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Anahtar 

Kelimeler 

Genişletilmiş 
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denklemi 

yöntemi, 

(3+1)-boyutlu 

Kadomtsev-

Petviashvili 

(KP) 

denklemi, 

Tam 

çözümler 

Öz: Kısmi türevli diferansiyel denklemlerin soliton çözeltilerini ve Jacobi eliptik fonksiyon 

çözümlerini elde etmemizi sağlayan genişletilmiş deneme denklemi yöntemi araştırılmıştır. Bu 

yöntem (3+1)-boyutlu Kadomtsev-Petviashvili (KP) denklemine uygulanmış ve çeşitli yeni 

tam(kesin) çözümler elde edilmiştir. Bu yeni tam çözümler, literatürde yer almayan çözümlerdir. 

Ek olarak, elde edilen farklı tam çözümlerin fiziksel davranışlarını anlamak için iki ve üç boyutlu 

grafikler çizilmiştir. 

 

 

New Exact Solutions of (3+1)-dimensional Kadomtsev-Petviashvili (KP) Equation 
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Abstract: The extended trial equation method is investigated which allows us to achieve soliton 

solutions and Jacobi elliptic function solution of the partial differential equations. This method is 

implemented to the (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation and various new 

exact solutions have been obtained. These new obtain exact solutions are solutions that are not 

known in the literature. Additionally, two and three-dimensional graphics were drawn to 

understand the physical behaviors of the distinct obtain exact solutions. 
 

 

1. INTRODUCTION 

 

The solutions of the nonlinear partial differential 

equations can guide the understanding of many 

problems. Therefore, recent studies on such equations 

have also increased. We can use the notion of the wave 

to make the solutions of such equations comprehensible. 

These nonlinear physical occurrences are commonly 

seen in the fields of optical fibers, plasma physics, 

chemical physics, fluid mechanics, solid-state physics, 

biology, geochemistry, chemical kinematics and 

engineering.. 
 

A solitary wave is a wave that spreads without changing 

over time. We know that the implementation areas of the 

waves are fairly high. Consequently, many distinct 

vigorous and influential methods have been developed 

by different scientists for the nonlinear partial 

differential equations. Herewith of these newly 
developed methods, many physical occurrences will be 

easier to understand with the determination of the new 

exact solution functions. 

www.dergipark.gov.tr/tdfd 
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Therefore, many distinct approach methods have been 

proposed and developed. Sine-cosine method [1,2], 

Hirota's bilinear transformation method [3,4],  /G G -

expansion method [5,6], trial equation method[7-10], 

extended trial equation method [11-13], modified 

Kudryashov method [14,15] can be given as an example 

for the developed exact solution methods. 
 

A robust method to find the exact solutions of the 

nonlinear partial differential equations was 

recommended by Liu in 2005. Liu's main goal was to 

find the finite series solution functions using different 

integration methods for solutions of ordinary differential 

equations. Later, many scientists developed further this 

powerful method and brought different versions of this 

method into the literature. Recently, the proposed 

method by Liu has been further developed by Gürefe et 

al and introduced into the literature as an extended trial 

equation method. This developed method allowed us 

new and exact solutions of the nonlinear partial 

differential equations.  

 

In this study the developed method is implemented to the 

(3+1)-dimensional Kadomtsev-Petviashvili (KP) 

equation. Codes are written according to the required 

algorithms of the extended trial equation method, and 

new and different exact solutions of the equations are 

obtained. In the next section, the outlines of the extended 

trial equation method are explained in detail. 

 

2. MATERIAL AND METHOD 

 

In this section, we aim to define the extended trial 

equation method to achieve the new exact solutions of 

the nonlinear partial differential equations. The extended 

trial equation method is clarified in detail. Let's suppose 

the general form of a nonlinear partial differential 

equation with independent variables , , ,...,x y z t  as  

 , , , ..., ,..., , , ,..., ,... 0.x y z t xx xy xz xtQ u u u u u u u u u          (1) 

 

Consider travelling wave transformation for Eq. (1) as 

described below 

 

    1 2 3, , , , , ... mu x y z t u h x h y h z h t      

               
    (2) 

 

where  0 1,2,3,...,jh j m  . Substituting Eq. (2) 

into Eq. (1) reduces a nonlinear ordinary differential 

equation 

 

 , ', '', ''',... 0.T u u u u 
    

(3) 

 

Let's assume the solution of the Eq. (3) with the finite 

series approach as follows 

   
0

i

i

i

u


  


 
  

  (4) 

 

where  

 

   
 

 

2
2 0 1 2

2

0 1 2

.


   

    



        
     

       

       

(5) 

Here the    functions are the solution functions of 

the nonlinear ordinary elliptical differential equation. 

Using Eq (4) and Eq (5), we get 

 

   
 

 
 

2

2 1

0

i

i

i

u i


  



   
   

   


   

(6)

 

 

 
       
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 

 

 
   

1

2
0

2

0

2

1

i
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i

i

u i

i i





  

 









        
  

 

 
  
 





        

(7) 

where     and     are polynomials. When the 

attained derivatives in Eq. (6) and Eq. (7) are analyzed, 

as stated in the solution function (4) turns into a 

polynomial expression dependent on a rational    

function. The balance process according to Eq. (3) is 

implemented in terms of the polynomial equivalent of 

the highest-order term with the highest-order derivative 

term. With the balancing procedure,   in solution 

function (4),   and   values in Eq. (5) will be 

calculated. Some balancing terms are calculated as 

follows  

 
2 2uu    ,  

2 2 2u      , 

2 2u  , 
3 3 .u       (8) 

 

Thus, when the calculated values are replaced in the 

expressions, zero polynomial related to the   function 

is attained. A system of algebraic equations is attained 

by synchronizing the related terms in this zero 

polynomial to zero. When the created algebraic equation 

system is solved with the help of the Mathematica 10 

package program, 0 , ,   , 
0 , , 

 and 

0 , ,    coefficients are obtained. When the attained 

coefficients are rewritten in the Eq. (5),    functions 

are attained by calculating the integral 

 

 
 

 

 
0 .

d
d 

 
    

  
 

    

(9) 

Then,    functions are substituted in solution 

function (4), respectively. Thus, by applying the 
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transformation in the expression of (2) to the obtained
 

 u   functions, new exact solutions of the Eq. (1) are 

attained.  

 

3. RESULTS  

 

In this section, the extended trial equation method is 

implemented to the (3+1)-dimensional Kadomtsev-

Petviashvili equation. The (3+1)-dimensional 

Kadomtsev-Petviashvili equation was first introduced in 

1970 by Boris B. Kadomtsev and Vladimir I. 

Petviashvili. This equation describes long wavelength 

water waves with weak nonlinear restore forces, waves 

in ferromagnetic media, and two-dimensional matter-

wave pulses in Bose-Einstein condensates. Due to its 

importance, it has been extensively studied in the 

literature [16-18]. This equation has a structure that 

defines three-dimensional solitons in a weak fluid 

environment, especially fluid dynamics and plasma 

physics. The (3+1)-dimensional Kadomtsev-Petviashvili 

(KP) equation is 

 
3 2 2

3 2 2
6 3 0,

x

u u u u u
u

t x x y z

     
     

     
 (10) 

 

where u  is a real valued function [18-23]. First let's 

suppose travelling wave transformation to implement the 

extended trial equation method to Eq. (10) 

 

   , , , , ,u x y z t u kx ly mz ct       

 

where , , ,k l m c  are arbitrary constants. When the 

integral is taken twice according to   and the 

integration constants are selected as zero, Eq. (10) 

equation as follows  

 

        2 2 2 2 43 3 0.kc m l u k u k u      

      (11) 

 

Using the solution function (4) and differential equation 

(5), the related derivatives are calculated and replaced in 

Eq. (11). The balancing process is implemented to 

determine the  ,   and   values in solution function 

(4) and differential equation (5). According to the 

extended trial equation method, the balancing process is 

determined between the term u containing the highest 

order derivative and the highest order nonlinear term 
2u  

as follows  

 

2 2u  , 
2.u       

 (12) 

 

Accordingly, the balance term is attained as 

2      from the equivalence of the obtained 
2u u   terms. To determine the new solution of the 

Eq. (10), if the balance terms are selected as 0  and 

1  , then 3   is attained. When these balancing 

terms are written in solution function (4) and differential 

equation (5) respectively, we achieve  

 

   0 1u      
  

(13) 

 
 

 

2 3
2 0 1 2 3

0

   



      
  

 
 

(14) 

 

The term u  in the Eq. (11) is calculated as  

 

 2

1 1 2 3

0

2 3

2
u

   



  
 

 

(15) 

where 3 0  and 0 0.   

When the calculated values are replaced in the Eq. (11), 

a polynomial expression based on the    function 

occurs. If we contemplate this polynomial as a zero 

polynomial, the coefficients of this polynomial are 

equalized to zero, resulting in a system of algebraic 

equations. 

 

When this algebraic system is solved with the help of 

Mathematica 10 packet program, coefficients are found 

as follows 

 

 2 2 2

0 0

0 0 1 1 2 4

3 2
, , ,

l m k

k

 
    

 
  

0 1
3 0 0 0 0 1 12

2
, , , ,

k

 
      


   

 2 2 2 4

0 0 0 1 1

0

6 2
.

2

l m k k
c

k

    



  
   (16) 

When these attained coefficients are replaced in Eq. (5) 

and Eq. (9), an integral is obtained  

 

 
     

0

2 30 1 2

3 3 3

,
d

H 
  

  
  


  

    


      

(17) 

where 

2

1

,
2

k
H


   It is quite difficult to calculate 

the integral in Eq. (17). Integrating Eq. (17), we achieve 

the solutions of the Eq. (10) as follows: 

 

 0

1

2
,

H
 


   


  

(18)

 

  2
0 2 1

2 12 1

2
arctan , ,

H 
   

  


   



      (19)
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  2 1 2

0 1 2

1 2 2 1 2

ln , ,
H   

   
    

  
   

   

      (20) 

   0 1 2 3

1 3

2
, , ,

H
F l     

 
     



      

(21) 

where  
2 2

0

, ,
1 sin

d
F l

l












 

 

 
2 323

2 3 1 3

arcsin , .l
 


   


 

 
 

 

Also 1 2 3, ,  
 
and 4  

are the roots of the polynomial 

equation 

 

4 3 23 02 1

4 4 4 4

0.
  

   
          

 

Substituting the solutions (18-21) into (13) and using the 

wave transformation, we have 

 

 
 

2

1 0 1
1

1
2 2 2 4

0 0 0 1 1

2

0

0

4

2

2

, , ,

6 l m k k
kx ly m

H
u x y

z t
k

z t

  


  






   

 
 
 
   
  
  
  

  

    
 
 

      (22)

  

 
 

 

0 1

2 1 22

2

1

2 2 2 4

0 0 0 1

0

0

1

1 1

, , ,
se

6
ch

2

2

2

u x y z t

H

l m k k
kx ly mz t

k

  

 
  

    




  

 
 

    
    
     


 

  

  


      

(23)

  

 
 

 

1

2 2

0 1

3

2 4

0 0 01 22

1 2 0

1 1

1

0

6 2, , ,
cosech

22

l m k k
k

u x y z t

H
x ly mz t

k

    

  

 
   



 
 

    
    
     

   
   


 






        

(24)

  

 
 

   
 

1 2 3

1 3
2 2 2 4

0 0 0 1 12 1 3 2 3

0

4 0

0

1 3

6 2
,

2

,

2

, ,
l m k k

sn kx ly mz t
H

x y z

k

u t



 


       




 





     
      

  
  
  
   
   
 


 

    
  

 
   

        

(25) 

 

If we take 0 1 1     and 0 0   the equations (22)-

(24) are obtained respectively rational function solutions: 

 

 
2

1 , , ,
A

kx ly mz c
u x y z t

t

 


  
 


 (26) 

 

where 12A H  ,

 2 2 2 4

0 0 0 1 1

0

6 2
,

2

l m k k
c

k

    



  
  1(bright)-

soliton solution:  

 
  2 2

, , ,
cosh kx

B
u x y z t

B ly mz ct  


 

(27)
 

 

where  21 1 ,B   
 

1 2 ,
2H

B
 



singular(dark) soliton solution: 

 

 
  3 2

, , ,
sinh kx

C
u x y z t

B ly mz ct  


 

(28) 

 

where  11 2 .C   
 

 

 

Figure 1. Three and two dimensional graphical for 

2
1

1 1 0 1 0 3
1, 2, ,k            of the solution (27).  

 

 

Figure 2. Three and two dimensional graphical for 

2
1

1 1 0 1 0 3
1, 2, ,k            of the solution (28).  

 

If 0 1 3     is taken in Eq. (25), a Jacobi elliptic 

function solution is found as 

 

 
 2

2 2

4 ,
,

, ,
D

u
l

t
sn

x y z


   (29)
 

 

where  1 2 3 ,D   

 1 3

2 ,
2

kx ly mz ct
H

 


 
   

 

2 2 3
2

1 3

.l
 

 





 

 

 

Figure 3. Three and two dimensional graphical for 

2
1

1 1 0 1 0 3
1, 2, ,k           

3 4  of the solution (29).  
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Here, B  and C
 
demonstrate the amplitude of the 

soliton and B  demonstrates the inverse width of the 

solitons and c  demonstrates the velocity of the soliton. 

 

Besides, if we get the module as 1l   in the elliptic 

solution Eq.(29), then the solution of the Eq. (10) turns 

into the following hyperbolic function solution 

 

 

 2 1 3

5

tanh
2

, , ,
D

kx ly

u x y z t

mz ct
H

  
    
  



      

(30)
  

where 1 2.   

 

On the other hand; when the module is selected as 

0l   in the Jacobi elliptic solution Eq. (29), then the 

solution of the Eq. (10) turns into the following periodic 

wave solution 

 

 

 2 1 3

6

2

, , ,

sin

D

kx ly mz ct
H

u x y z t
  

   



 
  

      (31) 

where 2 3.   

 

When all the solutions obtained from the (3+1)-

dimensional Kadomtsev-Petviashvili (KP) equation are 

investigated; solutions (27), (28) and (30) are similar to 

the results obtained by Lu [19], respectively (4), (10) and 

(8). Other solutions are new and distinct exact solutions 

that are not included in the literature. With the proposed 

method, new exact solutions of this equation are 

attained. The graphs of the obtained solution functions 

are illustrated in Fig. 1-3. 

 

4. CONCLUSION 

 

The extended trial equation method has been used to get 

a new exact solutions of the (3+1)-dimensional 

Kadomtsev-Petviashvili (KP) equation. Through the 

extended trial equation method elliptic function 

solutions, periodic function solutions, singular soliton 

solutions and dark and bright soliton solutions were 

obtained. This method allows us to find different 

function solutions together. To understand which 

physical behaviors of these solutions show, two and 

three-dimensional graphics are drawn according to the 

different values of the coefficients in the soliton 

functions. We think that this method also can be applied 

to other nonlinear differential equations. 
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