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Abstract
Representations for the generalized Drazin inverse of an operator matrix

(
A B
C D

)
are pre-

sented in terms of A, B, C, D and the generalized Drazin inverses of A, D, under the
condition that BDd = 0, and BDiC = 0, for any nonnegative integer i. Using the repre-
sentation, we give a new additive result of the generalized Drazin inverse for two bounded
linear operators P, Q ∈ B(X) with PQd = 0 and PQiP = 0, for any integer i ≥ 1. As
corollaries, several well-known results are generalized.
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1. Introduction
Let X and Y be complex Banach spaces. Denote by B(X, Y ) the set of all bounded

linear operators from X into Y and abbreviate B(X, X) to B(X). An operator A ∈ B(X)
is said to be generalized Drazin invertible if there exists an operator Ad ∈ B(X) such that

AAd = AdA, AdAAd = Ad, A − A2Ad is quasi-nilpotent.
An operator A ∈ B(X) is called quasi-nilpotent if the spectrum σ(A) = {0}.

The Drazin inverse is first studied by Drazin [19] in associative rings and semigroups.
The generalized Drazin inverse is investigated for rings by Harte [21–23] and for Banach
algebras by Koliha [27]. The Drazin inverses and the generalized Drazin inverses for
bounded linear operators on Banach spaces, especially for block matrices, have drawn a
lot of discussion due to their interesting properties and wide applications [1–3,10].

Finding an explicit representation for the generalized Drazin inverse of an operator

matrix M =
(

A B
C D

)
in terms of A, B, C, D and related generalized Drazin inverses has

been studied by several authors [4,5,9,11–16,26,32,33,36,37]. Djordjević and Stanimirović
[16] generalize the well-known result in [24,31] concerning the Drazin inverse of block 2×2
upper triangular matrices to the generalized Drazin inverse for block triangular operator
matrices, and further consider the case that BC = 0, BD = 0 and DC = 0. These
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requirements are relaxed and new conditions are presented in [4, 5, 9, 12–14], for example,
the condition ABC = 0 is dealt with in [4, 5, 14] under some extra assumptions.

This paper is inspired by [4, 14, 18]. Dopazo and Matinez-Serrano [18] gave an explicit
expression for the Drazin inverse of 2 × 2 complex block matrix M under the condition
that BD2 = 0 and BDiC = 0, i = 0, 1. The results in [18] is generalized in [20] by
considering more general condition that BDiC = 0, for any nonnegative integer i.

In this paper, we give the explicit representation for the generalized Drazin inverse
of a 2 × 2 operator matrix M under the condition that BDd = 0, BDiC = 0, for any
nonnegative integer i.

Formulas for the generalized Drazin inverse of a 2×2 operator matrix can be very useful
for deriving formulas for the generalized Drazin inverse of the sum of two generalized
Drazin invertible elements.

Actually, In 1958, Drazin [19] first studied the representation for the Drazin inverse of
the sum of two Drazin invertible elements in a ring and proved that (a + b)d = ad + bd

under the condition ab = ba = 0. Later, Koliha [27] gave the representations of (a + b)d

under the same condition in a Banach algebra. In 2001, Hartwig, Wang and Wei [25] gave
the formula (P +Q)d under the condition PQ = 0 . Djordjevic and Wei [7] generalized the
result of [25] to bounded linear operators on an arbitrary complex Banach space. More
results on generalized Drazin inverse can be found in [6,8,29,30,35]. In Section 4, we give
a new additive result of the generalized Drazin inverse for two bounded linear operators
P, Q ∈ B(X) with PQd = 0 and PQiP = 0, for any integer i ≥ 1. As corollaries, many
results in [4, 5, 9, 13,14,16,18] are generalized.

2. Preliminary
Throughout this paper, unless otherwise stated we will make the following assumption:

M =
(

A B
C D

)
, (2.1)

where A ∈ B(X), D ∈ B(Y ), B ∈ B(Y, X) and C ∈ B(X, Y ).
We write σ(A) and ρ(A) for the spectrum and the resolvent set of A, respectively. For

λ ∈ ρ(A), we denote the resolvent (λI −A)−1 by R(λ, A), where I is the identity operator.
If A ∈ B(X) is quasi-nilpotent, then for any complex λ 6= 0

R(λ, A) =
∞∑

k=0
λ−k−1Ak. (2.2)

For a deeper discussion of the theory of operator, we refer the reader to [32].
If A is generalized Drazin invertible, then the spectral idempotent Aπ of A corresponding

to {0} is given by Aπ = I − AAd.

Lemma 2.1. If A and D are quasi-nilpotent and BDiC = 0, for any nonnegative integer
i, then M is quasi-nilpotent.

Proof. From (2.2) we can verify that BR(λ, D)C = 0 for any complex λ 6= 0. Since A
and D are quasi-nilpotent, it follows that

R(λ, M) =
(

R(λ, A) R(λ, A)BR(λ, D)
R(λ, D)CR(λ, A) R(λ, D) + R(λ, D)CR(λ, A)BR(λ, D)

)
for any complex λ 6= 0. Thus σ(M) ⊆ σ(A) ∪ σ(D) = {0}, implying that M is quasi-
nilpotent. �
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Lemma 2.2 ([17]). If P, Q ∈ B(X) are generalized Drazin invertible and PQ = 0, then
P + Q is generalized Drazin invertible and

(P + Q)d = Qπ
∞∑

i=0
Qi(P d)i+1 +

∞∑
i=0

(Qd)i+1P iP π.

Lemma 2.3 ([1]). For B ∈ B(X, Y ) and C ∈ B(Y, X), BC is generalized Drazin invertible
if and only if CB is generalized Drazin invertible. In this case, ((BC)d)i = B((CB)d)i+1C,
for any positive integer i.

For notational convenience, we define a sum to be 0, whenever its lower limit is bigger
than its upper limit. We define A0 = I.

3. Main results
We start with a special case of our main results, which is of independent interest.

Lemma 3.1. If A is generalized Drazin invertible, D is quasi-nilpotent and BDiC = 0,
for any nonnegative integer i, then M is generalized Drazin invertible and

Md =
(

Ad Γ
∆ ∆AΓ

)
, (3.1)

where Γ =
∑∞

i=0(Ad)i+2BDi and ∆ =
∑∞

i=0 DiC(Ad)i+2.

Proof. It is easy to check that ΓDiC = 0, BDi∆ = 0 and ΓDi∆ = 0, for any nonnegative
integer i. Let W be defined as in (3.1). We first prove that MW = WM . Since B∆ = 0
and ΓC = 0, it follows that

MW =
(

AAd AΓ
CAd + D∆ CΓ + D∆AΓ

)
,

WM =
(

AdA AdB + ΓD
∆A ∆B + ∆AΓD

)
.

We can verify that

AdB + ΓD = AdB +
∞∑

i=0
(Ad)i+2BDi+1 =

∞∑
i=0

(Ad)i+1BDi = AΓ,

CAd + D∆ = CAd +
∞∑

i=0
Di+1C(Ad)i+2 =

∞∑
i=0

DiC(Ad)i+1 = ∆A.

(3.2)

Since AAdΓ = Γ and ∆AAd = ∆, the equation (3.2) yields

CΓ + D∆AΓ = CΓ + (∆A − CAd)AΓ = CΓ + ∆A2Γ − CΓ

= ∆A2Γ = ∆A(AdB + ΓD) = ∆B + ∆AΓD.

Thus MW = WM .
Next, we will prove that W = W 2M . Since Γ∆ = 0 and ∆AAd = ∆, we get

W 2M =
(

Ad (Ad)2B + AdΓD
∆ ∆AdB + ∆ΓD

)
.

Since AΓ = AdB + ΓD by (3.2), we have

(Ad)2B + AdΓD = AAdΓ = Γ,

∆AdB + ∆ΓD = ∆AΓ.

Thus W = W 2M .



The generalized Drazin inverse of operator matrices 1137

Finally, we will prove that M −M2W is quasi-nilpotent. Since BDiC = 0 and BDi∆ =
0, for any nonnegative integer i, a calculation yields

M − M2W =
(

AAπ B − A2Γ
CAπ − DCAd − D2∆ D − Σ

)
,

where Σ = CAΓ+DCΓ+D2∆AΓ. From ΓDiC = 0 and ΓDi∆ = 0, it follows that ΣDiΣ =
0 for any integer i ≥ 0. Since D is quasi-nilpotent, by (2.2) we have ΣR(λ, D)Σ = 0 for
any λ 6= 0, whence

(λI − D + Σ)
(
R(λ, D) − R(λ, D)ΣR(λ, D)

)
= I.

Hence R(λ, D − Σ) = R(λ, D) − R(λ, D)ΣR(λ, D) for any λ 6= 0, which implies that
D − Σ is quasi-nilpotent. By Lemma 2.1, M − M2W is quasi-nilpotent. Thus W is the
generalized Drazin inverse of M . �

We are now in a position to prove our main results.
Theorem 3.2. Let M be defined as in (2.1) such that A and D are generalized Drazin
invertible. If BDd = 0 and BDiC = 0, for any nonnegative integer i, then M is generalized
Drazin invertible and

Md =
(

Ad Γ
Σ0 Dd + Λ

)
,

where

Γ =
∞∑

i=0
(Ad)i+2BDi,

Σ0 = Dπ
∞∑

i=0
DiC(Ad)i+2 +

∞∑
i=0

(Dd)i+2CAiAπ − DdCAd,

Λ = Dπ
∞∑

i=0

∞∑
j=0

DiC(Ad)i+j+3BDj +
∞∑

i=0

i∑
j=0

(Dd)i+3CAjBDi−j

−
∞∑

i=0

∞∑
j=0

(Dd)i+1CAi(Ad)j+2BDj .

(3.3)

Proof. Let P =
(

A B
C DDπ

)
and Q =

(
0 0
0 D2Dd

)
. Then M = P + Q, and PQ = 0.

By [27, Theorem 5.4], (D2Dd)d = ((Dd)d)d = Dd. Hence

Qd =
(

0 0
0 Dd

)
and Qπ =

(
I 0
0 Dπ

)
,

and so QQπ = 0. It follows from Lemma 2.2 that

Md = QπP d +
∞∑

i=0
(Qd)i+1P πP i. (3.4)

Note that DDπ is quasi-nilpotent and B(DDπ)iC = BDiC = 0, for any nonnegative
integer i, since BDπ = B. We can apply Lemma 3.1 to P with D replaced by DDπ, to

obtain P d =
(

Ad Γ
∆′ ∆′AΓ

)
, where ∆′ =

∑∞
i=0(DDπ)iC(Ad)i+2. Hence Dπ∆′ = Dπ∆

and
QπP d =

(
Ad Γ

Dπ∆ Dπ∆AΓ

)
. (3.5)

Note that B∆′ = 0. A calculation yields

P π = I − PP d =
(

Aπ −AΓ
−CAd − DDπ∆ I − CΓ − DDπ∆AΓ

)
.
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Since B(DDπ)iC = 0, for any positive integer i, by induction on i ≥ 1 we deduce that

P i =
(

Ai Bi

Ci DiDπ + Ni

)
, where

Bi =
i−1∑

m=0
AmBDi−1−m,

Ci =
i−1∑

m=0
(DDπ)mCAi−1−m,

Ni =
i−2∑

m=0
(DDπ)mC

i−2−m∑
n=0

AnBDi−2−m−n.

Now we can check that
∞∑

i=1
(Qd)i+1P i =

∞∑
i=1

(
0 0
0 (Dd)i+1

)(
Ai Bi

Ci DiDπ + Ni

)

=
∞∑

i=1

(
0 0

(Dd)i+1CAi−1 (Dd)i+1C
∑i−2

n=0 AnBDi−2−n

)

=
(

0 0∑∞
i=0(Dd)i+2CAi ∑∞

i=2(Dd)i+1C
∑i−2

n=0 AnBDi−2−n

)
.

Since BDiC = 0, BDd = 0 and BDi∆ = 0, we have
∞∑

i=1
(Qd)i+1P iP π =(

0 0∑∞
i=0(Dd)i+2CAiAπ ∑∞

i=0(Dd)i+3C
∑i

n=0 AnBDi−n −
∑∞

i=0(Dd)i+2CAi+1Γ

)
.

By QdP π =
(

0 0
−DdCAd Dd − DdCΓ

)
, we have

∞∑
i=0

(Qd)i+1P iP π =
(

0 0∑∞
i=0(Dd)i+2CAiAπ − DdCAd Dd + Ω

)
, (3.6)

where

Ω =
∞∑

i=0
(Dd)i+3C

i∑
j=0

AjBDi−j −
∞∑

i=0
(Dd)i+1CAiΓ.

Combining (3.5) and (3.6) with (3.4) gives

Md =
(

Ad Γ
Dπ∆ +

∑∞
i=0(Dd)i+2CAiAπ − DdCAd Dd + Dπ∆AΓ + Ω

)

=
(

Ad Γ
Σ0 Dd + Λ

)
.

�
Let A∗ denote the conjugate operator of an operator A. Then (Ad)∗ = (A∗)d by

[28, Lemma 1.3]. Let M∗ =
(

A∗ C∗

B∗ D∗

)
=
(

A1 B1
C1 D1

)
, then B1Di

1C1 = C∗(D∗)iB∗ =

(BDiC)∗ and B1Dd
1 = C∗(D∗)d = (DdC)∗. Applying Theorem 3.2 to M∗ =

(
A∗ C∗

B∗ D∗

)
gives the representation for the generalized Drazin inverse of M satisfying the following
condition.
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Corollary 3.1. If A and D are generalized Drazin invertible and DdC = 0 and BDiC = 0,
for any nonnegative integer i, then M is generalized Drazin invertible and

Md =
(

Ad S
Γ1 Dd + Λ1

)
,

where

Γ1 =
∞∑

i=0
DiC(Ad)i+2,

S = Aπ
∞∑

i=0
AiB(Dd)i+2 +

∞∑
i=0

(Ad)i+2BDiDπ − AdBDd,

Λ1 =
∞∑

i=0

∞∑
j=0

DiC(Ad)i+j+3BDjDπ +
∞∑

i=0

i∑
j=0

Di−jCAjB(Dd)i+3

−
∞∑

i=0

∞∑
j=0

DiC(Ad)i+2AjB(Dd)j+1.

Furthermore, the mapping M 7→ M =
(

D C
B A

)
is an isometric isomorphism from

B(X ⊕ Y ) to B(Y ⊕ X) and M
∗ = M∗. Applying the theorem 3.2 to

(
D C
B A

)
and(

D∗ B∗

C∗ A∗

)
respectively, gives the following two corollaries. The following corollary

generalizes [13, Theorem 6(3)].

Corollary 3.2. If A and D are generalized Drazin invertible and CAd = 0 and CAiB = 0,
for any nonnegative integer i, then M is generalized Drazin invertible and

MD =
(

Ad + Z S
Ψ Dd

)
,

where

Ψ =
∞∑

i=0
(Dd)i+2CAi,

S = Aπ
∞∑

i=0
AiB(Dd)i+2 +

∞∑
i=0

(Ad)i+2BDiDπ − AdBDd,

Z = Aπ
∞∑

i=0

∞∑
j=0

AiB(Dd)i+j+3CAj −
∞∑

i=0

∞∑
j=0

(Ad)i+1BDi(Dd)j+2CAj

+
∞∑

i=0

i∑
j=0

(Ad)i+3BDjCAi−j .

Corollary 3.3. If A and D are generalized Drazin invertible and AdB = 0 and CAiB = 0,
for any nonnegative integer i, then M is generalized Drazin invertible and

MD =
(

Ad + Z1 Ψ̃
Σ0 Dd

)
,
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where Σ0 is as in (3.3) and

Ψ̃ =
∞∑

i=0
AiB(Dd)i+2,

Z1 =
∞∑

i=0

∞∑
j=0

AiB(Dd)i+j+3CAjAπ +
∞∑

i=0

i∑
j=0

Ai−jBDjC(Ad)i+3

−
∞∑

i=0

∞∑
j=0

AiB(Dd)i+2DjC(Ad)j+1.

The following result is a direct corollary of Corollary 3.3, the conditions of which were
considered in [9, Theorem 2.10].

Corollary 3.4. If A and D are generalized Drazin invertible and AAdB = 0 and C(I −
AAd) = 0, then M is generalized Drazin invertible and

MD =
(

Ad + Z ′ Ψ′

Σ0 Dd

)
,

where

Ψ′ =
∞∑

i=0
AiB(Dd)i+2,

Z ′ =
∞∑

i=0

i∑
j=0

Ai−jBDjC(Ad)i+3 −
∞∑

i=0

∞∑
j=0

AiB(Dd)i+2DjC(Ad)j+1.

Proof. Since AAdB = 0 and C(I − AAd) = 0, we have AdB = 0 and CAiB = CAi(I −
AAd)B = 0, for any nonnegative integer i. So M satisfies the condition of Corollary
3.3. �

The following result is a direct corollary of Theorem 3.2, which extends [18, Theorem
2.2] to bounded linear operators on a Banach space, and generalizes the results in [9,13,16].

Corollary 3.5. If A and D are generalized Drazin invertible and BC = 0, BDC = 0 and
BD2 = 0, then M is generalized Drazin invertible and

Md =
(

Ad (Ad)3(AB + BD)
Σ0 Dd + (Dd)3CB + Σ2(AB + BD)

)
,

where

Σn =
∞∑

i=0
(Dd)i+n+2CAiAπ + Dπ

∞∑
i=0

DiC(Ad)i+n+2 −
n∑

i=0
(Dd)i+1C(Ad)n−i+1.

Proof. It is sufficient to simplify Γ and Λ in Theorem 3.2 to the form given here under
the assumption that BC = 0, BDC = 0 and BD2 = 0. Clearly Γ = (Ad)3(AB + BD).
We can check that

Λ = Dπ
∞∑

i=0
DiC(Ad)i+4(AB + BD) −

∞∑
i=0

(Dd)i+1CAi(Ad)3(AB + BD)

+
∞∑

i=0
(Dd)i+3CAiB +

∞∑
i=1

(Dd)i+3CAi−1BD
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= Dπ
∞∑

i=0
DiC(Ad)i+4(AB + BD) −

2∑
i=0

(Dd)i+1C(Ad)3−i(AB + BD)

−
∞∑

i=3
(Dd)i+1CAi−3A3(Ad)3(AB + BD) + (Dd)3CB

+
∞∑

i=1
(Dd)i+3CAiB +

∞∑
i=1

(Dd)i+3CAi−1BD

= Dπ
∞∑

i=0
DiC(Ad)i+4(AB + BD) −

2∑
i=0

(Dd)i+1C(Ad)3−i(AB + BD)

+
∞∑

i=0
(Dd)i+4CAiAπ(AB + BD) + (Dd)3CB

= (Dd)3CB + Σ2(AB + BD).
�

The following result is a corollary of Theorem 3.2, the conditions of which are considered
in [18, Theorem 2.5] for matrices.

Corollary 3.6. If A and D are generalized Drazin invertible and BDπC = 0, BDd = 0
and DDπC = 0, then M is generalized Drazin invertible and

Md =
(

Ad Γ
DπC(Ad)2 +

∑∞
i=0(Dd)i+2CAiAπ − DdCAd Dd + E

)
,

where Γ is as in (3.3) and

E = DπCAdΓ +
∞∑

i=0

i∑
j=0

(Dd)i+3CAjBDi−j −
∞∑

i=0
(Dd)i+1CAiΓ.

Proof. It is sufficient to check that M satisfies the condition of Theorem 3.2. Since
BDd = 0, we have BDdDC = 0. Hence BDπC = 0 implies BC = 0, and DDπC = 0
implies DC = DdD2C. Thus BDiC = BDdDi+1C = 0, for any nonnegative integer i. �

4. Applications
In this section, we first derive some representations for the generalized Drazin inverse

of M with application of Theorem 3.2.

Theorem 4.1. Let M be defined as in (2.1) such that A and D are generalized Drazin
invertible. If

BDd = 0, DπCA = 0 and DπCB = 0, (4.1)
then M is generalized Drazin invertible and

Md =
(

Ad + AdΓC Γ
T − DdCAdΓC + DdΛ′C Dd + Λ′

)
,

where Γ is as in (3.3) and

T =
∞∑

i=0
(Dd)i+2CAiAπ − DdCAd,

Λ′ =
∞∑

i=0

i∑
j=0

(Dd)i+3CAjBDi−j −
∞∑

i=0

∞∑
j=0

(Dd)i+1CAi(Ad)j+2BDj .

(4.2)
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Proof. Let

P =
(

0 0
DπC 0

)
and Q =

(
A B

DDdC D

)
.

Then M = P + Q, PQ = 0, and P 2 = 0. Hence Lemma 2.2 implies that

Md = Qd + (Qd)2P.

Since BDd = 0 and BDi(DDdC) = 0, for any nonnegative integer i, we can apply Theorem
3.2 to Q to obtain

Qd =
(

Ad Γ
T Dd + Λ′

)
.

Note that ΓDd = 0, ΓΛ′ = 0, Λ′Dd = 0, Λ′2 = 0, ΓDπ = Γ and Λ′Dπ = Λ′. We can
check that

(Qd)2P =
(

∗ AdΓ
∗ (Dd)2 + TΓ + DdΛ′

)
P =

(
AdΓC 0

TΓC + DdΛ′C 0

)
,

where ∗ denotes entries we need not specify, Γ is as in Lemma 3.1 and T, Λ′ are as in (4.2).
Since TΓ = −DdCAdΓ, we conclude that

Md =
(

Ad + AdΓC Γ
T − DdCAdΓC + DdΛ′C Dd + Λ′

)
.

�

As a special case of Theorem 4.1, the following corollary extends [18, Theorem 2.7] to
bounded linear operators on a Banach space.

Corollary 4.1. If A and D are generalized Drazin invertible and

BD = 0, DπCA = 0 and DπCB = 0, (4.3)

then M is generalized Drazin invertible and(
Ad + (Ad)3BC (Ad)2B

Υ0 + Υ2BC DD + Υ1B

)
,

where

Υn =
∞∑

i=0
(Dd)i+n+2CAiAπ −

n∑
i=0

(Dd)i+1C(Ad)n−i+1, n = 0, 1, 2. (4.4)

The rest of this section is devoted to a generalization of Theorem 3.2 by changing the
condition BC = 0 to ABC = 0. We start with the following additive result.

Theorem 4.2. If P, Q ∈ B(X) are generalized Drazin invertible, PQd = 0 and PQiP = 0,
for any integer i ≥ 1, then P + Q is generalized Drazin invertible and

(P + Q)d =Qπ
∞∑

i=0

∞∑
j=0

Qi(P d)i+j+1Qj +
∞∑

i=0
(Qd)i+1P iP π

−
∞∑

i=0

∞∑
j=0

(Qd)i+1P i(P d)j+1Qj+1 +
∞∑

i=0

i∑
j=0

(Qd)i+3P j+1Qi−j+1.

(4.5)

Proof. Let Y = R(P ). Let B : X → Y and C : Y → X be defined by B(x) = P (x) and
C(y) = y, x ∈ X, y ∈ Y . Evidenty, B, C are linear bounded operators and P = CB. By
PQd = 0, we have CBQd = 0. Because C is a inclusion mapping, we have BQd = 0. By
PQiP = 0, we have CBQiCB = 0 and then BQiCB = 0.
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Note that R(B) = R(P ) is dense in Y and BQiC are bounded linear operators, so we
have BQiC = 0, for any integer i ≥ 1. By Lemma 2.3, we obtain that

(P + Q)d =
(

(C I)
(

B
Q

))d

= (C I)
((

BC B
QC Q

)d
)2 (

B
Q

)
. (4.6)

Since BQd = 0 and BQiC = 0 for i ≥ 1, Theorem 3.2 shows that(
BC B
QC Q

)d

=
(

(BC)d Γ′

Σ′
0 Qd + Λ′′

)
,

where

Γ′ =
∞∑

i=0
((BC)d)i+2BQi,

Σ′
0 = Qπ

∞∑
i=0

Qi+1C((BC)d)i+2 +
∞∑

i=0
(Qd)i+1C(BC)i(BC)π − QQdC(BC)d,

Λ′′ = Qπ
∞∑

i=0

∞∑
j=0

Qi+1C((BC)d)i+j+3BQj +
∞∑

i=0

i∑
j=0

(Qd)i+2C(BC)jBQi−j

−
∞∑

i=0
(Qd)i+1QC(BC)iΓ′.

Since Γ′Σ′
0 = 0, Γ′Qd = 0, Γ′Λ′′ = 0, Λ′′Σ′

0 = 0, Λ′′Qd = 0 and (Λ′′)2 = 0, therefore((
BC B
QC Q

)d
)2

=
(

((BC)d)2 (BC)dΓ′

Σ′
0(BC)d + QdΣ′

0 Σ′
0Γ′ + (Qd)2 + QdΛ′′

)
.

Substitute the equation above into (4.6), we obtain
(P + Q)d = C((BC)d)2B + Qd + Σ′

0(BC)dB + QdΣ′
0B

+ C(BC)dΓ′Q + Σ′
0Γ′Q + QdΛ′′Q

= (CB)d + Qd + Σ′
0(BC)dB + QdΣ′

0B

+ C(BC)dΓ′Q + Σ′
0Γ′Q −

∞∑
i=0

(Qd)i+1C(BC)iΓ′Q

+
∞∑

i=0

i∑
j=0

(Qd)i+3(CB)j+1Qi−j+1.

(4.7)

We can check that

(CB)d + Σ′
0(BC)dB = Qπ

∞∑
i=0

Qi((CB)d)i+1, (4.8)

Qd + QdΣ′
0B =

∞∑
i=0

(Qd)i+1(CB)i(CB)π, (4.9)

and

C(BC)d + Σ′
0 −

∞∑
i=0

(Qd)i+1C(BC)i

= Qπ
∞∑

i=0
QiC((BC)d)i+1 −

∞∑
i=0

(Qd)i+1C(BC)i+1(BC)d

= Qπ
∞∑

i=0
Qi((CB)d)i+1C −

∞∑
i=0

(Qd)i+1(CB)i+1(CB)dC.

(4.10)
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Substituting (4.8) and (4.10) into (4.7) and noting that CΓ′Q =
∑∞

i=0((CB)d)i+1Qi+1, we
can get the desired expression of (P + Q)d. �

As corollary of Theorem 4.2, the following result extends the main result in [34] to
bounded linear operators on a Banach space.

Corollary 4.2. If P, Q ∈ B(X) are generalized Drazin invertible, PQP = 0 and PQ2 = 0,
then P + Q is generalized Drazin invertible and

(P + Q)d = Qπ
∞∑

i=0
Qi(P d)i+1 + Qπ

∞∑
i=0

Qi(P d)i+2Q +
∞∑

i=0
(Qd)i+1P iP π

+
∞∑

i=0
(Qd)i+3P i+1P πQ − QdP dQ − (Qd)2PP dQ.

Now, we give another result. In this case, the representations are quite complex.

Theorem 4.3. Let M be the form defined by (2.1) such that A, D and BC are generalized
Drazin invertible. If

BDd = 0, ABC = 0 and BDiC = 0, (4.11)

for any positive integer i, then M is generalized Drazin invertible and

Md =
(

Φ1A Φ1B +
∑∞

i=0 Φi+2(AB + BD)D2i+1

Σ̃0A + Ψ1 Σ̃0B + (CB + D2)dD + Λ̃D

)
,

where

Φn = (BC)π
∞∑

i=0
(BC)i(Ad)2i+2n +

∞∑
i=0

((BC)d)i+nA2iAπ −
n−1∑
i=1

((BC)d)i(Ad)2n−2i,

Ψn = Dπ
∞∑

i=0
D2iC((BC)d)i+n +

∞∑
i=0

(Dd)2i+2nC(BC)i(BC)π −
n−1∑
i=1

(Dd)2iC((BC)d)n−i,

Σ̃0 = (CB)π
∞∑

i=0
(CB + D2)iC(Ad)2i+3 + Dπ

∞∑
i=0

D2i+1CΦi+2

− D2
∞∑

i=0
(CB + D2)iΨ1(Ad)2i+3 +

∞∑
i=0

Ψi+2A2i+1Aπ

+
∞∑

i=0
(Dd)2i+3C(A2 + BC)iAπ −

∞∑
i=0

(Dd)2i+1C(BC)iΦ1 − Ψ1Ad,
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Λ̃ = ((CB)π − D2(CB + D2)d)
∞∑

i=0

∞∑
j=0

(CB + D2)iC(Ad)2i+2j+5(AB + BD)D2j

+ Dπ
∞∑

i=0

∞∑
j=0

D2i+1CΦi+j+3(AB + BD)D2j

+
∞∑

i=0

i∑
j=0

Ψi+3A2j+1(AB + BD)D2i−2j

+
∞∑

i=0

i∑
j=0

(Dd)2i+5C(A2 + BC)j(AB + BD)D2i−2j

−
∞∑

i=0

∞∑
j=0

Ψi+1A2i(Ad)2j+3(AB + BD)D2j

−
∞∑

i=0

∞∑
j=0

(Dd)2i+1C(A2 + BC)iΦj+2(AB + BD)D2j .

(CB+D2)d = Dπ
∞∑

i=0

∞∑
j=0

D2i((CB)d)i+j+1D2j +
∞∑

i=0
(Dd)2i+2(CB)i(CB)π

−
∞∑

i=0

∞∑
j=0

(Dd)2i+2(CB)i((CB)d)j+1D2j+2

+
∞∑

i=0

i∑
j=0

(Dd)2i+6(CB)j+1D2i−2j+2.

Proof. It is easy to see that

M2 =
(

A2 + BC AB + BD
CA + DC CB + D2

)
.

Notice that ABC = 0, by Lemma 2.2 we have A2 + BC is generalized Drazin invertible
and

(A2 + BC)d = (BC)π
∞∑

i=0
(BC)i(Ad)2i+2 +

∞∑
i=0

((BC)d)i+1A2iAπ.

Also (A2 + BC)π = Aπ − BC(A2 + BC)d. By Theorem 4.2, we have (CB + D2)d is as in
(4.5) with D replaced by D2 and

(CB + D2)d =Dπ
∞∑

i=0

∞∑
j=0

D2i((CB)d)i+j+1D2j +
∞∑

i=0
(Dd)2i+2(CB)i(CB)π

−
∞∑

i=0

∞∑
j=0

(Dd)2i+2(CB)i((CB)d)j+1D2j+2

+
∞∑

i=0

i∑
j=0

(Dd)2i+6(CB)j+1D2i−2j+2,

(CB + D2)π =(CB)π −
∞∑

i=0
((CB)d)i+1D2i+2 − D2(CB + D2)d.

It follows from Theorem 3.2 that

(M2)d =
(

(A2 + BC)d Γ̃
Σ̃0 (CB + D2)d + Λ̃

)
,
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where Γ̃, Σ̃0 and Λ̃ are correspondingly Γ, Σ0 and Λ in Theorem 3.2 with A, B, C, D
replaced by A2 + BC, AB + BD, CA + DC, CB + D2, respectively. Notice that Γ̃C = 0,
Λ̃C = 0 and Md = (M2)dM , we have

Md =
(

(A2 + BC)dA (A2 + BC)dB + Γ̃D

Σ̃0A + (CB + D2)dC Σ̃0B + (CB + D2)dD + Λ̃D

)
.

For any n ≥ 1, by the hypothesis of the theorem, we have

((A2 + BC)d)n = (BC)π
∞∑

i=0
(BC)i(Ad)2i+2n +

∞∑
i=0

((BC)d)i+nA2iAπ

−
n−1∑
i=1

((BC)d)i(Ad)2n−2i,

((CB + D2)d)nC = Dπ
∞∑

i=0
D2iC((BC)d)i+n +

∞∑
i=0

(Dd)2i+2nC(BC)i(BC)π

−
n−1∑
i=1

(Dd)2iC((BC)d)n−i,

and
A((A2 + BC)d)n = ((Ad)2n−1,

((CB + D2)d)nDC = (Dd)2n−1C.

Let Φn = ((A2 + BC)d)n and Ψn = ((CB + D2)d)nC. Using (4.11) to simplify Γ̃, Σ̃0 and
Λ̃, we obtain their expressions as stated in the theorem. �

The conditions of the following corollary are weaker than ones in [5, Theorem 3].

Corollary 4.3. Let M be the form defined by (2.1) such that A and BC are generalized
Drazin invertible. If ABC = 0, DC = 0 and D be quasi-nilpotent, then M is generalized
Drazin invertible and

Md =
(

Φ1A Φ1B +
∑∞

i=0 Φi+2(AB + BD)D2i+1

CΦ1 Σ0 +
∑∞

i=0((CB)d)i+1D2i+1 + ΛD

)
,

where where Φi are as in Theorem 4.3 and

Σ0 = C(BC)π
∞∑

i=0
(BC)i(Ad)2i+3 +

∞∑
i=0

C((BC)d)i+2A2i+1Aπ − (BC)dAd,

Λ = C(BC)π
∞∑

i=0

∞∑
j=0

(BC)i(Ad)2i+2j+5(AB + BD)D2j

+
∞∑

i=0

i∑
j=0

C((BC)d)i+3A2j+1(AB + BD)D2i−2j

−
∞∑

i=0

∞∑
j=0

C((BC)d)i+1A2i(Ad)2j+3(AB + BD)D2j .

Corollary 4.4. If A, D and BC are generalized Drazin invertible and
ABC = 0 and BD = 0, (4.12)

then M is generalized Drazin invertible and

Md =
(

Φ1A Φ1B

Σ̃0A + Ψ1 Dd + Σ̃0B

)
,
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where Φ1, Ψ1 and Σ̃0 are as in Theorem 4.3.

Proof. Obviously, if (4.12) holds, then (4.11) is satisfied. By Theorem 4.3, we have
Λ̃D = 0 and

(CB + D2)d = Dπ
∞∑

i=0
D2i((CB)d)i+1 +

∞∑
i=0

(Dd)2i+2(CB)i(CB)π.

Therefore (CB + D2)dD = Dd. �

The following corollaries can be obtained by Corollary 4.4.

Corollary 4.5. [4] If A, D and BC are generalized Drazin invertible and
ABC = 0, BD = 0 and DC = 0, (4.13)

then M is generalized Drazin invertible and

Md =
(

Φ1A Φ1B
CΦ1 Dd + C(Φ1Ad + (BC)d(Φ1A − Ad))B

)
,

where

Φ1 = (BC)π
∞∑

i=0
(BC)i(Ad)2i+2 +

∞∑
i=0

((BC)d)i+1A2iAπ.

Proof. By assumption, we compute Ψn = ((CB)d)nC for n ≥ 1. Furthermore,

Σ̃0 = (CB)π
∞∑

i=0
(CB)iC(Ad)2i+3 +

∞∑
i=0

((CB)d)i+2CA2i+1Aπ − (CB)dCAd.

By (CB)dC = C(BC)d, we can obtain the result.
�

Remark. It can be proved that all the results about generalized Drazin invertibility in
the paper are still valid for Drazin invertible cases.
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