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Abstract
The main goal of this article is to show that many inequalities that are not valid in operator
theory become true if we add a separation condition on the spectra. The applications
include showing how monotone functions behave like operator monotone functions and
how the Choi-Davis inequality becomes valid for convex functions under this separation
condition.
Mathematics Subject Classification (2020). 47A63, 26A51, 26D15, 26B25, 39B62

Keywords. operator order, separated spectra, convex functions, operator monotone
functions

1. Introduction
Let B(H) denote the C∗-algebra of all bounded linear operators on a Hilbert space H.

When H is finite dimensional of dimension n, we identify B(H) with Mn; the algebra of
all complex n × n matrices. The identity operator in B(H) will be denoted by IH. If
B(H) = Mn, we use In for the identity operator. A linear mapping Φ : B(H) → B(K) is
said to be positive if it preserves positive operators. That is, if Φ(A) ≥ 0 whenever A ≥ 0.
In this context, an operator A ∈ B(H) is said to be positive, and is denoted as A ≥ 0, if
⟨Ax, x⟩ ≥ 0, ∀x ∈ H. If A is positive and invertible, it is said to be positive definite and is
denoted as A > 0. If the positive linear mapping Φ : B(H) → B(K) satisfies the additional
condition that Φ(IH) = IK, then Φ is said to be unital (or normalized).

We shall use the notation sp(A) to denote the spectrum of the operator A, which is
defined by

sp(A) = {λ ∈ C : A − λIH is not invertible in B(H)}.

If f : J → R is a given continuous function defined on the interval J , and if A ∈ B(H)
is a self adjoint operator with spectrum contained in J , the Gelfand map φ defines a ∗−
isometrically isomorphism between the set C(sp(A)) of all continuous functions on sp(A)
and the C∗-algebra C∗(A) generated by A together with IH. Then f(A) is defined by
f(A) = φ(f). This is usually referred to as functional calculus. When A is compact self
adjoint, so it has a spectral decomposition A =

∑∞
i=1 λiei ⊗ei, then f(A) =

∑∞
i=1 f(λi)ei ⊗

ei. Recall that if e ∈ H, then the tensor product e ⊗ e : H → H is defined as (e ⊗ e)(x) =
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⟨x, e⟩ e. In case A ∈ Mn is Hermitian, then A = Udiag(λi)U∗, for some unnitary matrix
U and a diagonal matrix diag(λi). In this case, f(A) is simply f(A) = Udiag(f(λi))U∗.

Having defined f(A), for the self adjoint operator A, we cite the following lemma from
[6]. This lemma helps to obtain operator inequalities from scalar ones.

Lemma 1.1. Let A ∈ B(H) be self adjoint and let f and g be continuous real valued
functions such that f(t) ≥ g(t) for all t ∈ sp(A). Then f(A) ≥ g(A).

In this context, the order relation A ≤ B between the self adjoint operators A, B means
that B − A ≥ 0.
Among the most important classes of functions related to operator inequalities are the
operator monotone and the operator convex functions. A function f : J → R is said to
be operator monotone increasing (respectively decreasing) if f(A) ≤ f(B) (respectively
f(A) ≥ f(B)) whenever A, B ∈ B(H) are self adjoint operators with spectra in the
interval J and A ≤ B. It must be noticed that if f is an increasing function (in the
scalar sense), it does not follow that f is operator monotone increasing and the function
f(t) = t2 provides such an example, see [4, Example V.1.2., P. 113]. For brevity, an
operator monotone increasing function is usually just called operator monotone.

On the other hand, a function f : J → R will be called an operator convex (respectively
operator concave) function if for all self adjoint operators A, B ∈ B(H), with spectra in
J , one has

f

(
A + B

2

)
≤ f(A) + f(B)

2
(respectively f

(
A+B

2

)
≥ f(A)+f(B)

2 ). Again, a convex function (in the scalar sense) is not
necessarily operator convex and the function f(t) = t3, t > 0 provides such an example
[4, Example V.1.4., P. 114].
It should be noticed that convex (and operator convex) functions are always continuous
on the interior of their domain.

Unlike scalar functions, operator monotony and operator convexity are strongly related
as stated below. See [12, Theorem 2.4] and [2, Theorems 2.1, 3.1, 2.3, 3.7].

Proposition 1.2. Let f : (0, ∞) → [0, ∞) be continuous. Then
(1) f is operator monotone decreasing if and only if f is operator convex and

f(∞) < ∞.
(2) f is operator monotone increasing if and only if f is operator concave.

Finding conditions that make scalar increasing functions satisfy the operator monotony
property or those properties that make scalar convex functions satisfy operator convexity
have received a considerable attention in the literature as one can see in [9, 10].

Our main target in this work is to explore further those conditions. For this purpose,
we begin with the following definition.

Definition 1.3. Let A ∈ B(H1) and B ∈ B(H2) be two self adjoint operators. We say
that the spectra of A and B are separated if there exists a number M such that

α ≤ M ≤ β, ∀α ∈ τ(A), β ∈ τ(B) or α ≥ M ≥ β, ∀α ∈ τ(A), β ∈ τ(B),
where the notation τ(X) is used to denote the smallest interval containing the spectrum
of the self adjoint operator X.

Notice that the condition that the spectra are separated is more strict than the spectra
being disjoint. Also, we observe that when A and B have separated spectra, then the
intersection τ(A) ∩ τ(B) is either empty or a singleton.

Among the most interesting operator inequalities is the celebrated Choi-Davis inequality
which states that

f(Φ(A)) ≤ Φ(f(A)), (1.1)
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for the self adjoint operator A ∈ B(H), the operator convex function f : J → R and the
unital positive linear mapping Φ. Of course, sp(A) ⊂ J. The inequality (1.1) is not true in
general for a convex function f that is not operator convex.
In [9, Theorem 1], an n−tuple version of (1.1) was given. For n = 1, this result provides
a convex version of (1.1), as follows.

Theorem 1.4 ([9, Theorem 1]). Let A ∈ Mn1 be Hermitian and let Φ : Mn1 → Mn2 be a
unital positive linear map such that A and Φ(A) have separated spectra. If f : J → R is a
convex function on the interval J and if τ(A), τ(Φ(A)) ⊆ J , then

f(Φ(A)) ≤ Φ(f(A)).

We remark that in [9], the definition of separated spectra was not given, but the condi-
tion stated in that reference is equivalent to the spectra being separated.

Our discussion will show that the assumptions of Theorem 1.4 cannot hold except for
trivial cases. So, this result becomes more valuable when n > 1. See Proposition 3.3 and
Remark 3.4 below.

Our main results include showing how separated spectra makes an increasing function
behave like an operator monotone function and convex functions behave like operator
convex functions.

In the sequel, λ1(X), λ2(X), · · · , λn(X), will denote the eigenvalues of the Hermitian
matrix X ∈ Mn arranged so that λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

2. Separated spectra and monotone functions
In this section we discuss separated spectra and their role in operator monotony. In

the sequel, if A ∈ B(H) is self adjoint and if M is a scalar, we understand the inequality
A ≤ M as A ≤ MIH. Similar understanding applies for m ≤ A, when m is a scalar too.

Lemma 2.1. Let f : J → R be an increasing continuous function on the interval J .
If A ∈ B(H) is a self adjoint operator with spectrum in J , and if A ≤ M for some
scalar M ∈ J , then f(A) ≤ f(M). On the other hand, if m ≤ A for some m ∈ J , then
f(m) ≤ f(A).

Proof. It suffices to show the first inequality. So, assume that A ≤ M for some scalar
M ∈ J. Since f is increasing on J and M ∈ J , it follows that

f(t) ≤ f(M); ∀t ∈ J, t ≤ M. (2.1)

Now since A ≤ M and sp(A) ⊂ J , it follows that sp(A) ⊂ (−∞, M ]∩J := J1; a sub-interval
of J . From (2.1), we have f(t) ≤ f(M) for all t ∈ J1. Finally, since sp(A) ⊂ J1, applying
functional calculus (Lemma 1.1) for t = A in the last inequality yields f(A) ≤ f(M); as
desired. �

Strongly related to our discussion, we present the following lemma, which presents a
sufficient condition for the order A ≤ B or B ≤ A.

Lemma 2.2. Let A, B be two compact self adjoint operators in B(H) with separated
spectra. Then either A ≤ B or B ≤ A.

Proof. By the spectral decomposition, let {uk} and {vk} be two orthonormal bases of H
such that

Ax =
∞∑

k=1
λk ⟨x, uk⟩ uk and Bx =

∞∑
k=1

ηk ⟨x, vk⟩ vk,
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and such that Auk = λkuk and Bvk = ηkvk. Noting that ∥x∥2 =
∑∞

k=1 | ⟨x, uk⟩ |2, we have,
for x ̸= 0,

1
∥x∥2 ⟨Ax, x⟩ = 1

∥x∥2

〈 ∞∑
k=1

λk ⟨x, uk⟩ uk,
∞∑

k=1
⟨x, uk⟩ uk

〉

=
∞∑

k=1
λk

| ⟨x, uk⟩ |2

∥x∥2 ,

which is a convex combination of the {λk}. Therefore,
1

∥x∥2 ⟨Ax, x⟩ ∈ τ(A).

Similarly, we conclude that
1

∥x∥2 ⟨Bx, x⟩ ∈ τ(B).

Now since τ(A) and τ(B) are separated, we infer that
α ≤ β ∀α ∈ τ(A), β ∈ τ(B) or α ≥ β ∀α ∈ τ(A), β ∈ τ(B).

Consequently,

either 1
∥x∥2 ⟨Ax, x⟩ ≤ 1

∥x∥2 ⟨Bx, x⟩ ∀x ∈ H or 1
∥x∥2 ⟨Ax, x⟩ ≥ 1

∥x∥2 ⟨Bx, x⟩ ∀x ∈ H.

But this latter conclusion leads to the fact that either ⟨Ax, x⟩ ≤ ⟨Bx, x⟩ for all x ∈ H or
⟨Ax, x⟩ ≥ ⟨Bx, x⟩ for all x ∈ H, which yields A ≤ B or B ≤ A, as required. �

So, in some cases, one can use Lemma 2.2 to determine if A ≤ B (of course, or B ≤ A).
Notice that determining whether A ≤ B or not needs to determine positivity of B − A.
However, Lemma 2.2 presents a very special case, where one can determine this order by
finding the spectra of A and B.

After finding the spectra of both A and B, the intervals τ(A) and τ(B) become clear.
If the two intervals are separated, then Lemma 2.2 says that either A ≤ B or B ≤ A. To
decide, we just compare λ1(A) and λ1(B). If, for example, λ1(A) ≤ λ1(B), then we have
the order A ≤ B.
The next theorem shows how separated spectra affect operator monotony.

Theorem 2.3. Let f : J → R be a continuous increasing function and let A, B ∈ B(H)
be two self adjoint operators with spectra in J . If A and B have separated spectra and if
A ≤ B, then f(A) ≤ f(B).

Proof. Since τ(A) and τ(B) are separated and since A ≤ B, it follows that there is a
scalar s such that

t1 ≤ s ≤ t2, (2.2)
for all t1 ∈ τ(A), t2 ∈ τ(B). Clearly s ∈ J. Now applying Lemma 2.1, we obtain f(A) ≤
f(s) ≤ f(B), which completes the proof. �
Corollary 2.4. Let A, B be two self adjoint operators in B(H) and let M be a scalar such
that A ≤ M ≤ B. If f : J → R is a continuous increasing function on the interval J that
contains the spectra of A, B. Then f(A) ≤ f(B).

Proof. Since A ≤ M ≤ B, we infer that τ(A) ⊂ (−∞, M ] and τ(B) ⊂ [M, ∞). This
means that A and B have separated spectra. From Theorem 2.3 we get the desired
inequality. �

In the next result, we show a monotone result without having separated spectra. We
emphasize that this result was shown in [11] using a completely different argument and
approach. Our proof depends on separating the spectra.
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Corollary 2.5. Let f : (0, ∞) → R be a continuous increasing function and let A, B be
positive definite matrices in Mn such that A ≤ B. Then

f

(
λn(A)
λ1(A)

A

)
≤ f(B).

Proof. Notice that since A, B > 0 and A ≤ B, then

λj(A) ≤ λj(B), ∀j = 1, · · · , n.

From this, it follows that

λ1

(
λn(A)
λ1(A)

A

)
= λn(A)

λ1(A)
λ1(A) = λn(A) ≤ λn(B).

But since λn(B) ≤ λj(B) for 1 ≤ j ≤ n, the latter inequality gives

λj

(
λn(A)
λ1(A)

A

)
≤ λ1

(
λn(A)
λ1(A)

A

)
= λn(A) ≤ λn(B) ≤ λj(B); 1 ≤ j ≤ n.

From this, we infer

τ

(
λn(A)
λ1(A)

A

)
=
[

λ2
n(A)

λ1(A)
, λn(A)

]
.

But also we have τ(B) = [λn(B), λ1(B)], and this gives

τ

(
λn(A)
λ1(A)

A

)
∩ τ(B) = ∅,

except for the case when λn(A) = λn(B), which then assures that τ
(

λn(A)
λ1(A) A

)
∩ τ(B) is a

singleton. By Lemma 2.2 we have

either λn(A)
λ1(A)

A ≤ B or B ≤ λn(A)
λ1(A)

A.

However, since λj

(
λn(A)
λ1(A) A

)
≤ λj(B), it follows that λn(A)

λ1(A) A ≤ B. By Theorem 2.3, the
desired inequality follows. �

Similarly one can show the following better estimate than the one in Corollary 2.5.

Corollary 2.6. Let f : (0, ∞) → R be a continuous increasing function and let A, B > 0
be such that A ≤ B. Then

f

(
λn(B)
λ1(A)

A

)
≤ f(B).

In the following result, we present a different, but a related condition that guarantees
operator monotony. Then we present some applications.

Proposition 2.7. Let A, B ∈ Mn be two commuting Hermitian matrices such that A ≤ B.
If f : J → R is a continuous increasing function on the interval J that contains the spectra
of both A, B, then f(A) ≤ f(B).

Proof. This follows from the fact that two commuting Hermitian matrices are simulta-
neously diagonalizable. �

Now we present an interesting application of Proposition 2.7. We know that (see [11])
if Φ is a unital positive linear map and m ≤ A ≤ M , then

Φ (A) ♯Φ
(
A−1

)
≤ M + m

2
√

Mm
, (2.3)
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where A♯B = A
1
2
(
A− 1

2 BA− 1
2
) 1

2 A
1
2 . In [8], it is shown that

Φ(A−1)2 ≤
(

(m + M)2

4mM

)2

Φ(A)−2, (2.4)

as a squared version of (2.3). In fact, from (2.4) we infer

Φ(A)2♯Φ(A−1)2 ≤ (m + M)2

4mM
. (2.5)

In the next result, we use Proposition 2.7 to obtain a refinement of (2.5). In the sequel,
∥ · ∥ denotes the usual operator norm.

Corollary 2.8. Let A ∈ Mn be a positive definite matrix and let Φ be a positive unital
linear map on Mn. Then

Φ(A)2♯Φ
(
A−1

)2
≤
∥∥∥∥Φ(A)2♯Φ

(
A−1

)2
∥∥∥∥

≤
∥∥∥∥(Φ (A) ♯Φ

(
A−1

))2
∥∥∥∥

≤ (M + m)2

4Mm
.

Proof. Notice that the two matrices

Φ (A) ♯Φ
(
A−1

)
and M + m

2
√

Mm
In

commute. Therefore, with f(t) = t2, Proposition 2.7 can be applied to obtain(
Φ (A) ♯Φ

(
A−1

))2
≤ (M + m)2

4Mm
In

from (2.3). Now, from Ando-Hiai inequality [1] it follows that∥∥∥∥Φ(A)2♯Φ
(
A−1

)2
∥∥∥∥ ≤

∥∥∥∥(Φ (A) ♯Φ
(
A−1

))2
∥∥∥∥ ≤ (M + m)2

4Mm
. (2.6)

On the other hand, since Φ(A)2♯Φ
(
A−1)2 is a positive operator, we have

Φ(A)2♯Φ
(
A−1

)2
≤
∥∥∥∥Φ(A)2♯Φ

(
A−1

)2
∥∥∥∥ . (2.7)

Combining (2.6) and (2.7), we get the desired inequalities. �

To present the next application of Proposition 2.7, we recall that for the positive def-
inite matrices A, B and the operator monotone function f : (0, ∞) → (0, ∞), the binary
operation σf defined by

Aσf B = A
1
2 f
(
A− 1

2 BA− 1
2
)

A
1
2

is an operator mean, provided that f(1) = 1. In this context, we remind the reader that a
binary operation σ on the cone of positive definite matrices is said to be an operator mean
if it satisfies the following conditions [7] for the positive definite matrices A, B, C, D:

• A ≤ C and B ≤ D imply AσB ≤ CσD.
• C(AσB)C = (CAC)σ(CBC).
• An ↓n A and Bn ↓n B imply (AnσBn) ↓n (AσB).
• InσIn = In.
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When f is not operator monotone, σf does not satisfy some of the desired properties for
an operator mean. It is well known that when f is operator monotone such that f(1) = 1,
the condition B ≤ A implies Aσf B ≤ A. Also, it is well known that when σf is symmetric
in the sense that Aσf B = Bσf A, then Aσf B ≥ B. We refer the reader to [3]. In the next
result, we show these properties for a monotone function f that is not necessarily operator
monotone.

Corollary 2.9. Let A, B ∈ Mn be positive definite. If f : (0, ∞) → (0, ∞) is a continuous
increasing function such that f(1) = 1 and B ≤ A, then Aσf B ≤ A. Further, if Aσf B =
Bσf A, then B ≤ Aσf B.

Proof. Since B ≤ A, we have A− 1
2 BA− 1

2 ≤ In. Proposition 2.7 gives f
(
A− 1

2 BA− 1
2
)

≤
f(In) = In. Now conjugating with A

1
2 yields the first desired inequality. For the second

inequality, we observe that the condition B ≤ A implies In ≤ B− 1
2 AB− 1

2 , which means
In = f(In) ≤ f

(
B− 1

2 AB− 1
2
)

. Conjugating this inequality with B
1
2 gives B ≤ Bσf A,

meaning that B ≤ Aσf B since σf is symmetric. �

3. Separated spectra and convex functions
Let f : J → R be a function defined on the interval J and let A be a self adjoint

operator in B(H). If τ(A) = [m, M ], we use the notations

af,A = f (M) − f (m)
M − m

, bf,A = Mf (m) − mf (M)
M − m

.

Theorem 3.1. Let A ∈ Mn1 be Hermitian and let Φ : Mn1 → Mn2 be a positive linear
map such that A and Φ(A) have separated spectra. If f : J → R is a convex (continuous)
function on the interval J containing τ(A) and τ(Φ(A)), then

f(Φ(A)) ≤ Φ(f(A)) + bf,Φ(A)(In2 − Φ(In1)).

Proof. Assume that τ(Φ(A)) = [m, M ] and let g(t) = af,Φ(A)t + bf,Φ(A) be the line
equation through (m, f(m)) and (M, f(M)). Then

f(t) ≤ af,Φ(A)t + bf,Φ(A); ∀t ∈ [m, M ].

Applying functional calculus argument to the above inequality with t = Φ(A), we get

f(Φ(A)) ≤ af,Φ(A)Φ(A) + bf,Φ(A)In2 . (3.1)

On the other hand, since τ(A) and τ(Φ(A)) are separated, we may apply functional calculus
argument to the inequality

f(t) ≥ af,Φ(A)t + bf,Φ(A); ∀t ∈ J\[m, M ],

using t = A to obtain
f(A) ≥ af,Φ(A)A + bf,Φ(A)In1 ,

which gives, upon applying Φ,

Φ(f(A)) ≥ af,Φ(A)Φ(A) + bf,Φ(A)Φ(In1). (3.2)

Then the desired inequality follows by combiing (3.1) and (3.2). �

The following converse of Theorem 3.1 can be obtained by applying the same ideas as
in Theorem 3.1, but taking g as the secant of f over the interval τ(A) instead of τ(Φ(A)).
That is, if τ(A) = [m, M ], then g(t) = af,At+bf,A; the secant through the points (m, f(m))
and (M, f(M)).
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Theorem 3.2. Let A ∈ Mn1 be Hermitian and let Φ : Mn1 → Mn2 be a positive linear
map such that A and Φ(A) have separated spectra. If f : J → R is a convex (continuous)
function on the interval J and if τ(A), τ(Φ(A)) ⊆ J , then

Φ(f(A)) ≤ f(Φ(A)) + bf,A(Φ(In1) − In2).

Notice that if Φ is unital in Theorems 3.1 and 3.2, we deduce that

f(Φ(A)) = Φ(f(A)).

At first glance, this conclusion seems to be a contradiction to the case n = 1 [9, Theorem
1] stated in Theorem 1.4 above. In the next proposition, we clarify this, where we show
that when Φ is unital, A and Φ(A) cannot have separated spectra except for trivial cases
that allow the identity f(Φ(A)) = Φ(f(A)) to hold.

Proposition 3.3. Let A ∈ Mn be Hermitian and let Φ : Mn → Mm be a unital positive
linear mapping. Then A and Φ(A) have separated spectra if and only if either Φ(A) =
λ1(A)In or Φ(A) = λn(A)In.

Proof. Assume first that Φ(A) = λ1(A)In or Φ(A) = λn(A)In. Then τ(Φ(A)) = {λ1(A)}
or τ(Φ(A)) = {λn(A)}, and in both cases A and Φ(A) have separated spectra.
On the other hand, assume that A and Φ(A) have separated spectra. We know that, since
Φ is unital,

λn(A)In ≤ A ≤ λ1(A)In ⇒ λn(A)In ≤ Φ(A) ≤ λ1(A)In.

But the latter inequality assures that τ(Φ(A)) ⊂ [λn(A), λ1(A)]. Now since, by assumption,
τ(A) and τ(Φ(A)) have separated spectra and since τ(Φ(A)) ⊂ [λn(A), λ1(A)], we must
have τ(Φ(A)) = {λn(A)} or τ(Φ(A)) = {λ1(A)}, upon which we infer that σ(Φ(A)) =
{λn(A)} or σ(Φ(A)) = {λn(A)}. Since Φ(A) is Hermitian, it follows that Φ(A) = λ1(A)In

or Φ(A) = λn(A)In, completing the proof. �

In the following remark, we show the same conclusion as Proposition 3.3 but for the
special case when Φ is a state.

Remark 3.4. Notice that if Φ : Mn → C is a state; that is Φ(A) = ⟨Ax, x⟩ for a specific
unit vector x, then using the spectral decomposition Ax =

∑n
k=1 λk ⟨x, uk⟩ uk, we have

Φ(A) = ⟨Ax, x⟩

=
n∑

k=1
λk| ⟨x, uk⟩ |2 ∈ τ(A),

where the last inclusion follows from the fact that x is a unit vector, which in turns assures
that the above sum is a convex combination of the {λk}. This shows that Φ(A) ∈ τ(A) and
hence, when Φ is a state, A and Φ(A) do not have separated spectra unless Φ(A) = λn(A)In

or Φ(A) = λ1(A)In.

We conclude this article with the following subadditive inequality for convex functions.
Recall that a concave function f : (0, ∞) → (0, ∞) is subadditive in the sense that

f(a + b) ≤ f(a) + f(b). (3.3)

This inequality does not hold for operator concave functions. That is, if f : (0, ∞) →
(0, ∞) is an operator concave function and if A and B are two positive definite operators
in B(H), then it does not follow that

f(A + B) ≤ f(A) + f(B). (3.4)

In [3], it is shown that

∥f(A + B)∥u ≤ ∥f(A) + f(B)∥u, (3.5)
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for the operator concave function f : (0, ∞) → (0, ∞) and the positive definite matrices
A, B ∈ Mn, where ∥ · ∥u is any unitarily invariant norm. Later, Bourin and Uchiyama [5]
proved the validity of (3.5) for the concave f (not necessarily operator concave). We also
refer the reader to [10] for further discussion in this direction. In the next result, we prove
a subadditive inequality for convex functions, under the separated spectra condition.

Theorem 3.5. Let A, B ∈ B(H) be such that A and A + B as well as B and A + B
have separated spectra. If f : J → R is a convex (continuous) function on the interval J
containing the spectra of A, B, A + B, then

f(A + B) ≤ f(A) + f(B) − bf,A+BIH.

Proof. Assume that τ(A + B) = [m, M ] and consider the line g(t) = af,A+Bt + bf,A+B.
Since, on [m, M ], f(t) ≤ g(t), applying functional calculus argument to A + B gives

f(A + B) ≤ af,A+B(A + B) + bf,A+BIH. (3.6)
On the other hand, since A and B both have separated spectra with A+B, it follows that

f(A) ≥ af,A+BA + bf,A+BIH and f(B) ≥ af,A+BB + bf,A+BIH,

which imply
f(A) + f(B) ≥ af,A+B(A + B) + 2bf,A+BIH. (3.7)

Then the desired inequality follows by combining (3.6) and (3.7). �
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