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We consider the oscillatory behavior of solutions to partial dynamic equation on time
scales. We establish several oscillation criteria by applying a Ricatti transformation. Ex-
amples are provided to justify our results.
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1. Introduction
Nowadays, the study of dynamic equations on time scale has received a lot of attention

because of their applications in nuclear physics, control theory, engineering mechanics and
other fields. The concept of time scales was introduced by Stephen Hilger in 1988 to unify
discrete and continuous analysis. Bohner and Peterson [4] summarize the preliminaries
and some applications of calculus on time scale; after that there has been more attention to
research on time scales. Ahlbrandt and Morian [2] and Hoffacker [10] proposed the notion
for multivariate cases and studied partial dynamic equations on time scales. Various
definitions and extended ideas of the time scale calculus on the case of multivariate can
be found in [3, 11].

Meanwhile oscillation properties of solutions plays a vital role in qualitative theory of
difference and differential equations. Many authors have studied the oscillation for various
types of equations such as differential and difference equation of integer and fractional
order; see [9, 12, 13, 19]. Also dynamic equation’s oscillatory behavior on time scales has
been studied in [1, 5–7, 14, 16–18]. However, the oscillation of solutions of these type of
partial dynamic equations on time scales were not considered earlier. This motivate the
authors to establish the oscillation results of dynamic equations for multivariate cases.

We consider the partial dynamic equation

(α(t)y∆t(x, t))∆t + p(x, t)y(x, t) = β(t)∇2
xy(x, t), (x, t) ∈ G × [t0, ∞)J, (1.1)
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with either the Neumann boundary condition
yN (x, t) = 0, (x, t) ∈ ∂G × [t0, ∞)J, (1.2)

or the Dirichlet boundary condition
y(x, t) = 0, (x, t) ∈ ∂G × [t0, ∞)J . (1.3)

Here G is a bounded domain in Rn with piecewise smooth boundary ∂G, ∆t is the partial
dynamic operator with respect to t, ∇2

xy =
∑n

i=1 ∂2
xixi

y, and N is the unit exterior normal
vector to ∂G. The coefficients α(t) and β(t) are rd continuous and real valued functions
on [0, ∞)J, α(t) is positive and delta differentiable with α(t)∆t continuous, p ∈ C(G ×
[t0, ∞)J,R).

We establish sufficient conditions for the oscillation of (1.1)-(1.2), and of (1.1)-(1.3). We
adapt to time scales the Ricatti transformation used for functional differential equations
in [15].

2. Preliminaries
The following definitions can be found in [4], where there is detailed introduction to

time scale calculus. A time scale J is a nonempty closed subset of the real numbers R. We
will use intervals of the form [t0, ∞)J = [t0, ∞) ∩ J for t0 ∈ J. For a point t ∈ J we have
following definitions: The forward jump operator is defined as σ(t) = inf{s ∈ J, s > t}.
The backward jump operator is defined as ρ(t) = sup{s ∈ J, s < t}. The graininess
is defined as µ(t) = σ(t) − t. A point t ∈ J is said to be right-dense if σ(t) = t, and
right-scattered if σ(t) > t.

A function g : J → R is said to be rd continuous if it is continuous at each right dense
point and there exists a finite left limit of g at all left dense points.

To define derivatives, we introduce

Jκ =
{
J\(ρ(sup J), sup J) if sup J < ∞
J if sup J = ∞.

At t ∈ Jκ, the (delta) derivative of a function with respect to t is the number g∆(t) = g∆t(t)
(provided it exists) with the following property: For each ϵ > 0 there exists a δ positive,
possibly depending on t, such that∣∣(g(σ(t)) − g(s)

)
− g∆(t)

(
σ(t) − s

)∣∣ ≤ ϵ|σ(t) − s| (2.1)
for all s ∈ (t − δ, t + δ) ∩ J. A function g : J → R is said to be regressive provided
1 + µ(t)g(t) ̸= 0 for each t ∈ Jk. Let W be the set of functions that are rd continuous and
regressive. Also we define W+ = {g ∈ W : 1 + µ(t)g(t) > 0, t ∈ J}.

For γ ∈ W and s, t ∈ J, the generalized exponential function is defined by

eγ(t, s) = exp
( ∫ t

s
ζµ(τ)(γ(τ))∆τ

)
, ζµ(z) =

{ 1
µ log(1 + µz), µ ̸= 0,

z µ = 0 .

Then eγ(t, s) is a nonzero real valued function, and is the unique solution of the IVP

v∆(t) = γ(t)v(t), v(t0) = 1 on J .

Definition 2.1 ([11]). Let f : T1 × T2 × . . . × Tn → R be a function and let t =
(t1, t2, . . . , ti, . . . , tn) ∈ Tk. Then define f∆i(t) to be the number (provided it exists)
with the property that given any ϵ > 0, there exists a neighborhood U of ti with U =
(ti − δ, ti + δ) ∩ Ti for δ > 0 such that∣∣∣[f(t1, . . . σ(ti), . . . tn) − f(t1, . . . s, . . . tn)] − f∆i(t)[σ(ti) − s]

∣∣∣ ≤ ϵ |σi(t) − s| for all s ∈ U.

f∆i is called the partial delta derivative of f at t with respect to the variable ti.
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By a (classical) solution of (1.1), we mean a function y(x, t) : G×[t0, ∞)J → R such that
y, y∆t ,

(
y∆t

)∆t , ∂xiy, and ∂2
xixj

y are continuous on G × [t0, ∞)J → R, for i, j ∈ {1, . . . n}.
Also the solution needs to satisfy (1.1) along with the boundary condition either (1.2) or
(1.3).

Definition 2.2. The function y(x, t) is said to be eventually positive (eventually negative)
if ∃ t1 ≥ t0 such that y ≥ 0 and

∫
G y dx > 0 for all t ≥ t1 (resp. y ≤ 0 and

∫
G y dx < 0 for

all t ≥ t1).

There is also an alternative definition which is more restrictive. However our results
hold under both definitions. A function y(x, t) is called eventually positive (eventually
negative) if ∃ t1 ≥ t0 such that y > 0 (resp. y < 0) for all t ≥ t1 and all the interior points
x of G

A non-zero solution that is neither eventually positive nor eventually negative is called
oscillatory; otherwise the solution is called non-oscillatory. Problem (1.1)-(1.2) or (1.1)-
(1.3) is called to be oscillatory if its every solution is oscillatory.

3. Oscillation with Neumann boundary condition
Assume that

P (t) := min
x∈G

p(x, t) ≥ 0. (3.1)

Lemma 3.1. If y(x, t) is an eventually positive solution of (1.1)-(1.2), then ∃ t1 ≥ t0 so
that Y (t) :=

∫
G y dx > 0 and(

α(t)Y ∆(t)
)∆ + P (t)Y (t) ≤ 0, ∀t ≥ t1 . (3.2)

Also if y(x, t) is an eventually negative solution, then Y (t) < 0 and(
α(t)Y ∆(t)

)∆ + P (t)Y (t) ≥ 0, ∀t ≥ t1 . (3.3)

Proof. From the definition of eventually positive solution, there exist t1 ≥ t0 so that
Y > 0 for t ≥ t1. Then integrating (1.1) with respect to x over G, we have∫

G

(
α(t)y∆t(x, t)

)∆t dx +
∫

G
p(x, t)y(x, t) dx = β(t)

∫
G

∇2
xy(x, t) dx. (3.4)

Using Green’s theorem and (1.2), we have∫
G

∇2
xy(x, t) dx =

∫
∂G

∂y(x, t)
∂N

dS = 0 (3.5)

Using that
(
y∆t(x, t)

)∆t is continuous with respect to x on the bounded and closed
subset G ⊂ Rn, we can obtain δ independent of t in (2.1). Therefore the conditions
in [4, Theorem 1.117] are satisfied, thus

( ∫
G y(x, t) dx

)∆t =
∫

G y∆t(x, t) dx. A similar
arguments is used of the second derivative. From (3.4), (3.5), and (3.1), we obtain (3.2).

For eventually negative solutions, the proof follows the same process as above. �
Lemma 3.2. Let

∫ ∞
t0

1
α(t)∆t = ∞ and y be an eventually positive solution of (1.1)-(1.2).

If Y and t1 are defined as in Lemma 3.1, then

0 ≤ Y ∆(s), 0 ≤ Y ∆(s)
Y (s)

≤ 1
α(s)

∫ s
t1

1
α(ν)∆ν

∀s ≥ t1 . (3.6)

Proof. From (3.2), we have(
α(t)Y ∆(t)

)∆ ≤ −P (t)Y (t) ≤ 0, ∀t > t1 . (3.7)

Therefore α(t)Y ∆(t) is non-increasing; thus α(t)Y ∆(t) is of one sign. We assert that
αY ∆ ≥ 0. To reach a contradiction, assume that there exists t2 ≥ t1 such that
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c := α(t2)Y ∆(t2) < 0. Since αY ∆ is non-increasing, Y ∆(s) ≤ c/α(s) ∀ s ≥ t2. Integrating
from t2 to t, we obtain

Y (t) = Y (t2) +
∫ t

t2
Y ∆(s)∆s ≤ Y (t2) + c

∫ t

t2

1
α(s)

∆s .

Letting t → ∞, the right-hand side approaches −∞ which contradicts Y being positive.
Therefore αY ∆ ≥ 0. Dividing by α > 0 we obtain the left inequality in (3.6).

Since Y is positive and αY ∆ is non-increasing,

Y (t) ≥ Y (t) − Y (t1) =
∫ t

t1

α(ν)Y ∆(ν)
α(ν)

∆ν ≥ α(t)Y ∆(t)
∫ t

t1

1
α(ν)

∆ν ∀t > t1 .

Dividing by Y (t) > 0 and then by α(t)
∫ t

t0
1

α(s)∆s > 0, we obtain the right inequality in
(3.6). �

The next lemma considers eventually negative solutions; its proof follows the same steps
as those in the above lemma.

Lemma 3.3. Let
∫ ∞

t0
1

α(t)∆t = ∞ and y be an eventually negative solution of (1.1)-(1.2).
If Y and t1 are defined as in Lemma 3.1, then

Y ∆(s) ≤ 0, 0 ≤ Y ∆(s)
Y (s)

≤ 1
α(s)

∫ s
t1

1
α(ν)∆ν

∀s ≥ t1 . (3.8)

Theorem 3.4. Assume
∫ ∞

t0
1

α(t)∆t = ∞, and let

I(t) := eγ(σ(t), t0)P (t)
1 + µ(t)

α(t)
∫ s

t0
1

α(τ) ∆τ

−
α(t)e2

γ(t, t0)γ2(t)
4eγ(σ(t), t0)

(
1 + µ(t)

α(t)
∫ t

t0
1

α(τ)∆τ

)
. (3.9)

If there exists an γ ∈ W+ such that

lim sup
t→∞

∫ t

t0
I(s)∆s = ∞ (3.10)

then (1.1)-(1.2) is oscillatory.

Proof. To reach a contradiction, initially we take that a solution y is eventually positive.
Let Y and t1 be defined as in Lemma 3.1, and using the Ricatti transformation, let

w(t) = eγ(t, t0)α(t)Y ∆(t)
Y (t)

.

By Lemmas 3.1 and 3.2, Y > 0 and Y ∆ ≥ 0; therefore w(t) ≥ 0 for t ≥ t1. Using the
quotient rule, the product rule (see [4, Theorem 1.20]) and the derivative of eγ(t, t0) we
have

w∆(t) = e∆
γ (t, t0)

(α(t)Y ∆(t)
Y (t)

)
+ eγ(σ(t), t0)

(α(t)Y ∆(t)
Y (t)

)∆

= γ(t)w(t) +
eγ(σ(t), t0)

(
α(t)Y ∆(t)

)∆

Y (σ(t))
− α(t)eγ(σ(t), t0)(Y ∆(t))2

Y (t)Y (σ(t))
.

From the definition of w, we have Y ∆(t) = Y (t)w(t)
α(t)eγ(t,t0) . Then completing the square in the

above expression we have

w∆(t) = − eγ(σ(t), t0)Y (t)
α(t)e2

γ(t, t1)Y (σ(t))
w2(t) + γ(t)w(t) −

α(t)e2
γ(t, t0)Y (σ(t))

4eγ(σ(t), t0)Y (t)
γ2(t)

+
α(t)e2

γ(t, t0)Y (σ(t))
4eγ(σ(t), t0)Y (t)

γ2(t) +
eγ(σ(t), t0)

(
α(t)Y ∆(t)

)∆

Y (σ(t))
.

(3.11)
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Using that the first three terms form the negative of a binomial squared, and (3.7), we
have

w∆(t) ≤
α(t)e2

γ(t, t0)Y (σ(t))
4eγ(σ(t), t0)Y (t)

γ2(t) − eγ(σ(t), t0)P (t)Y (t)
Y (σ(t))

.

By [4, Theorem 1.16(iv)] and (3.6), we have

Y (σ(t))
Y (t)

= 1 + µ(t)Y ∆(t)
Y (t)

≤ 1 + µ(t)
α(t)

∫ t
t0

1
α(s)∆s

.

Then

w∆(t) ≤
α(t)e2

γ(t, t0)γ2(t)
4eγ(σ(t), t0)

(
1 + µ(t)

α(t)
∫ t

t0
1

α(s)∆s

)
− eγ(σ(t), t0)P (t)

1 + µ(t)
α(t)

∫ t

t0
1

α(s) ∆s

= −I(t) ,

with I(t) defined by (3.9). Taking integration from t1 to t yields

w(t) ≤ w(t1) −
∫ t

t1
I(s)∆s .

Using that I(s) is continuous on [t0, t1], we get

w(t) ≤ w(t1) +
∫ t1

t0
I(s)∆s −

∫ t

t0
I(s)∆s .

By (3.10) we obtain that limt→∞ w(t) = −∞ which contradicts w(t) ≥ 0. Therefore y(x, t)
can not be eventually positive.

Now we take that y is eventually negative. By Lemma 3.3, Y < 0 and Y ∆ ≤ 0, so
that w(t) ≥ 0. The same process as above yields a contradiction; thus y(x, t) can not be
eventually negative. Therefore y(x, t) must be oscillatory. �

Note that the conditions in Theorem 3.4 basically require α(t) not be too large, and P (t)
to be larger than α(t). In the next corollary we consider γ = 0 that makes eγ(σ(s), t0) = 1.

Corollary 3.5. Assume γ(t) = 0 and
∫ ∞

t0
1

α(t)∆t = ∞. If

lim sup
t→∞

∫ t

t0

P (s)
1 + µ(s)

α(s)
∫ s

t0
1

α(τ) ∆τ

∆s = ∞ , (3.12)

then (1.1)-(1.2) is oscillatory.

Lemma 3.6. Let
∫ ∞

t0
1

α(t)
∫ t

t0
P (s)∆s∆t = ∞ and y be an eventually positive solution of

(1.1)-(1.2). If Y and t1 be defined by Lemma 3.1, then either

0 ≤ Y ∆(s), 0 ≤ Y ∆(s)
Y (s)

≤ 1
α(s)

∫ s
t1

1
α(ν)∆ν

∀s ≥ t1 , (3.13)

or limt→∞ Y (t) = 0.

Proof. As in Lemma 3.2, inequality (3.7) indicates that α(t)Y ∆(t) is non-increasing and
is of one sign. Then two cases are available.
Case 1: α(t)Y ∆(t) ≥ 0 ∀ t ≥ t1. Since α(t) > 0, it follows that Y ∆(t) ≥ 0, which is the
left inequality in (3.13). Since Y (t) is positive and α(t)Y ∆(t) is non-increasing,

Y (t) ≥ Y (t) − Y (t1) =
∫ t

t1

α(s)Y ∆(s)
α(s)

∆s ≥ α(t)Y ∆(t)
∫ t

t1

1
α(s)

∆s ∀t > t1 .

Dividing by Y (t) > 0 and then by α(t)
∫ t

t0
1

α(s)∆s > 0, we obtain the right inequality in
(3.13).
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Case 2: α(t)Y ∆(t) < 0 ∀ t ≥ t1. Since α(t)Y ∆(t) is non-increasing and α(t) is positive,
Y ∆(t) < 0 for all t ≥ t1. Then Y (t) is positive and non-increasing, which implies that
limt→∞ Y (t) =: c ≥ 0. We claim that c = 0. By contraction assuming that c > 0, we have
Y (t) ≥ c > 0 for all t ≥ t1. Then(

α(t)Y ∆(t)
)∆ = −P (t)Y (t) ≤ −cP (t) ∀t ≥ t1 .

Integrating from t1 to t, we have

α(t)Y ∆(t) ≤ α(t1)Y ∆(t1) − c

∫ t

t1
P (s)∆s ≤ −c

∫ t

t1
P (s)∆s

Dividing by α(t) > 0 and integrating again from t1 to t, we have

Y (t) ≤ Y (t2) − c

∫ t

t1

1
α(s)

∫ s

t1
P (τ)∆τ∆s .

Note the integrands are continuous on [t0, t1], then from the assumption in this lemma,
the right-hand side approaches −∞ as t → ∞. This contradicts Y (t) being positive and
implies 0 = c = limt→∞ Y (t). �

Lemma 3.7. Let
∫ ∞

t0
1

α(t)
∫ t

t0
P (s)∆s∆t = ∞ and y be an eventually negative solution of

(1.1)-(1.2). If Y and t1 be defined by Lemma 3.1, then either

Y ∆(s) ≤ 0, 0 ≤ Y ∆(s)
Y (s)

≤ 1
α(s)

∫ s
t1

1
α(ν)∆ν

∀s ≥ t1 , (3.14)

or limt→∞ Y (t) = 0.

The proof is identical to that of Lemma 3.6, we omit it.

Theorem 3.8. Assume
∫ ∞

t0
1

α(t)
∫ t

t0
P (s)∆s∆t = ∞ and let I(t) be as defined in Theorem

3.4. If there exists an γ ∈ W+ such that lim supt→∞
∫ t

t0
I(s)∆s = ∞ then every solution

of (1.1)-(1.2) is oscillatory or tends to zero as t → ∞.

Proof. Initially assume that the solution is eventually positive. Then we consider the two
cases in Lemma 3.6. For case 1 we proceed as in Theorem 3.4. For case 2 we also proceed
as in Lemma 3.6.

Now assume the solution is eventually negative. We consider Lemma 3.7 in the two
possible cases and obtain the desired conclusion. �

4. Oscillation with Dirichlet boundary condition
In this section, we use the eigenvalues of the Laplacian,

−∇2ϕ(x) = λϕ(x) in G,

ϕ(x) = 0 on ∂G .

The principal eigenvalue λ1 is positive and the corresponding eigenfunction ϕ1 is also
positive in the interior of G; see [8, Theorem 2, page 356]. Furthermore, we normalize this
eigenvector so that

∫
G ϕ1 = 1. We shall assume that

P + λ1β ≥ 0, where P (t) = min
x∈G

p(x, t). (4.1)

Lemma 4.1. If y(x, t) is an eventually positive solution of (1.1)-(1.3), then ∃ t1 ≥ t0
such that Y (t) :=

∫
G y(x, t)ϕ1(x) dx > 0 and(
α(t)Y ∆(t)

)∆ +
(
P (t) + λ1β(t)

)
Y (t) ≤ 0, ∀t ≥ t1 . (4.2)

Also if y(x, t) is an eventually negative solution, then Y (t) < 0 and(
α(t)Y ∆(t)

)∆ +
(
P (t) + λ1β(t)

)
Y (t) ≥ 0, ∀t ≥ t1 . (4.3)
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Proof. From the definition of eventually positive solution, there exist t1 ≥ t0 such that
y(x, t) ≥ 0 and

∫
G y(x, t) dx > 0 for t ≥ t1. Since ϕ1(x) > 0 in the interior of G, it follows

that Y (t) =
∫

G y(x, t)ϕ1(x) dx > 0. We multiply (1.1) by ϕ1 and integrate with respect to
x over G and get ∫

G

(
α(t)y∆t(x, t)

)∆tϕ1(x) dx +
∫

G
p(x, t)y(x, t)ϕ1(x) dx

= β(t)
∫

G
∇2

xy(x, t)ϕ1(x) dx.
(4.4)

On the right-hand side, we have

β(t)
∫

G
∇2y(x, t)ϕ1(x) dx = −λ1β(t)

∫
G

y(x, t)ϕ1(x) dx . (4.5)

As in Lemma 3.1, by [4, Theorem 1.117], we have
( ∫

G y(x, t) dx
)∆t =

∫
G y∆t(x, t) dx, and

a similar statement for the second derivative. From (4.4), (4.5), and (4.1), we obtain (4.2).
For eventually negative solutions, the proof follows the same process as above. �

Lemma 4.2. Let
∫ ∞

t0
1

α(t)∆t = ∞ and y be an eventually positive solution of (1.1)-(1.3).
If Y and t1 be taken as in Lemma 4.1, then

0 ≤ Y ∆(s), 0 ≤ Y ∆(s)
Y (s)

≤ 1
α(s)

∫ s
t1

1
α(ν)∆ν

∀s ≥ t1 . (4.6)

Proof. From (4.2), we have(
αY ∆)∆ ≤ −

(
P + λ1β

)
Y ≤ 0, ∀t > t1 . (4.7)

Then the rest of the proof is the same as that in Lemma 3.2. �

The next lemma considers eventually negative solutions; its proof follows the same steps
as those in the above lemma.

Lemma 4.3. Let
∫ ∞

t0
1

α(t)∆t = ∞ and y be an eventually negative solution of (1.1)-(1.3).
If Y and t1 be taken as in Lemma 4.1, then

Y ∆(s) ≤ 0, 0 ≤ Y ∆(s)
Y (s)

≤ 1
α(s)

∫ s
t1

1
α(ν)∆ν

∀s ≥ t1 . (4.8)

Theorem 4.4. Assume (4.1) and
∫ ∞

t0
1

α(t)∆t = ∞, and let

J(t) :=
eγ(σ(t), t0)

(
P (t) + λ1β(t)

)
1 + µ(t)

α(t)
∫ t

t0
1

α(τ) ∆τ

∆s −
α(t)e2

γ(s, t0)γ2(t)
4eγ(σ(t), t0)

(
1 + µ(t)

α(t)
∫ t

t0
1

α(τ)∆τ

)
.

If there exists an γ ∈ W+ such that lim supt→∞
∫ t

t0
J(s)∆s = ∞ then (1.1)-(1.3) is oscil-

latory.

The proof of the above theorem is identical to that of Theorem 3.4, substituting P by
P + λ1β.

Corollary 4.5. Assume γ(t) = 0 and
∫ ∞

t0
1

α(t)∆t = ∞. If

lim sup
t→∞

∫ t

t0

P (s) + λ1β(t)
1 + µ(s)

α(s)
∫ s

t0
1

α(τ) ∆τ

∆s = ∞ , (4.9)

then (1.1)-(1.3) is oscillatory.
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Lemma 4.6. Assume that∫ ∞

t0

1
α(t)

∫ t

t0

(
P (s) + λ1β(s)

)
∆s∆t = ∞

and y is an eventually positive solution of (1.1)-(1.3). If Y and t1 be taken by Lemma
4.1, then either

0 ≤ Y ∆(s), 0 ≤ Y ∆(s)
Y (s)

≤ 1
α(s)

∫ s
t1

1
α(ν)∆ν

∀s ≥ t1 , (4.10)

or limt→∞ Y (t) = 0.

The proof is same as that of Lemma 3.6.

Lemma 4.7. Assume that∫ ∞

t0

1
α(t)

∫ t

t0

(
P (s) + λ1β(s)

)
∆s∆t = ∞

and y is an eventually negative solution of (1.1)-(1.3). If Y and t1 be taken by Lemma
4.1, then either

Y ∆(s) ≤ 0, 0 ≤ Y ∆(s)
Y (s)

≤ 1
α(s)

∫ s
t1

1
α(ν)∆ν

∀s ≥ t1 , (4.11)

or limt→∞ Y (t) = 0.

The proof is identical to that of Lemma 4.6, we omit it.

Theorem 4.8. Assume ∫ ∞

t0

1
α(t)

∫ t

t0

(
P (s) + λ1β(s)

)
∆s∆t = ∞

and let J(t) be as defined in Theorem 4.4. If there exists an γ ∈ W+ such that
lim supt→∞

∫ t
t0

J(s)∆s = ∞ then (1.1)-(1.3) is oscillatory or tends to zero as t → ∞.

Proof. Initially take that the solution is eventually positive. Then we consider the two
cases in Lemma 4.6. For case 1 we proceed as in Theorem 3.4. For case 2 we also proceed
as in Lemma 4.6.

Now assume the solution is eventually negative. We consider Lemma 4.7 in the two
possible cases and obtain the desired conclusion. �

5. Examples
Example 5.1. Consider(1

t
y∆t

)∆t

+ t2y = t∇2
xy, (x, t) ∈ (0, π) × [1, ∞)J ,

yx(0, t) = yx(π, t) = 0, t ∈ [1, ∞)J.
(5.1)

Here α(t) = 1/t, β(t) = t, p(x, t) = t2, P (t) = t2.
Let J = {qn : q > 1, n ∈ N ∪ {0}} and γ(t) = 0. Then∫ ∞

t0

1
α(t)

∆t = lim
t→∞

∫ t

1
s ∆s = lim

t→∞

t2 − 1
1 + q

= ∞.

and
lim sup

t→∞

∫ t

t0

P (s)
1 + µ(s)

α(s)
∫ s

t0
1

α(τ) ∆τ

∆s = lim sup
t→∞

∫ t

1

s2(s2 − 1)
q2s2 − 1

∆s = ∞ .

The conditions of Corollary 3.5 hold. Therefore (5.1) is oscillatory.
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Example 5.2. Consider(
ty∆t

)∆t

+ t2y = t2∇2
xy, (x, t) ∈ (0, π) × [1, ∞)J,

y(0, t) = y(π, t) = 0, t ∈ [1, ∞)J .
(5.2)

Here α(t) = t, β(t) = t2, p(x, t) = t2, P (t) = t2. The principal eigenvalue is λ1 = 1 and
ϕ1 = sin(x)/2 . Let J = {qn : q > 1, n ∈ N ∪ {0}} and γ(t) = 0. Then∫ ∞

t0

1
α(t)

∫ t

t0

(
P (s) + λ1β(s)

)
∆s∆t = lim

t→∞

∫ t

1

1
s

( 2(s3 − 1)
1 + q + q2

)
∆s = ∞.

and

lim sup
t→∞

∫ t

t0
J(s)∆s = lim sup

t→∞

∫ t

t0

P (s) + λ1β(s)
1 + µ(s)

α(s)
∫ s

t0
1

α(τ) ∆τ

∆s

= lim sup
t→∞

∫ t

1
2s2 log(s − qs)∆s = ∞

The conditions of Theorem 4.8 are satisfied. Therefore (5.2) is oscillatory.
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