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Abstract

Let K be a field of characteristic zero and L be the associative algebra of rank 2 over K in the variety generated
by Grassmann algebras. In this paper, we study the subalgebra L5z of symmetric polynomials in the algebra L,
and give a finite generating set for L5z,
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Grassmann cebirleri sinifinda simetrik polinomlar iizerine
Oz
K karakteristigi sifir olan bir cisim ve L, Grassmann cebirleri tarafindan tiretilen varyetede, K cismi {izerinde

ranki 2 olan birlesmeli cebir olsun. Bu ¢aligmada, L cebirinin L5z simetrik polinomlar alt cebiri incelenmis ve
L5z igin sonlu bir iiretec kiimesi verilmistir.

Anahtar Kelimeler: Pl-cebiri, Grassmann cebirleri, simetrik polinom.

1. Introduction

Let A,, be a free unitary associative algebra generated by x;, ..., x,, over a field K of characteristic

zero. The Grassmann algebra is the factor algebra G, = A,,/I where I is generated by

x;xj + xjx;, 1 < i,j < n. The Grassmann algebra is generated by e; = x; + I, 1 < i < n, which

implies that e;e; + eje; = 0. As a vector space, the Grassmann algebra has the basis

B={e ..eqiiy <<y, 1<k <njufl}.

Let K(X) be the free associative algebra generated by X over K where X = {x,,x,,...} is a

countable infinite set of variables. We call elements of K(X) polynomials. Let A be an algebra

over K and f(xq,..,x,) € K{X). We call f(x,,..,x,) a polynomial identity of A,

if

f(a4,...,a,) = 0foralla,,...,a, € A. The algebra A is called a PI-algebra if it has a nontrivial
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polynomial identity. We denote by T (A) the set of all polynomial identities of A. Since T(4) is

an ideal of K(X) which is invariant under all endomorphisms of K(X), it is a T-ideal of A.

One of the objectives of the theory of PI-algebras is finding the generating sets for T-ideal of an
algebra. Given a commutative unitary algebra, the T-ideal of the algebra is generated by the
commutator [x,y] = xy — yx. Since [[x,y],z] = 0 for all x,y,z € G, the Grassmann algebra
G, is a Pl-algebra. It is shown that the T-ideal of the Grassmann algebras is generated by

[[x, ], z]. It is shown by Latyshev (1976) and by Krakovski and Regev (1973).

The variety defined by the polynomial identity [[x, y],z] = 0 from T(G,,) is called the variety
generated by the Grassmann algebra. Let us denote by L the free associative algebra of rank 2

generated by {x, y} in the variety generated by the Grassmann algebra.

In this paper, we investigate the subalgebra of symmetric polynomials in the algebra L. We give
a generating set for the algebra of symmetric polynomials as an algebra and obtain the
presentation of the commutator ideal of the algebra of symmetric polynomials.

2. Preliminaries

Let K be a field of characteristic zero, K[x;, ..., x,,] be the commutative algebra of polynomials.
A polynomial f (x4, ..., x,) € K[x4, ..., x,,] is symmetric if it is invariant under every permutation

of the variables x, ..., x,,.

The polynomials oy, ..., 0, € K[x4, ..., x,] are called the elementary symmetric polynomials,

where

0-1 :x1+"'+xn
0-2 = xlxz + x1x3 + -+ x2x3 + -+ xn_lxn

0-3 = x1x2x3 + x1x2x4 + -+ xn_zxn_lxn

O-TL = x1x2x3 ...xn.

The elementary symmetric polynomials are generators of the algebra of symmetric polynomials.
Every symmetric polynomial can be written uniquely as a polynomial in the elementary

symmetric polynomials. The generating set is not unique. The polynomials
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P1, -, Pn € K[x4, ..., x,] form another generating set for the symmetric polynomials, where
Pr = x¥ + .-+ xk. (see Cox et al., 2015; Strumfels, 2008; van der Waerden, 1949.)

We refer the readers to the work by Findik and Ogiislii (2019) for a generating set of symmetric
polynomials in the free metabelian Lie algebra of rank 2 as one of the generalizations in a Lie
algebraic setting.

Now let L be the algebra of rank 2 freely generated by elements x, y, in the variety generated by
the Grassmann algebra consisting of unitary associative algebras over the ground field K. The
ideal I of L generated by all commutators [r,s] =rs — sr, where r,s € L, is called the
commutator ideal of L. The elements of I are of the form }; ap[r,s]t where p,t € L, a € K. Itis
well known (see e.g. Drensky (1996) ) that the basis of the commutator ideal I as a vector space
consists of elements x*y®[x, yl, a, b = 0. The commutative polynomial algebra K [x, y] acts on

1 by the following action.

p Z agpx®yPlx,y] = Z aappxyPlx, y]

where p € K[x,y] and ¥, a ,x%y?[x, y] € I. Therefore the commutator ideal I is a free K[x, y]-

module generated by the commutator [x, y] of x and y.

The polynomial identity [[x, y],z] = 0 implies the identity
[x, ¥1lz, t] = =[x, z][y, t],
and
x%yPlx,yl = yPxx, y] = [x, ylx®y® = [x,yly"x®
is satisfied in I.
We define the sets of symmetric polynomials of L and I by

L5 = {p(x,y) € L: p(x,y) = p(y,x)}

and

152 = {p(x,y) € I: p(x,y) = p(y,x)}

respectively. These sets are subalgebras of invariants of the symmetric group S,.
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3. Results and Discussion

Lemma 3.1. Let p(x, y) be an element in I52. Then p(x, y) is of the form

p(x,y) = z Aap (x*y? — xPy ) [x,y]

0<a<b

for some g, € K.

Proof. The element p(x,y) € I52 < I can be expressed as

p(x,y) = Z aapx®yPlx,y] = Z aapx®yPx, y] + Z Uaaxy?[x, y]

0<a,b a*b 0<a

Since p(x,y) € Iz, p(x, y) = p(y, x) holds. Hence
p(x,y) = Z Aapy*xP[y, x] + Z Aaqy*x [y, x]
a#b 0<a
and
Z 20,,x%y%x,y] + Z Agpx®yPlx, y] — Z agpy°xPly,x] = 0.
0<a a#b a#b

Since Yg<q2a4,x%y*[x, y] = 0 by the suggested basis, we have a,, = 0 for 0 < a. Therefore

we have
> @ + @2 Y0y + Y (@ + @)x*y? [ y] = 0
a<b b<a

where each sum equals zero by linear independence. So that a,;, = —a;, forall a # b. Thus we

have the following computations which provide the desired form of the element p(x, y).

P(Y) = ) awx®y Loyl + ) apxy’lxy]

a<b b<a

= z aapxy”lx, y] + Z apax”y?lx, yl

a<b a<b

= > aw@y -2yl

0<a<b
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Corollary 3.2. The set
{(x%y? —xPy*)[x,y]:0 < a < b}
is the basis of °2.

Proof. The given set spans I52 as a vector space by Lemma 3.1. It is sufficient to show that the

set is linearly independent. Let

Z Ay (x®y? — xPyD)[x,y] = 0.

a<b

We can fix a + b to n since L2 is a graded vector space.

Aap (x®y? = xPy*)[x,y] = 0

a+b=n,a<b

As I is the K[x,y]-module generated by [x, y], we have

a.,b b,,a —
Agp Xy’ — Z Aapx’y* = 0.

a+b=n,0<sa<b a+b=n,0sa<b

S0 a,, = 0 where 0 < a < b since each sum equals zero.
Theorem 3.3. The presentation of 52 is
I52 = (Mg, | 0 < a < b,mgymgy = 0)
where mg, = (x*y? — x2y®)[x, y].
Proof. Let mgy = (x%y? — x¥'y®)[x, y].
MapMgy = (x%y° = xy D) [x, y] (x*y? — xP'y*)[x, y]
= (x%y? —xPy ) (xTy? — xPy*)[x, y1[x, y]
= (x%y? —xPy ) (xTy? = xPy) (xy — yx)x, y]
= (x%P — xPy D) (x¥y? — 2Py ") xey)[x, y] — (x%y? — xPy ) (xy? — xPy*) (xy)[x, y]
= 0.

Theorem 3.4. The algebra L5z is generated by the set {x + y,x? + y?2,(y — x)[x, y]}, and the
algebra Iz is a left K[x, y]52-module generated by the element (y — x)[x, y].
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Proof. The algebra (L/I)%2 = K|[x,y]%2 is generated by x + y,x? + y2. Thus it is sufficient to
show that the algebra I%2 is contained in the algebra generated by x + y,x2 + y2, (y — x)[x, y].
Corollary 3.2 gives that 12 has the basis

{(x%y? — xPyM)[x,y]:0 < a < b},
which can be also considered as generating set. Direct computations give that

(xy? — xPyD)[x,y] = q(x, y)r(x, y)(y — ) [x, y]

where

()= (P + D))
q(X;Y)-— 2

and

b-a
r(x,y) = Z xb=a-iyi-1,
i1

b—a_y

b—-a
The polynomial r(x,y) can be written as r(x,y) = xT It is clear that r(x, y) = r(y, x)

and q(x,vy) = q(y,x). Hence q(x,y),7(x,y) € K[x + y,x? + y?], and (x%y? — xPy*)[x, y] is
included in (x + y,x? + y2, (y — x)[x, y]). This also shows that Iz is a left
Klx +v,x% + y?] = K[x, y]*2-module.
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