛𝐹
𝐿 {𝑦}. Then, 𝐴𝑛𝑛𝐹

𝐿 {𝑥} ⊆ 𝐴𝑛𝑛𝐹
𝐿 {𝑦}, 𝑥𝑦 ∈ 𝐸(𝛴𝐹(𝐿)), complete proof. 

(𝑖𝑖𝑖) According to Definition 3.1 (𝑖), (𝑖𝑖), if 𝑥 ≤ 𝑦 then, (𝑥 → 𝑧)′ ≤ (𝑦 → 𝑧)′. On the other 

hand, now, we let 𝑥 ≤ 𝑦, 𝑧 ∈ 𝐴𝑛𝑛𝐴
𝑅{𝑦} then, by Definition 5.1 (𝑦 → 𝑧)′ ∈ 𝐴. So, by 

Definition 3.3 of LI- ideal, (𝑥 → 𝑧)′ ∈ 𝐴 . So, 𝑧 ∈ 𝐴𝑛𝑛𝐴
𝑅{𝑥} then, 𝐴𝑛𝑛𝐴

𝑅{𝑦} ⊆ 𝐴𝑛𝑛𝐴
𝑅{𝑥}, 𝑥𝑦 ∈

𝐸(∆𝐴(𝐿)), complete proof. 

(𝑖𝑣) According to Definition 3.1 (𝑖), (𝑖𝑖), if 𝑥 ≤ 𝑦 then (𝑧 → 𝑦)′ ≤ (𝑧 → 𝑥)′. On the other 

hand, now, we let 𝑥 ≤ 𝑦, 𝑧 ∈ 𝐴𝑛𝑛𝐴
𝐿{𝑥} then, by Definition 5.1 (𝑧 → 𝑥)′ ∈ 𝐴. So, by Definition 

3.3 of LI- ideal, (𝑧 → 𝑦)′ ∈ 𝐴 . So, 𝑧 ∈ 𝐴𝑛𝑛𝐴
𝐿{𝑦} then, 𝐴𝑛𝑛𝐴

𝐿{𝑥} ⊆ 𝐴𝑛𝑛𝐴
𝐿{𝑦}, 𝑥𝑦 ∈ 𝐸(𝛴𝐴(𝐿)), 

complete proof. 

Theorem 5.5. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then, the following 

statements hold: 

(𝑖)∆𝐹(𝐿) is connected, 𝑑𝑖𝑎𝑚(∆𝐹(𝐿)) ≤ 2, 𝑔𝑟(∆𝐹(𝐿)) = 3. 

(𝑖𝑖)𝛴𝐹(𝐿)is connected, 𝑑𝑖𝑎𝑚(𝛴𝐹(𝐿)) ≤ 2, 𝑔𝑟(𝛴𝐹(𝐿)) = 3. 

(𝑖𝑖𝑖)∆𝐴(𝐿) is connected, 𝑑𝑖𝑎𝑚(∆𝐴(𝐿)) ≤ 2, 𝑔𝑟(∆𝐴(𝐿)) = 3. 

(𝑖𝑣)𝛴𝐴(𝐿) is connected, 𝑑𝑖𝑎𝑚(𝛴𝐴(𝐿)) ≤ 2, 𝑔𝑟(𝛴𝐴(𝐿)) = 3. 
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Proof. (𝑖) For all 𝑥 ∈ 𝐿, 0 ≤ 𝑥 ≤ 𝐼, then by Proposition 5.4 (𝑖), 0, 𝐼 are connected to any 

element in 𝐿. So, ∆𝐹(𝐿) is connected, 𝑑𝑖𝑎𝑚(∆𝐹(𝐿)) ≤ 2, 𝑔𝑟(∆𝐹(𝐿)) = 3. 

(𝑖𝑖) For all 𝑥 ∈ 𝐿, 0 ≤ 𝑥 ≤ 𝐼, then by Proposition 5.4 (𝑖𝑖), 0, 𝐼 are connected to any element in 

𝐿. So, 𝛴𝐹(𝐿) is connected, 𝑑𝑖𝑎𝑚(𝛴𝐹(𝐿)) ≤ 2, 𝑔𝑟(𝛴𝐹(𝐿)) = 3. 

(𝑖𝑖𝑖) For all 𝑥 ∈ 𝐿, 0 ≤ 𝑥 ≤ 𝐼, then by Proposition 5.4 (𝑖𝑖𝑖), 0, 𝐼 are connected to any element 

in 𝐿. So, ∆𝐴(𝐿) is connected, 𝑑𝑖𝑎𝑚(∆𝐴(𝐿)) ≤ 2, 𝑔𝑟(∆𝐴(𝐿)) = 3. 

(𝑖𝑣) For all 𝑥 ∈ 𝐿, 0 ≤ 𝑥 ≤ 𝐼, then by Proposition 5.4 (𝑖𝑣), 0, 𝐼 are connected to any element 

in 𝐿. So, 𝛴𝐴(𝐿) is connected, 𝑑𝑖𝑎𝑚(𝛴𝐴(𝐿)) ≤ 2, 𝑔𝑟(𝛴𝐴(𝐿)) = 3. 

Theorem 5.6. Let 𝐹 and 𝐴 be a filter, an LI-  ideal of 𝐿, respectively. Then, the following 

statements hold: 

(𝑖)∆𝐹(𝐿) is regular if and only if it is complete. 

(𝑖𝑖)𝛴𝐹(𝐿) is regular if and only if it is complete. 

(𝑖𝑖𝑖) ∆𝐴(𝐿) is regular if and only if it is complete. 

(𝑖𝑣) 𝛴𝐴(𝐿) is regular if and only if it is complete. 

Proof. (𝑖) Suppose that ∆𝐹(𝐿) is regular. By Theorem 5.5(𝑖), deg(0) = |𝐿| − 1. Since ∆𝐹(𝐿) 

is regular, for all 𝑥 ∈ 𝐿, deg(𝑥) = |𝐿| − 1. Hence, ∆𝐹(𝐿) is complete. Conversely, a complete 

graph is regular. 

(𝑖𝑖) Suppose that 𝛴𝐹(𝐿) is regular. By Theorem 5.5(𝑖𝑖), deg(0) = |𝐿| − 1. Since 𝛴𝐹(𝐿) is 

regular, for all 𝑥 ∈ 𝐿, deg(𝑥) = |𝐿| − 1. Hence, 𝛴𝐹(𝐿) is complete. Conversely, a complete 

graph is regular. 

(𝑖𝑖𝑖) Suppose that ∆𝐴(𝐿) is regular. By Theorem 5.5(𝑖𝑖𝑖), deg(0) = |𝐿| − 1. Since ∆𝐴(𝐿) is 

regular, for all 𝑥 ∈ 𝐿, deg(𝑥) = |𝐿| − 1. Hence, ∆𝐴(𝐿) is complete. Conversely, a complete 

graph is regular. 

(𝑖𝑣) Suppose that 𝛴𝐴(𝐿) is regular. By Theorem 5.5(𝑖𝑣), deg(0) = |𝐿| − 1. Since 𝛴𝐴(𝐿) is 

regular, for all 𝑥 ∈ 𝐿, deg(𝑥) = |𝐿| − 1. Hence, 𝛴𝐴(𝐿) is complete. Conversely, a complete 

graph is regular. 

Theorem 5.7.  Let 𝐿 be a chain, 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then, the 

following statements hold: 

(𝑖)∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 𝛴𝐴(𝐿) are planar graphs if and only if |𝐿| ≤ 4. 
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(𝑖𝑖)∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 𝛴𝐴(𝐿) are outerplanar graphs if and only if |𝐿| ≤ 3. 

(𝑖𝑖𝑖)∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 𝛴𝐴(𝐿) are planar graphs if and only if |𝐿| ≤ 7. 

Proof. (𝑖) According to Proposition 5.4, ∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 𝛴𝐴(𝐿) are complete graphs, 

respectively, if |𝐿| ≥ 5, then ∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 𝛴𝐴(𝐿) have a subgraph isomorphic to 

𝐾5, respectively, then by Kuratowski’s theorem ∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 𝛴𝐴(𝐿) are not 

planar, respectively. Conversely, we know𝐾5 has five vertices, hence if ∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), 

and 𝛴𝐴(𝐿) are not planar, respectively, then ∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 𝛴𝐴(𝐿) have at least five 

vertices, respectively, which is contrary to |𝐿| ≤ 4. 

(𝑖𝑖) According to Proposition 5.4, ∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 𝛴𝐴(𝐿) are complete graphs, 

respectively, if |𝐿| ≥ 4, then ∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 𝛴𝐴(𝐿) have a subgraph isomorphic to 

𝐾4, respectively, then by Definition ∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 𝛴𝐴(𝐿) are not outerplanar, 

respectively. Conversely, we know𝐾4 has four vertices, hence if ∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 

𝛴𝐴(𝐿) are not outerplanar, respectively, then ∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 𝛴𝐴(𝐿) have at least 

four vertices, respectively, which is contrary to |𝐿| ≤ 3. 

(𝑖𝑖𝑖) According to Proposition 5.4, ∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 𝛴𝐴(𝐿) are complete graphs, 

respectively, if |𝐿| ≥ 8, then ∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 𝛴𝐴(𝐿) have a subgraph isomorphic to 

𝐾8, respectively, then by Theorem ∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 𝛴𝐴(𝐿) are not toroidal, 

respectively. Conversely, we know𝐾8 has eight vertices, hence if ∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 

𝛴𝐴(𝐿) are not toroidal, respectively, then ∆𝐹(𝐿), 𝛴𝐹(𝐿), ∆𝐴(𝐿), and 𝛴𝐴(𝐿) have at least eight 

vertices, respectively, which is contrary to |𝐿| ≤ 7. 

6. Graphs of lattice implication algebras based on filter and LI- 

ideal via the binary operations ⊕ and ⊗. 

Definition 6.1. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then we have: 

(𝑖)𝛹𝐹(𝐿) is a simple graph, with vertex set 𝐿 and two distinct vertices 𝑥 and 𝑦 being adjacent 

if and only if 𝑥 ⊕ 𝑦 ∈ 𝐹. 

(𝑖𝑖) 𝛹𝐴(𝐿) is a simple graph, with vertex set 𝐿 and two distinct vertices 𝑥 and 𝑦 being 

adjacent if and only if 𝑥 ⊗ 𝑦 ∈ 𝐴. 

Example 6.2. Let 𝐿 = {0, 𝑎, 𝑏, 𝑐, 𝑑, 𝐼} be lattice implication algebra defined in Example 4.4 , 

𝐹 = {𝑏, 𝑐, 𝐼}, 𝐴 = {0, 𝑐} be a filter, an LI- ideal of 𝐿, respectively. Therefore, by Definition 

3.2,  binary operations ⊕ and ⊗ are produced by the following tables: 
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TABLE 3. Binary operation ⊕ for Example 6.2 

 

TABLE 4. Binary operation ⊗ for Example 6.2 

 

Therefore,(𝛹𝐹(𝐿)) = {0𝑏, 0𝑐, 0𝐼, 𝑎𝑏, 𝑎𝑐, 𝑎𝐼, 𝑏𝑐, 𝑏𝑑, 𝑏𝐼, 𝑐𝑑, 𝑐𝐼, 𝑑𝐼},and 𝐸(𝛹𝐴(𝐿)) =

{0𝑎, 0𝑏, 0𝑐, 0𝑑, 0𝐼, 𝑎𝑐, 𝑏𝑐, 𝑏𝑑, 𝑐𝑑, 𝑐𝐼, 0𝐼}. 

Theorem 6.3. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then the following 

statements hold: 

(𝑖) deg(𝑎) = |𝐿| − 1 in 𝛹𝐹(𝐿), where 𝑎 ∈ 𝐹. 

(𝑖𝑖) deg(𝑎) = |𝐿| − 1 in 𝛹𝐴(𝐿), where 𝑎 ∈ 𝐴. 

Proof. (𝑖) We know by Theorem 3.5 (𝑖𝑖) , for all 𝑥 ∈ 𝐿, 𝑥 ⊕ 𝑎 ≥ 𝑎, where 𝑎 ∈ 𝐹.  Then by 

Definition 3.2 of filter 𝑥 ⊕ 𝑎 ∈ 𝐹.  So by Definition 6.1 (𝑖) of graph 𝛹𝐹(𝐿), 𝑥𝑎 ∈ 𝐸(𝛹𝐹(𝐿)). 

Then deg(𝑎) = |𝐿| − 1. 

(𝑖𝑖) We know by Theorem 3.5 (𝑖𝑖), for all 𝑥 ∈ 𝐿, 𝑥 ⊗ 𝑎 ≤ 𝑎, where 𝑎 ∈ 𝐴. Then by 

Definition 3.3 of LI- ideal 𝑥 ⊗ 𝑎 ∈ 𝐴. So, by Definition 6.1 (𝑖𝑖) of graph 𝛹𝐴(𝐿), 𝑥𝑎 ∈

𝐸(𝛹𝐴(𝐿)). Then deg(𝑎) = |𝐿| − 1. 

Theorem 6.4. Let 𝐹 and 𝐴 be a filter, an LI-ideal of 𝐿, respectively. Then the following 

statements hold: 

(𝑖)𝛹𝐹(𝐿) is regular if and only if it is complete. 

(𝑖𝑖)𝛹𝐴(𝐿) is regular if and only if it is complete. 
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(𝑖) Suppose that 𝛹𝐹(𝐿) is regular. Since by Theorem 6.3 (𝑖), deg(𝑎) = |𝐿| − 1, 𝑎 ∈ 𝐹, we 

have deg(𝑥) = |𝐿| − 1, for all 𝑥 ∈ 𝐿. Hence 𝛹𝐹(𝐿) is complete. Conversely a complete graph 

is regular. 

(𝑖𝑖) Suppose that 𝛹𝐴(𝐿) is regular. Since by Theorem 6.3 (𝑖𝑖), deg(𝑎) = |𝐿| − 1, 𝑎 ∈ 𝐴, we 

have deg(𝑥) = |𝐿| − 1, for all 𝑥 ∈ 𝐿. Hence 𝛹𝐴(𝐿) is complete. Conversely a complete graph 

is regular. 

Theorem 6.5. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively, 𝑥, 𝑦, 𝑎, 𝑏 ∈ 𝐿, 𝑥 ≤ 𝑎, 𝑦 ≤

𝑏. Then, the following statements hold: 

(𝑖) If 𝑥𝑦 ∈ 𝐸(𝛹𝐹(𝐿)), then𝑎𝑏 ∈ 𝐸(𝛹𝐹(𝐿)). 

(𝑖𝑖) If 𝑎𝑏 ∈ 𝐸(𝛹𝐴(𝐿)), then 𝑥𝑦 ∈ 𝐸(𝛹𝐴(𝐿)). 

Proof. (𝑖) We know by Theorem 3.5 (𝑖𝑣) that if 𝑥 ≤ 𝑎 and 𝑦 ≤ 𝑏, then 𝑥 ⊕ 𝑦 ≤ 𝑎 ⊕ 𝑏. If 

𝑥𝑦 ∈ 𝐸(𝛹𝐹(𝐿)) based on Definition 6.1 (𝑖) of graph 𝛹𝐹(𝐿), 𝑥 ⊕ 𝑦 ∈ 𝐹. Thus by Definition 

3.2 of filter 𝑎 ⊕ 𝑏 ∈ 𝐹. Hence, 𝑎𝑏 ∈ 𝐸(𝛹𝐹(𝐿)). 

(𝑖𝑖) We know from Theorem 3.5 (𝑖𝑣) that if 𝑥 ≤ 𝑎 and 𝑦 ≤ 𝑏, then 𝑥 ⊗ 𝑦 ≤ 𝑎 ⊗ 𝑏, and if 

𝑎𝑏 ∈ 𝐸(𝛹𝐴(𝐿)), then by Definition 6.1 (𝑖𝑖) of graph 𝛹𝐴(𝐿), 𝑎 ⊗ 𝑏 ∈ 𝐴. Thus by Definition 

3.3 of LI- ideal 𝑥 ⊗ 𝑦 ∈ 𝐴. Hence, 𝑥𝑦 ∈ 𝐸(𝛹𝐴(𝐿)). 

Theorem 6.6. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then, the following 

statements hold: 

(𝑖) deg(0) = |𝐹| in the graph 𝛹𝐹(𝐿). 

(𝑖𝑖) deg(𝐼) = |𝐴| in the graph 𝛹𝐴(𝐿). 

Proof. (𝑖) According to Theorem 3.5 (𝑖𝑖𝑖), 0 ⊕ 𝑥 = 𝑥 ∈ 𝐹, for all 𝑥 ∈ 𝐹. So, by Definition 

6.1 (𝑖) of graph 𝛹𝐹(𝐿), element 0 is connected to any element of 𝐹. So, 𝑑𝑒𝑔(0) = |𝐹|. 

(𝑖𝑖) According to Theorem 3.5 (𝑖𝑖𝑖), 𝐼 ⊗ 𝑥 = 𝑥 ∈ 𝐴, for all 𝑥 ∈ 𝐴. So, by Definition 6.1 (𝑖𝑖) 

of graph 𝛹𝐴(𝐿), element 𝐼 is connected to any element of 𝐴. So, 𝑑𝑒𝑔(𝐼) = |𝐴|. 

Theorem 6.7. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then, the following 

statements hold: 

(𝑖)𝑥′ ∈ 𝑁𝐺(𝑥), where 𝐺 = 𝛹𝐹(𝐿). 

(𝑖𝑖)𝑥′ ∈ 𝑁𝐺(𝑥), where 𝐺 = 𝛹𝐴(𝐿). 
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(𝑖) According to Theorem 3.5 (𝑖𝑖𝑖), 𝑥′ ⊕ 𝑥 = 𝐼 ∈ 𝐹, for all 𝑥 ∈ 𝐹. So, by Definition 6.1 (𝑖) 

of graph 𝛹𝐹(𝐿), element 𝑥 is connected to 𝑥′. So, 𝑥′ ∈ 𝑁𝐺(𝑥). 

(𝑖𝑖) According to Theorem 3.5 (𝑖𝑖𝑖), 𝑥′ ⊗ 𝑥 = 0 ∈ 𝐴, for all 𝑥 ∈ 𝐴. So, by Definition 6.1 (𝑖𝑖) 

of graph 𝛹𝐴(𝐿), element 𝑥 is connected to 𝑥′. So, 𝑥′ ∈ 𝑁𝐺(𝑥). 

Theorem 6.8. Let 𝐹 and 𝐴 be a filter, an LI- ideal of L, respectively, 𝑥 ≤ 𝑦, then the 

following statements hold: 

(𝑖)deg (𝑥) ≤ deg (𝑦) in the graph 𝛹𝐹(𝐿). 

(𝑖𝑖) deg(𝑦) ≤ deg (𝑥) in the graph 𝛹𝐴(𝐿). 

Proof. (𝑖) Let 𝑥 ≤ 𝑦, 𝑧 be connected to 𝑥 then 𝑧 ⊕ 𝑥 ∈ 𝐹. On the other hand, 𝑧 ⊕ 𝑥 ≤

𝑧 ⊕ 𝑦, then 𝑧 ⊕ 𝑦 ∈ 𝐹. Therefore, by Definition 6.1 (𝑖) of graph 𝛹𝐹(𝐿), 𝑧 is connected 

to 𝑦, thus deg (𝑥) ≤ deg (𝑦). 

(𝑖𝑖) Let 𝑥 ≤ 𝑦, 𝑧 be connected to 𝑦 then 𝑧 ⊗ 𝑦 ∈ 𝐴. On the other hand, 𝑧 ⊗ 𝑥 ≤ 𝑧 ⊗ 𝑦, 

then 𝑧 ⊗ 𝑥 ∈ 𝐴. Therefore, by Definition 6.1 (𝑖𝑖) of graph 𝛹𝐴(𝐿), 𝑧 is connected to 𝑥. 

Thus, deg (𝑦) ≤ deg (𝑥). 

Theorem 6.9. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then, the following 

statements hold: 

(𝑖)𝑔𝑟(𝛹𝐹(𝐿)) = {3, ∞}. 

(𝑖𝑖)𝑔𝑟(𝛹𝐴(𝐿)) = {3, ∞}. 

Proof. (𝑖) Let |𝑐𝑜𝑎𝑡𝑜𝑚(𝐿)| ≥ 2 then we can choose 𝑚, 𝑚′ ∈ 𝑐𝑜𝑎𝑡𝑜𝑚(𝐿). It is clear that 𝐼 −

𝑚 − 𝑚′ − 𝐼 is a cycle of length 3. Now, suppose |𝑐𝑜𝑎𝑡𝑜𝑚(𝐿)| = 1, then we have 

𝑐𝑜𝑎𝑡𝑜𝑚(𝐿) = {𝑚}. Now we have the following cases: 

(𝑖) If |𝐿| ≥ 4. Then there exist 𝑥𝑖 ∈ 𝐿, 𝑥𝑖 ≠ 0, 𝑚, 𝐼. So, 𝑥𝑖
′ → 𝑚 = 𝐼. Since 𝑥𝑖

′ ≤ 𝑚. Otherwise 

𝑥𝑖
′ > 𝑚 that implies 𝑥𝑖

′ = 𝐼, then 𝑥𝑖 = 0 that is contradiction. Then 𝐼 − 𝑥𝑖 − 𝑚 − 𝐼 is a cycle 

of length 3. Thus, in this case we have 𝑔𝑟(𝛹𝐹(𝐿)) = 3. 

(𝑖𝑖) If |𝐿| = 3, 𝑚 ∈ 𝐹. Then 𝐿 = {0, 𝑚, 𝐼}. Also, we have 0 ⊕ 𝑚 = 𝑚 ∈ 𝐹. Then 0 − 𝑚 −

𝐼 − 0 is a cycle of length 3. Thus 𝑔𝑟(𝛹𝐹(𝐿)) = 3. 

(𝑖𝑖𝑖) If |𝐿| = 3, 𝐹 = {𝐼}, we have 0 ⊕ 𝑚 = 𝑚 ∉ 𝐹. Thus 0 is not connected to 𝑚, so 𝛹𝐹(𝐿) is 

star graph. Then 𝑔𝑟(𝛹𝐹(𝐿)) = ∞. 
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(𝑖𝑖) Let |𝑎𝑡𝑜𝑚(𝐿)| ≥ 2 then we can choose 𝑎, 𝑎′ ∈ 𝑎𝑡𝑜𝑚(𝐿). It is clear that 0 − 𝑎 − 𝑎′ − 0 is 

a cycle of length 3. Now, suppose |𝑎𝑡𝑜𝑚(𝐿)| = 1, then we have 𝑎𝑡𝑜𝑚(𝐿) = {𝑎}. Now we 

have the following cases: 

(𝑖) If |𝐿| ≥ 4. Then there exist 𝑦𝑖 ∈ 𝐿, 𝑦𝑖 ≠ 0, 𝑎, 𝐼. So, (𝑎 → 𝑦𝑖′)′ = 0. Since 𝑎 ≤ 𝑦𝑖′. 

Otherwise 𝑎 > 𝑦𝑖′ that implies 𝑦𝑖
′ = 0, then 𝑦𝑖 = 𝐼 that is contradiction. Then 0 − 𝑎 − 𝑦𝑖 − 0 

is a cycle of length 3. Thus, in this case we have 𝑔𝑟(𝛹𝐴(𝐿)) = 3. 

(𝑖𝑖) If |𝐿| = 3, 𝑎 ∈ 𝐴. Then 𝐿 = {0, 𝑎, 𝐼}. Also, we have 𝐼 ⊗ 𝑎 = 𝑎 ∈ 𝐴. Then 𝐼 − 𝑎 − 0 − 𝐼 

is a cycle of length 3. Thus 𝑔𝑟(𝛹𝐴(𝐿)) = 3. 

(𝑖𝑖𝑖) If |𝐿| = 3, 𝐴 = {0}, we have 𝐼 ⊗ 𝑎 = 𝑎 ∉ 𝐴. Thus 𝐼 is not connected to 𝑎, so 𝛹𝐴(𝐿) is 

star graph. Then 𝑔𝑟(𝛹𝐴(𝐿)) = ∞. 

Theorem 6.10. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then, the following 

statements hold: 

(𝑖)𝜔(𝛹𝐹(𝐿)) ≥ max{|𝐹|, |𝑐𝑜𝑎𝑡𝑜𝑚(𝐿)| + 1}. 

(𝑖𝑖)𝜔(𝛹𝐴(𝐿)) ≥ max {|𝐴|, |𝑎𝑡𝑜𝑚(𝐿)| + 1}. 

Proof. (𝑖) We have 𝑚˅𝑛 = 𝐼, for all 𝑚, 𝑛 ∈ 𝑐𝑜𝑎𝑡𝑜𝑚(𝐿), since 𝑚˅𝑛 ≤ 𝑚′ → 𝑛 = 𝑚 ⊕

𝑛. Then 𝑚 ⊕ 𝑛 = 𝐼.  So, 𝑚𝑛 ∈ 𝐸(𝛹𝐹(𝐿)). Also, for all 𝑥, 𝑦 ∈ 𝐹, 𝑥 ⊕ 𝑦 = 𝑥′ → 𝑦 ∈ 𝐹. Thus 

𝑥𝑦 ∈ 𝐸(𝛹𝐹(𝐿)), this implies that 𝜔(𝛹𝐹(𝐿)) ≥ max {|𝐹|, |𝑐𝑜𝑎𝑡𝑜𝑚(𝐿)| + 1}. 

(𝑖𝑖) We have 𝑎˄𝑏 = 0, for all 𝑎, 𝑏 ∈ 𝑎𝑡𝑜𝑚(𝐿), since 𝑎 ⊗ 𝑏 = (𝑎 → 𝑏′)′ ≤ 𝑎˄𝑏. Then 𝑎 ⊗

𝑏 = 0. So, 𝑎𝑏 ∈ 𝐸(𝛹𝐴(𝐿)). Also, for all 𝑥, 𝑦 ∈ 𝐴, 𝑥 ⊗ 𝑦 = (𝑥 → 𝑦′)′ ∈ 𝐴. Thus 𝑥𝑦 ∈

𝐸(𝛹𝐴(𝐿)), this implies that 𝜔(𝛹𝐴(𝐿)) ≥ max {|𝐴|, |𝑎𝑡𝑜𝑚(𝐿)| + 1}. 

Theorem 6.11. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then, the following 

statements hold: 

 (𝑖)𝛹𝐹(𝐿)  is an Euler graph if and only if |𝐿| is odd. 

(𝑖𝑖)𝛹𝐴(𝐿) is an Euler graph if and only if |𝐿| is odd. 

Proof. (𝑖) Theorem 6.3 (𝑖) says that 𝛹𝐹(𝐿) is connected. So, by Euler’s theorem, 𝛹𝐹(𝐿) is an 

Euler graph if and only if the degree of any vertex is even. Therefore, if 𝛹𝐹(𝐿) is an Euler 

graph, then 𝑑𝑒𝑔(𝐼) is even. On the other hand, by Theorem 6.3 (𝑖), deg(𝐼) = |𝐿| − 1 in the 

graph 𝛹𝐹(𝐿). Therefore, if 𝛹𝐹(𝐿) is an Euler graph, then |𝐿| is odd. Hence, this is proved. 
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(𝑖𝑖) Theorem 6.3 (𝑖𝑖) says that 𝛹𝐴(𝐿) is connected. So, by Euler’s theorem, 𝛹𝐴(𝐿) is an Euler 

graph if and only if the degree of any vertex is even. Therefore, if 𝛹𝐴(𝐿) is an Euler graph, 

then 𝑑𝑒𝑔(0) is even. On the other hand, by Theorem 6.3 (𝑖𝑖), deg(0) = |𝐿| − 1 in the graph 

𝛹𝐴(𝐿). Therefore, if 𝛹𝐴(𝐿) is an Euler graph, then |𝐿| is odd. Hence, this is proved. 

Theorem 6.12. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then, the following 

statements hold: 

(𝑖) If |𝑐𝑜𝑎𝑡𝑜𝑚(𝐿)| ≥ 4, then 𝛹𝐹(𝐿) is not planar. 

(𝑖𝑖) If |𝑐𝑜𝑎𝑡𝑜𝑚(𝐿)| ≥ 3, then 𝛹𝐹(𝐿) is not outerplanar. 

(𝑖𝑖𝑖) If |𝑐𝑜𝑎𝑡𝑜𝑚(𝐿)| ≥ 7, then 𝛹𝐹(𝐿) is not toroidal. 

(𝑖𝑣) If |𝑎𝑡𝑜𝑚(𝐿)| ≥ 4, then 𝛹𝐴(𝐿) is not planar. 

(𝑣) If |𝑎𝑡𝑜𝑚(𝐿)| ≥ 3, then 𝛹𝐴(𝐿) is not outerplanar. 

(𝑣𝑖) If |𝑎𝑡𝑜𝑚(𝐿)| ≥ 7, then 𝛹𝐴(𝐿) is not toroidal. 

Proof. (𝑖) We know vertex 𝐼 is connected to any element in 𝐿. Also, for all 𝑥, 𝑦 ∈ 𝑐𝑜𝑎𝑡𝑜𝑚(𝐿), 

we have 𝑥 ⊕ 𝑦 = 𝐼 ∈ 𝐹. Since 𝑥˅𝑦 ≤ 𝑥′ → 𝑦, 𝑥˅𝑦 = 𝐼. Then, for all 𝑥, 𝑦 ∈ 𝑐𝑜𝑎𝑡𝑜𝑚(𝐿), 𝑥𝑦 ∈

𝐸(𝛹𝐹(𝐿)). So, by assumption,  𝛹𝐹(𝐿) has a subgraph isomorphic to 𝐾5. Then, by 

Kuratowski’s theorem 𝛹𝐹(𝐿) is not planar. 

(𝑖𝑖) We know vertex 𝐼 is connected to any element in 𝐿. Also, for all 𝑥, 𝑦 ∈ 𝑐𝑜𝑎𝑡𝑜𝑚(𝐿), we 

have 𝑥 ⊕ 𝑦 = 𝐼 ∈ 𝐹. Since 𝑥˅𝑦 ≤ 𝑥′ → 𝑦, 𝑥˅𝑦 = 𝐼. Then, for all 𝑥, 𝑦 ∈ 𝑐𝑜𝑎𝑡𝑜𝑚(𝐿), 𝑥𝑦 ∈

𝐸(𝛹𝐹(𝐿)). So, by assumption,  𝛹𝐹(𝐿) has a subgraph isomorphic to 𝐾4. Then, by Definition 

2.5 𝛹𝐹(𝐿) is not outerplanar. 

(𝑖𝑖𝑖) We know vertex 𝐼 is connected to any element in 𝐿. Also, for all 𝑥, 𝑦 ∈ 𝑐𝑜𝑎𝑡𝑜𝑚(𝐿), we 

have 𝑥 ⊕ 𝑦 = 𝐼 ∈ 𝐹. Since 𝑥˅𝑦 ≤ 𝑥′ → 𝑦, 𝑥˅𝑦 = 𝐼. Then, for all 𝑥, 𝑦 ∈ 𝑐𝑜𝑎𝑡𝑜𝑚(𝐿), 𝑥𝑦 ∈

𝐸(𝛹𝐹(𝐿)). So, by assumption, 𝛹𝐹(𝐿) has a subgraph isomorphic to 𝐾8. Then, by Theorem 2.7 

𝛹𝐹(𝐿) is not toroidal. 

(𝑖𝑣) We know vertex 0 is connected to any element in 𝐿. Also, for all 𝑥, 𝑦 ∈ 𝑎𝑡𝑜𝑚(𝐿), we 

have 𝑥 ⊗ 𝑦 = 0 ∈ 𝐴. Since 𝑥˄𝑦 ≥ (𝑥′ → 𝑦)′, 𝑥˄𝑦 = 0. Then, for all 𝑥, 𝑦 ∈ 𝑎𝑡𝑜𝑚(𝐿), 𝑥𝑦 ∈

𝐸(𝛹𝐴(𝐿)). So, 𝛹𝐴(𝐿) has a subgraph isomorphic to 𝐾5. Then, by Kuratowski’s theorem 

𝛹𝐴(𝐿) is not planar. 

(𝑣) We know vertex 0 is connected to any element in 𝐿. Also, for all 𝑥, 𝑦 ∈ 𝑎𝑡𝑜𝑚(𝐿), we 

have 𝑥 ⊗ 𝑦 = 0 ∈ 𝐴. Since 𝑥˄𝑦 ≥ (𝑥′ → 𝑦)′, 𝑥˄𝑦 = 0. Then, for all 𝑥, 𝑦 ∈ 𝑎𝑡𝑜𝑚(𝐿), 𝑥𝑦 ∈
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𝐸(𝛹𝐴(𝐿)). So, 𝛹𝐴(𝐿) has a subgraph isomorphic to 𝐾4. Then, by Definition 2.5 𝛹𝐴(𝐿) is not 

outerplanar. 

(𝑣𝑖) We know vertex 0 is connected to any element in 𝐿. Also, for all 𝑥, 𝑦 ∈ 𝑎𝑡𝑜𝑚(𝐿), we 

have 𝑥 ⊗ 𝑦 = 0 ∈ 𝐴. Since 𝑥˄𝑦 ≤ (𝑥′ → 𝑦)′, 𝑥˄𝑦 = 0. Then, for all 𝑥, 𝑦 ∈ 𝑎𝑡𝑜𝑚(𝐿), 𝑥𝑦 ∈

𝐸(𝛹𝐴(𝐿)). So, 𝛹𝐴(𝐿) has a subgraph isomorphic to 𝐾8. Then, by Theorem 2.7 𝛹𝐴(𝐿) is not 

toroidal. 

7. Graphs of lattice implication algebras based on filter and LI- 

ideal via the concepts of annihilator, binary operations ⊕ and 

⊗. 

Definition 7.1. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then the set of all zero-

divisors of 𝑥 by 𝐹 and 𝐴 are defined as follows: 

(𝑖)𝐴𝑛𝑛⊕{𝑥} = {𝑦 ∈ 𝐿; 𝑥 ⊕ 𝑦 ∈ 𝐹}. 

(𝑖𝑖)𝐴𝑛𝑛⊗{𝑥} = {𝑦 ∈ 𝐿; 𝑥 ⊗ 𝑦 ∈ 𝐴}. 

Definition 7.2. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then we have: 

(𝑖)Ω𝐹(𝐿) is a simple graph with vertex set 𝐿 and two distinct vertices 𝑥 and 𝑦 being adjacent 

if and only if 𝐴𝑛𝑛⊕{𝑥, 𝑦} = 𝐹. 

(𝑖𝑖)Ω𝐴(𝐿) is a simple graph with vertex set 𝐿 and two distinct vertices 𝑥 and 𝑦 being adjacent 

if and only if 𝐴𝑛𝑛⊗{𝑥, 𝑦} = 𝐴. 

Example 7.3. Consider lattice implication algebra is defined in Example 4.4, 𝐹 = {𝑏, 𝑐, 𝐼}, 

and 𝐴 = {0, 𝑐}. Then, we have 𝐴𝑛𝑛⊕{𝑏} = 𝐴𝑛𝑛⊕{𝑐} = 𝐴𝑛𝑛⊕{𝐼} = 𝐿, 𝐴𝑛𝑛⊕{0} =

𝐴𝑛𝑛⊕{𝑎} = 𝐴𝑛𝑛⊕{𝑑} = 𝐹, 𝐴𝑛𝑛⊗{0} = 𝐴𝑛𝑛⊗{𝑐} = 𝐿, 𝐴𝑛𝑛⊗{𝑎} = 𝐴𝑛𝑛⊗{𝐼} =

𝐴, 𝐴𝑛𝑛⊗{𝑏} = 𝐴𝑛𝑛⊗{𝑑} = {0, 𝑏, 𝑐, 𝑑}, Then 𝐸(Ω𝐹(𝐿)) =

{0𝑎, 0𝑏, 0𝑐, 0𝑑, 0𝐼, 𝑎𝑏, 𝑎𝑐, 𝑎𝑑, 𝑎𝐼, 𝑏𝑑, 𝑐𝑑, 𝑑𝐼} and 𝐸(Ω𝐴(𝐿)) =

{0𝑎, 𝑎𝑏, 𝑎𝑐, 𝑎𝑑, 𝑎𝐼, 0𝐼, 𝑏𝐼, 𝑐𝐼, 𝑑𝐼}. 

Theorem 7.4. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then the following 

statements hold: 

(𝑖) deg(0) = |𝐿| − 1, deg(𝐼) = |𝐷⊕(𝐿)|, in the graph 𝐺 = Ω𝐹(𝐿), where 𝐷⊕(𝐿) = {𝑥 ∈

𝐿; 𝐴𝑛𝑛⊕{𝑥} = 𝐹}. 
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(𝑖𝑖) deg(𝐼) = |𝐿| − 1, deg(0) = |𝐷⊗(𝐿)|, in the graph 𝐺 = Ω𝐴(𝐿), where 𝐷⊗(𝐿) =

{𝑥 ∈ 𝐿; 𝐴𝑛𝑛⊗{𝑥} = 𝐴}. 

Proof. (𝑖) We know 𝑁𝐺({0}) = {𝑥 ∈ 𝐿; 𝐴𝑛𝑛⊕{0, 𝑥} = 𝐹}, 𝐴𝑛𝑛⊕{0, 𝑥} = 𝐴𝑛𝑛⊕{0} ∩

𝐴𝑛𝑛⊕{𝑥} = 𝐹 ∩ 𝐴𝑛𝑛⊕{𝑥} = 𝐹, then deg(0) = |𝐿| − 1, 𝑁𝐺({𝐼}) = {𝑥 ∈ 𝐿; 𝐴𝑛𝑛⊕{𝑥, 𝐼} =

𝐹} = 𝐷⊕(𝐿). Thus, deg(𝐼) = |𝐷⊕(𝐿)|. 

(𝑖𝑖) We know 𝑁𝐺({𝐼}) = {𝑥 ∈ 𝐿; 𝐴𝑛𝑛⊗{𝑥, 𝐼} = 𝐴}, 𝐴𝑛𝑛⊗{𝑥, 𝐼} = 𝐴𝑛𝑛⊗{𝑥} ∩ 𝐴𝑛𝑛⊗{𝐼} =

𝐴𝑛𝑛⊗{𝑥} ∩ 𝐴 = 𝐴, then deg(𝐼) = |𝐿| − 1, 𝑁𝐺(0) = {𝑥 ∈ 𝐿; 𝐴𝑛𝑛⊗{0, 𝑥} = 𝐴} = 𝐷⊗(𝐿). 

Thus, deg(0) = |𝐷⊗(𝐿)|. 

Theorem 7.5. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then the following 

statements hold: 

(𝑖)𝑑𝑖𝑎𝑚 (Ω𝐹(𝐿)) ≤ 2. 

(𝑖𝑖)𝑑𝑖𝑎𝑚(Ω𝐴(𝐿)) ≤ 2. 

Proof. (𝑖) We know by Theorem 7.4 that the vertex 0 is connected to every element in 𝐿. 

Now, if there exist 𝑥, 𝑦 ∈ 𝐿, 𝑥, 𝑦 ≠ 0 and 𝑥𝑦 ∈ 𝐸(Ω𝐹(𝐿)), then 𝑑𝑖𝑎𝑚(Ω𝐹(𝐿)) = 1; otherwise, 

𝑑𝑖𝑎𝑚(Ω𝐹(𝐿)) = 2. 

(𝑖𝑖) We know by Theorem 7.4 that vertex 𝐼 is connected to every element in 𝐿. Now, if there 

exist 𝑥, 𝑦 ∈ 𝐿, 𝑥, 𝑦 ≠ 𝐼, 𝑥𝑦 ∈ 𝐸(Ω𝐴(𝐿)), then 𝑑𝑖𝑎𝑚(Ω𝐴(𝐿)) = 1; otherwise, 𝑑𝑖𝑎𝑚(Ω𝐴(𝐿)) =

2. 

Theorem 7.6. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then the following 

statements hold: 

(𝑖) Graph Ω𝐹(𝐿) is regular if and only if it is complete. 

(𝑖𝑖) Graph Ω𝐴(𝐿) is regular if and only if it is complete. 

Proof.  (𝑖) Suppose that Ω𝐹(𝐿) is regular. We have deg(0) = |𝐿| − 1. Since Ω𝐹(𝐿) is regular, 

deg(𝑥) = |𝐿| − 1, for all 𝑥 ∈ 𝐿. Hence, Ω𝐹(𝐿) is complete. Conversely, a complete graph is 

regular. 

(𝑖𝑖) Suppose that Ω𝐴(𝐿) is regular. We have deg(𝐼) = |𝐿| − 1. Since Ω𝐴(𝐿) is regular, 

deg(𝑥) = |𝐿| − 1, for all 𝑥 ∈ 𝐿. Hence, Ω𝐴(𝐿) is complete. Conversely, a complete graph is 

regular. 
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Theorem 7.7. Let 𝐹 and 𝐴 be a proper filter, a proper LI- ideal of 𝐿, respectively. Then the 

following statements hold: 

(𝑖)𝛼(Ω𝐹(𝐿)) ≥ |𝐹|, where 𝐺 = Ω𝐹(𝐿). 

(𝑖𝑖)𝛼(Ω𝐴(𝐿)) ≥ |𝐴|, where 𝐺 = Ω𝐴(𝐿). 

Proof. (𝑖) We know for all 𝑥, 𝑦 ∈ 𝐹, 𝐴𝑛𝑛⊕{𝑥} = 𝐿 and 𝐴𝑛𝑛⊕{𝑦} = 𝐿. Then, 𝐴𝑛𝑛⊕{𝑥, 𝑦} =

𝐿. Now, if 𝑥𝑦 ∈ 𝐸(Ω𝐹(𝐿)), then 𝐿 = 𝐹 which is contradiction. Then 𝛼(Ω𝐹(𝐿)) ≥ |𝐹|. 

(𝑖𝑖) We know for all 𝑥, 𝑦 ∈ 𝐴, 𝐴𝑛𝑛⊗{𝑥} = 𝐿 and 𝐴𝑛𝑛⊗{𝑦} = 𝐿. Then, 𝐴𝑛𝑛⊗{𝑥, 𝑦} = 𝐿. 

Now, if 𝑥𝑦 ∈ 𝐸(Ω𝐴(𝐿)), then 𝐿 = 𝐴 which is contradiction. Then 𝛼(Ω𝐴(𝐿)) ≥ |𝐴|. 

Theorem 7.8. Let 𝐹 be a filter of 𝐿. Then Ω𝐹(𝐿) is a star graph if satisfies  the two following 

conditions: 

(𝑖)|𝐷⊕(𝐿)| = 1, 𝐷⊕(𝐿) = {𝑥 ∈ 𝐿; 𝐴𝑛𝑛⊕{𝑥, 𝑦} = 𝐹}. 

(𝑖𝑖)|𝑎𝑡𝑜𝑚(𝐿)| = 1. 

Proof. We know the vertex 0 is connected to every element of 𝐿. Now, suppose  there exist 

𝑥, 𝑦 ≠ 0 in such away that 𝑥𝑦 ∈ 𝐸(Ω𝐹(𝐿)), thus 𝐴𝑛𝑛⊕{𝑥, 𝑦} = 𝐹. On the other hand 

|𝑎𝑡𝑜𝑚(𝐿)| = 1. Let 𝑎 ∈ 𝑎𝑡𝑜𝑚(𝐿), thus 𝑎 ≤ 𝑥 and 𝑎 ≤ 𝑦, if there exists 𝑡 where 𝑡 ⊕ 𝑎 ∈ 𝐹, 

then 𝑡 ⊕ 𝑥 ∈ 𝐹 and 𝑡 ⊕ 𝑦 ∈ 𝐹, since 𝐴𝑛𝑛⊕{𝑥, 𝑦} = 𝐹, we have 𝑡 ∈ 𝐹, which implies 𝑎 ∈

𝐷⊕(𝐿), this is contrary to |𝐷⊕(𝐿)| = 1 as 0 ∈  𝐷⊕(𝐿), 𝑎 ≠ 0. 

Theorem 7.9. Let 𝐴 be an LI- ideal of 𝐿. Then Ω𝐴(𝐿) is a star graph if satisfies the two 

following conditions: 

(𝑖)|𝐷⊗(𝐿)| = 1, 𝐷⊗(𝐿) = {𝑥 ∈ 𝐿; 𝐴𝑛𝑛⊗{𝑥, 𝑦} = 𝐴}. 

(𝑖𝑖)|𝑐𝑜𝑎𝑡𝑜𝑚(𝐿)| = 1. 

Proof.  We know the vertex 𝐼 is connected to every element of 𝐿. Now, suppose there exist 

𝑥, 𝑦 ≠ 𝐼 in such away that 𝑥𝑦 ∈ 𝐸(Ω𝐴(𝐿)), thus 𝐴𝑛𝑛⊗{𝑥, 𝑦} = 𝐴. On the other hand 

|𝑐𝑜𝑎𝑡𝑜𝑚(𝐿)| = 1. Let 𝑚 ∈ 𝑐𝑜𝑎𝑡𝑜𝑚(𝐿), thus 𝑥 ≤ 𝑚  and 𝑦 ≤ 𝑚, if there exists 𝑠 where 𝑠 ⊗

𝑚 ∈ 𝐴, then 𝑠 ⊗ 𝑥 ∈ 𝐴 and 𝑠 ⊗ 𝑦 ∈ 𝐴, since 𝐴𝑛𝑛⊗{𝑥, 𝑦} = 𝐴, we have 𝑠 ∈ 𝐴, which implies 

𝑚 ∈  𝐷⊗(𝐿), this is contrary to |𝐷⊗(𝐿)| = 1 as 𝐼 ∈ 𝐷⊗(𝐿), 𝑚 ≠ 𝐼. 

Proposition 7.10. Suppose that |𝐷⊕(𝐿)| = 𝑛, |𝐷⊗(𝐿)| = 𝑛, then the following statements 

hold: 

(𝑖)𝜔(Ω𝐹(𝐿)) ≥ 𝑛 + 1. 
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(𝑖𝑖)𝜔(Ω𝐴(𝐿)) ≥ 𝑛 + 1. 

Proof. (𝑖) Let |𝐷⊕(𝐿)| = 𝑛, then there exist 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝐷⊕(𝐿). So, for all 𝑖 =

1, 2, … , 𝑛, 𝑡 ⊕ 𝑥𝑖 ∈ 𝐹 implies 𝑡 ∈ 𝐹, then 𝑥𝑖𝑥𝑗 ∈ 𝐸(Ω𝐹(𝐿)) for all 𝑖, 𝑗 = 1, 2, … , 𝑛. Also, the 

vertex 0 is connected to every element in 𝐿. Hence, Ω𝐹(𝐿) contains a clique of length 𝑛 + 1. 

So, by Definition 2.1 of clique number 𝜔(Ω𝐹(𝐿)) ≥ 𝑛 + 1. 

(𝑖𝑖) Let |𝐷⊗(𝐿)| = 𝑛, then there exist 𝑥1, 𝑥2, … , 𝑥𝑛 ∈  𝐷⊗(𝐿). So, for all 𝑖 = 1, 2, … , 𝑛, 𝑡 ⊗

𝑥𝑖 ∈ 𝐴 suggests 𝑡 ∈ 𝐴. Then 𝑥𝑖𝑥𝑗 ∈ 𝐸(Ω𝐴(𝐿)) for all 𝑖, 𝑗 = 1, 2, … , 𝑛. Also, the vertex 𝐼 is 

connected to every element in 𝐿. Hence, Ω𝐴(𝐿) contains a clique of length 𝑛 + 1. So, by 

Definition 2.1 of clique number 𝜔(Ω𝐴(𝐿)) ≥ 𝑛 + 1. 

Theorem 7.11. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then the following 

statements hold: 

(𝑖)Ω𝐹(𝐿) is an Euler graph if and only if |𝐿| is odd. 

(𝑖𝑖)Ω𝐴(𝐿) is an Euler graph if and only if |𝐿| is odd. 

Proof. (𝑖) According to Theorem 7.4 (𝑖), we know Ω𝐹(𝐿) is a connected graph. So, based on 

Euler’s theorem, which states that a connected graph is an Euler graph if and only if the 

degree of every vertex is even, hence Ω𝐹(𝐿) is an Euler graph, then deg (0) is even. 

Meanwhile, according to Theorem 7.4 (𝑖), we have deg(0) = |𝐿| − 1, therefore, if Ω𝐹(𝐿) is 

an Euler graph, then |𝐿| is odd. Hence, this is proved completely. 

(𝑖𝑖) According to Theorem 7.4 (𝑖𝑖), we know Ω𝐴(𝐿) is a connected graph. So, based on 

Euler’s theorem , which states that a connected graph is an Euler graph if and only if the 

degree of every vertex is even, thus, if Ω𝐴(𝐿) is an Euler graph, then deg (𝐼) is even. On the 

other hand, with Theorem 7.4 (𝑖𝑖), we have deg(𝐼) = |𝐿| − 1, so, if Ω𝐴(𝐿) is an Euler graph, 

then |𝐿| is odd. Hence, this is proved completely. 

Theorem 7.12. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Also, 𝐷⊕(𝐿) =

{𝑚, 𝐼}, 𝐷⊗(𝐿) = {0, 𝑎}, where 𝑚 ∈ 𝑐𝑜𝑎𝑡𝑜𝑚(𝐿), 𝑎 ∈ 𝑎𝑡𝑜𝑚(𝐿), 𝐴 = {𝑥 ∈ 𝐿; 𝑚 𝑐𝑜𝑣𝑒𝑟𝑠 𝑥}, and 

𝐵 = {𝑥 ∈ 𝐿; 𝑥 𝑐𝑜𝑣𝑒𝑟𝑠 𝑎}. Then the following statements hold: 

(𝑖) If |𝐴| ≥ 3, then Ω𝐹(𝐿) is not planar. 

(𝑖𝑖) If |𝐴| ≥ 2, then Ω𝐹(𝐿) is not outerplanar. 

(𝑖𝑖𝑖) If |𝐴| ≥ 6, then Ω𝐹(𝐿) is not toroidal. 

(𝑖𝑣) If |𝐵| ≥ 3, then Ω𝐴(𝐿) is not planar. 
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(𝑣) If |𝐵| ≥ 2, then Ω𝐴(𝐿) is not outerplanar. 

(𝑣𝑖) If |𝐵| ≥ 6, then Ω𝐴(𝐿) is not toroidal. 

Proof. (𝑖) Let |𝐴| ≥ 3, then there exist 𝑥1, 𝑥2, 𝑥3 ∈ 𝐴. We have 𝑡 ⊕ 𝑥𝑖 ≤ 𝑡 ⊕ 𝑚 for all 𝑖 =

1, 2, 3. If there exists 𝑡 where 𝑡 ⊕ 𝑥𝑖 ∈ 𝐹, 𝑖 = 1, 2, 3, then 𝑡 ⊕ 𝑚 ∈ 𝐹. Since 𝐷⊕(𝐿) = {𝑚, 𝐼}, 

then 𝑡 ∈ 𝐹. So, 𝑚𝑥𝑖 , 𝑥𝑖𝑥𝑗 ∈ 𝐸(Ω𝐹(𝐿)) for all 𝑖, 𝑗 = 1, 2, 3. Also, the vertex 0 is connected to 

every element in 𝐿. So, the induced subgraph of Ω𝐹(𝐿) on {0, 𝑥1, 𝑥2, 𝑥3, 𝑚} is isomorphic to 

𝐾5. Thus, based on Kuratowski’s theorem, Ω𝐹(𝐿) is not planar. 

(𝑖𝑖) Let |𝐴| ≥ 2, then there exist 𝑥1, 𝑥2 ∈ 𝐴. We have 𝑡 ⊕ 𝑥𝑖 ≤ 𝑡 ⊕ 𝑚 for all 𝑖 = 1, 2. If 

there exists 𝑡 such that 𝑡 ⊕ 𝑥𝑖 ∈ 𝐹, 𝑖 = 1, 2, then 𝑡 ⊕ 𝑚 ∈ 𝐹. Since 𝐷⊕(𝐿) = {𝑚, 𝐼}, then 𝑡 ∈

𝐹. So, 𝑥𝑖𝑥𝑗 , 𝑥𝑖𝑚 ∈ 𝐸(Ω𝐹(𝐿)) for all 𝑖, 𝑗 = 1, 2. Further, the vertex 0 is connected to every 

element in 𝐿. So, the induced subgraph of Ω𝐹(𝐿) on {0, 𝑥1, 𝑥2, 𝑚} is isomorphic to 𝐾4. Hence, 

based on Definition 2.5, Ω𝐹(𝐿) is not outerplanar. 

(𝑖𝑖𝑖) Let |𝐴| ≥ 6, then there exist 𝑥1, … , 𝑥6 ∈ 𝐴. We have 𝑡 ⊕ 𝑥𝑖 ≤ 𝑡 ⊕ 𝑚 for all 𝑖 = 1, … , 6. 

If there exists 𝑡 where 𝑡 ⊕ 𝑥𝑖 ∈ 𝐹, 𝑖 = 1, … , 6, then 𝑡 ⊕ 𝑚 ∈ 𝐹. Since 𝐷⊕(𝐿) =  {𝑚, 𝐼}, then 

𝑡 ∈ 𝐹. So, 𝑥𝑖𝑥𝑗, 𝑥𝑖𝑚 ∈ 𝐸(Ω𝐹(𝐿)) for all 𝑖, 𝑗 = 1, … , 6. Also, the vertex 0 is connected to every 

element in 𝐿. So, the induced subgraph of Ω𝐹(𝐿) on {0, 𝑥1, … , 𝑥6, 𝑚} is isomorphic to 𝐾8. 

Then, according to Theorem 2.7, Ω𝐹(𝐿) is not toroidal. 

(𝑖𝑣) Let |𝐵| ≥ 3, then there exist 𝑥1, 𝑥2, 𝑥3 ∈ 𝐵. We have 𝑠 ⊗ 𝑎 ≤ 𝑠 ⊗ 𝑥𝑖 for all 𝑖 = 1, 2, 3. 

If there exists 𝑠 such that 𝑠 ⊗ 𝑥𝑖 ∈ 𝐴, 𝑖 = 1, 2, 3, then 𝑠 ⊗ 𝑎 ∈ 𝐴. Therefore, 𝑠 ∈ 𝐴. So, 

𝑎𝑥𝑖 , 𝑥𝑖𝑥𝑗 ∈ 𝐸(Ω𝐴(𝐿)) for all 𝑖, 𝑗 = 1, 2, 3. In addition, the vertex 𝐼 is connected to every 

element in 𝐿. Hence, the induced subgraph of Ω𝐴(𝐿) on {𝑎, 𝑥1, 𝑥2, 𝑥3, 𝐼} is isomorphic to 𝐾5. 

Then, with Kuratowski’s theorem, Ω𝐴(𝐿) is not planar. 

(𝑣) Let |𝐵| ≥ 2, then there exist 𝑥1, 𝑥2 ∈ 𝐵. We have 𝑠 ⊗ 𝑎 ≤ 𝑠 ⊗ 𝑥𝑖 for all 𝑖 = 1, 2, then 

𝑠 ⊗ 𝑎 ∈ 𝐴. Thus, 𝑠 ∈ 𝐴. So, 𝑎𝑥𝑖 , 𝑥𝑖𝑥𝑗 ∈ 𝐸(Ω𝐴(𝐿)) for all 𝑖, 𝑗 = 1, 2. Additionally, the vertex 

𝐼 is connected to every element in 𝐿. So, the induced subgraph of Ω𝐴(𝐿) on {𝑎, 𝑥1, 𝑥2, 𝐼} is 

isomorphic to 𝐾4. Hence, based on Definition 2.5, Ω𝐴(𝐿) is not outerplanar. 

(𝑣𝑖) Let |𝐵| ≥ 6, then there exist 𝑥1, … , 𝑥6 ∈ 𝐵. We have 𝑠 ⊗ 𝑎 ≤ 𝑠 ⊗ 𝑥𝑖 for all 𝑖 = 1, … , 6. 

If there exists 𝑠 such that 𝑠 ⊗ 𝑥𝑖 ∈ 𝐴, 𝑖 = 1, … , 6. Also, the vertex 𝐼 is connected to every 

element in 𝐿. So, the induced subgraph of Ω𝐴(𝐿) on {𝑎, 𝑥1, … , 𝑥6, 𝐼} is isomorphic to 𝐾8. 

Hence, by Theorem 2.7, Ω𝐴(𝐿) is not toroidal. 
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8. Graphs of lattice implication algebras based on filter and LI- 

ideal via the binary operations ˅ and ˄. 

Definition 8.1. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then, we have: 

(𝑖)𝛶𝐹(𝐿) is a simple graph, with vertex set 𝐿 and two distinct vertices 𝑥 and 𝑦 are adjacent if 

and only if 𝑥˅𝑦 ∈ 𝐹. 

(𝑖𝑖)𝛶𝐴(𝐿) is a simple graph, with vertex set 𝐿 and two distinct vertices 𝑥 and 𝑦 are adjacent if 

and only if 𝑥˄𝑦 ∈ 𝐴. 

Example 8.2. Let 𝐿 = {0, 𝑎, 𝑏, 𝐼} and operators of 𝐿 be defined in the following tables: 

 

TABLE 5. Binary operation ˅ for Example 8.2 

 

 

TABLE 6. Binary operation ˄ for  Example 8.2 

 

 

TABLE 7. Binary operation → for Example 8.2 
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TABLE 8. Unary operation ´ for Example 8.2 

 

 Then (𝐿, ˅, ˄, ´, →) is a lattice implication algebra. We suppose 𝐹 = {𝐼} and 𝐴 = {0} be a 

filter, an LI- ideal of 𝐿, respectively. Then 𝐸(𝛶𝐹(𝐿)) = {0𝐼, 𝑎𝑏, 𝑎𝐼, 𝑏𝐼}, and 𝐸(𝛶𝐴(𝐿)) =

{0𝑎, 0𝑏, 0𝐼, 𝑎𝑏}. 

 

Lemma 8.3. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then, the following 

statements hold: 

(𝑖) deg(𝑥) = |𝐿| − 1, in the graph 𝛶𝐹(𝐿), where 𝑥 ∈ 𝐹. 

(𝑖𝑖) deg(𝑥) = |𝐿| − 1, in the graph 𝛶𝐴(𝐿), where 𝑥 ∈ 𝐴. 

Proof. (𝑖) Let 𝑥 ∈ 𝐹, 𝑦 be an arbitrary element in 𝐿, then 𝑥˅𝑦 ∈ 𝐹. Since 𝑥 ≤ 𝑥˅𝑦, 𝐹 is a filter 

of 𝐿. So, 𝑥𝑦 ∈ 𝐸(𝛶𝐹(𝐿)), complete proof. 

(𝑖𝑖) Let 𝑥 ∈ 𝐴, 𝑦 be an arbitrary element in 𝐿, then  𝑥˄𝑦 ∈ 𝐴. Since 𝑥˄𝑦 ≤ 𝑥, 𝐴 is an LI- ideal 

of 𝐿. So, 𝑥𝑦 ∈ 𝐸(𝛶𝐴(𝐿)), complete proof. 

 

Theorem 8.4. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then, the following 

statements hold: 

(𝑖)𝛶𝐹(𝐿) is regular if and only if it is complete. 

(𝑖𝑖)𝛶𝐴(𝐿) is regular if and only if it is complete. 

Proof. (𝑖) Let 𝛶𝐹(𝐿) be a regular graph. By Lemma 8.3 (𝑖), we have deg(𝐼) = |𝐿| − 1. Now, 

since 𝛶𝐹(𝐿) is regular, then for any 𝑥 ∈ 𝐿, deg(𝑥) = |𝐿| − 1. This means that 𝛶𝐹(𝐿) is a 

complete graph. Conversely, a complete graph is regular. 

(𝑖𝑖) Let 𝛶𝐴(𝐿) be a regular graph. By Lemma 8.3 (𝑖𝑖), we have deg(0) = |𝐿| − 1. Now, since 

𝛶𝐴(𝐿) is regular, then for any 𝑥 ∈ 𝐿, deg(𝑥) = |𝐿| − 1. This means that 𝛶𝐴(𝐿) is a complete 

graph. Conversely, a complete graph is regular. 
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Proposition 8.5. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then, the following 

statements hold: 

(𝑖)𝜔(𝛶𝐹(𝐿)) ≥ |𝐹|. 

(𝑖𝑖)𝜔(𝛶𝐴(𝐿)) ≥ |𝐴|. 

Proof. (𝑖) Straightforward by Lemma 8.3 (𝑖). 

(𝑖𝑖) Straightforward by Lemma 8.3 (𝑖𝑖). 

 

Theorem 8.6. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then, the following 

statements hold: 

(𝑖) 𝛶𝐹(𝐿) is connected, 𝑑𝑖𝑎𝑚(𝛶𝐹(𝐿)) ≤ 2. 

(𝑖𝑖) 𝛶𝐴(𝐿) is connected, 𝑑𝑖𝑎𝑚(𝛶𝐴(𝐿)) ≤ 2. 

Proof. (𝑖) Straightforward by Lemma 8.3 (𝑖). 

(𝑖𝑖) Straightforward by Lemma 8.3 (𝑖𝑖). 

 

Theorem 8.7. Let 𝐹 ≠ {𝐼} and 𝐴 ≠ {0} be a filter, an LI- ideal of 𝐿, respectively. Then, the 

following statements hold: 

(𝑖)𝑔𝑟(𝛶𝐹(𝐿)) = 3. 

(𝑖𝑖)𝑔𝑟(𝛶𝐴(𝐿)) = 3. 

Proof. (𝑖) Let 𝑎 ≠ 𝐼 be an element in 𝐹, 𝑥 be an arbitrary element in 𝐿, then 𝐼 − 𝑎 − 𝑥 − 𝐼 is a 

cycle of length 3 in 𝛶𝐹(𝐿), complete proof. 

(𝑖𝑖) Let 𝑎 ≠ 0 be an element in 𝐴, 𝑥 be an arbitrary element in 𝐿, then 0 − 𝑎 − 𝑥 − 0 is a 

cycle of length 3 in 𝛶𝐴(𝐿), complete proof. 

 

Proposition 8.8. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then, the following 

statements hold: 

(𝑖) If 𝛶𝐹(𝐿) is planar, then |𝐹| ≤ 4. 

(𝑖𝑖) If 𝛶𝐹(𝐿) is outerplana, then |𝐹| ≤ 3. 
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(𝑖𝑖𝑖) If 𝛶𝐹(𝐿) is toroidal, then |𝐹| ≤ 7. 

(𝑖𝑣) If 𝛶𝐴(𝐿) is planar, then |𝐴| ≤ 4. 

(𝑣) If 𝛶𝐴(𝐿) is outerplanar, then |𝐴| ≤ 3. 

(𝑣𝑖) If 𝛶𝐴(𝐿) is toroidal, then |𝐴| ≤ 7. 

Proof. (𝑖) According to Lemma 8.3 (𝑖), 𝛶𝐹(𝐿) is a complete graph on 𝐹, if |𝐹| ≥ 5 then 𝛶𝐹(𝐿) 

has a subgraph isomorphic to 𝐾5 which by Kuratowski’s theorem, 𝛶𝐹(𝐿) is not planar. 

(𝑖𝑖) According to Lemma 8.3 (𝑖), 𝛶𝐹(𝐿) is a complete graph on 𝐹, if |𝐹| ≥ 4 then 𝛶𝐹(𝐿) has a 

subgraph isomorphic to 𝐾4 which by Definition 2.5, 𝛶𝐹(𝐿) is not outerplanar. 

(𝑖𝑖𝑖) According to Lemma 8.3 (𝑖), 𝛶𝐹(𝐿) is a complete graph on 𝐹, if |𝐹| ≥ 7 then 𝛶𝐹(𝐿) has 

a subgraph isomorphic to 𝐾8 which by Theorem 2.7, 𝛶𝐹(𝐿) is not toroidal. 

(𝑖𝑣) According to Lemma 8.3 (𝑖𝑖), 𝛶𝐴(𝐿) is a complete graph on 𝐴, if |𝐴| ≥ 5 then 𝛶𝐴(𝐿) has 

a subgraph isomorphic to 𝐾5 which by Kuratowski’s theorem, 𝛶𝐴(𝐿) is not planar. 

(𝑣) According to Lemma 8.3 (𝑖𝑖), 𝛶𝐴(𝐿) is a complete graph on 𝐴, if |𝐴| ≥ 4 then 𝛶𝐴(𝐿) has a 

subgraph isomorphic to 𝐾4 which by Definition 2.5, 𝛶𝐴(𝐿) is not outerplanar. 

(𝑣𝑖) According to Lemma 8.3 (𝑖𝑖), 𝛶𝐴(𝐿) is a complete graph on 𝐴, if |𝐴| ≥ 7 then 𝛶𝐴(𝐿) has 

a subgraph isomorphic to 𝐾8 which by Theorem 2.7, 𝛶𝐴(𝐿) is not toroidal. 

 

Theorem 8.9. Let 𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then, the following 

statements hold: 

(𝑖) If 𝛶𝐹(𝐿) is an Euler graph then |𝐿| is odd. 

(𝑖𝑖) If 𝛶𝐴(𝐿) is an Euler graph then |𝐿| is odd. 

Proof. (𝑖) According to Lemma 8.3 (𝑖), for all 𝑥 ∈ 𝐹, deg(𝑥) = |𝐿| − 1. Now, if 𝛶𝐹(𝐿) is an 

Euler graph then degree of every vertex in 𝐹 is even. So, |𝐿| is odd, complete proof. 

(𝑖𝑖) According to Lemma 8.3 (𝑖𝑖), for all 𝑥 ∈ 𝐴, deg(𝑥) = |𝐿| − 1. Now, if 𝛶𝐴(𝐿) is an Euler 

graph then degree of every vertex in 𝐴 is even. So, |𝐿| is odd, complete proof. 

 

Theorem 8.10. Let  𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then, the following 

statements hold: 
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(𝑖) If 𝐹 =∩1≤𝑖≤𝑛 𝑃𝑖 and, for each 1 ≤ 𝑗 ≤ 𝑛, 𝐹 ≠∩1≤𝑖≤𝑛,𝑖≠𝑗 𝑃𝑖, where 𝑃𝑖 are prime filters of 𝐿. 

Then 𝜔(𝛶𝐹(𝐿)) = 𝑛 = 𝜒(𝛶𝐹(𝐿)). 

(𝑖𝑖) If 𝐴 =∩1≤𝑖≤𝑛 𝑃𝑖 and, for each 1 ≤ 𝑗 ≤ 𝑛, 𝐴 ≠∩1≤𝑖≤𝑛,𝑖≠𝑗 𝑃𝑖, where 𝑃𝑖 are prime LI- ideals 

of 𝐿. Then 𝜔(𝛶𝐴(𝐿)) = 𝑛 = 𝜒(𝛶𝐴(𝐿)). 

Proof. (𝑖) For each 𝑗 with 1 ≤ 𝑗 ≤ 𝑛, consider an element 𝑥𝑗 in (∩1≤𝑖≤𝑛,𝑖≠𝑗 𝑃𝑖) − 𝑃𝑗. We have 

𝐴 = {𝑥1, … , 𝑥𝑛} is a clique in 𝛶𝐹(𝐿). Hence 𝜔(𝛶𝐹(𝐿)) ≥ 𝑛. Now, we prove that 𝜒(𝛶𝐹(𝐿)) ≤

𝑛. Define a coloring 𝑓 by putting 𝑓(𝑥) = min{𝑖; 𝑥 ∉ 𝑃𝑖}. Let 𝑓(𝑥) = 𝑘, 𝑥 and 𝑦 be adjacent 

vertices. So, 𝑥 ∉ 𝑃𝑘 and 𝑥˅𝑦 ∈ 𝐹. Since 𝑃𝑘 is prime, 𝑦 ∈ 𝑃𝑘, and so 𝑓(𝑦) ≠ 𝑘. Now, since 

𝜔(𝛶𝐹(𝐿)) ≤ 𝜒(𝛶𝐹(𝐿)), the result hold. 

(𝑖𝑖) For each 𝑗 with 1 ≤ 𝑗 ≤ 𝑛, consider an element 𝑥𝑗 in (∩1≤𝑖≤𝑛,𝑖≠𝑗 𝑃𝑖) − 𝑃𝑗. We have 𝐴 =

{𝑥1, … , 𝑥𝑛} is a clique in 𝛶𝐴(𝐿). Hence 𝜔(𝛶𝐴(𝐿)) ≥ 𝑛. Now, we prove that 𝜒(𝛶𝐴(𝐿)) ≤ 𝑛. 

Define a coloring 𝑓 by putting 𝑓(𝑥) = min{𝑖; 𝑥 ∉ 𝑃𝑖}. Let 𝑓(𝑥) = 𝑘, 𝑥 and 𝑦 be adjacent 

vertices. So, 𝑥 ∉ 𝑃𝑘 and 𝑥˄𝑦 ∈ 𝐴. Since 𝑃𝑘 is prime, 𝑦 ∈ 𝑃𝑘, and so 𝑓(𝑦) ≠ 𝑘. Now, since 

𝜔(𝛶𝐴(𝐿)) ≤ 𝜒(𝛶𝐴(𝐿)), the result hold. 

 

Theorem 8.11. Let  𝐹 and 𝐴 be a filter, an LI- ideal of 𝐿, respectively. Then, the following 

statements hold: 

(𝑖) If 𝐹 =∩𝑗∈𝐽 𝑃𝑗, where 𝑃𝑗 are prime filters of 𝐿, 𝐽 is an infinite set and, for each 𝑖 ∈ 𝐽, 𝐹 ≠

∩𝑗≠𝑖 𝑃𝑗. Then 𝜔(𝛶𝐹(𝐿)) = ∞ = 𝜒(𝛶𝐹(𝐿)). 

(𝑖𝑖) If 𝐴 =∩𝑗∈𝐽 𝑃𝑗
˅where 𝑃𝑗

˅ are prime LI- ideals of 𝐿, 𝐽 is an infinite set and, for each 𝑖 ∈ 𝐽, 

𝐴 ≠∩𝑗≠𝑖 𝑃𝑗
˅. Then 𝜔(𝛶𝐴(𝐿)) = ∞ = 𝜒(𝛶𝐴(𝐿)). 

Proof. (𝑖) For each 𝑖 ∈ 𝐽, there exists 𝑥𝑖 ∈ (∩𝑗≠𝑖 𝑃𝑗 − 𝑃𝑖). Now, one can easily see that the set 

of 𝑥𝑖 forms an infinite clique in 𝛶𝐹(𝐿). Since 𝜔(𝛶𝐹(𝐿)) ≤ 𝜒(𝛶𝐹(𝐿)), the assertion holds. 

(𝑖𝑖) For each 𝑖 ∈ 𝐽, there exists 𝑥𝑖 ∈ (∩𝑗≠𝑖 𝑃𝑗 − 𝑃𝑖). Now, one can easily see that the set of 𝑥𝑖 

forms an infinite clique in 𝛶𝐴(𝐿). Since 𝜔(𝛶𝐴(𝐿)) ≤ 𝜒(𝛶𝐴(𝐿)), the assertion holds. 
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