Almost h-conformal semi-invariant submersions from almost quaternionic Hermitian manifolds

Kwang Soon Park (ㅁ)
Division of General Mathematics, Room 4-107, Changgong Hall, University of Seoul, Seoul 02504, Republic of Korea

Abstract

As a generalization of Riemannian submersions, horizontally conformal submersions, semiinvariant submersions, h -semi-invariant submersions, almost h-semi-invariant submersions, conformal semi-invariant submersions, we introduce h -conformal semi-invariant submersions and almost h-conformal semi-invariant submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds. We study their properties: the geometry of foliations, the conditions for total manifolds to be locally product manifolds, the conditions for such maps to be totally geodesic. Finally, we give some examples of such maps.

Mathematics Subject Classification (2010). 53C15, 53C26, 53C43
Keywords. horizontally conformal submersion, quaternionic manifold, totally geodesic

1. Introduction

Riemannian submersions were independently introduced by B. O'Neill [20] and A. Gray [11] in 1960s. Using the notion of almost Hermitian submersions, B. Watson [29] obtained some differential geometric properties among fibers, base manifolds, and total manifolds. After that, many geometers study this area and there are a lot of results on this topic.

As a generalization of Riemannian submersions, a horizontally conformal submersion was introduced independently by B. Fuglede [14] and T. Ishihara [18] in 1970s and it is a particular type of conformal maps.

Given a C^{∞}-submersion F from a Riemannian manifold (M, g_{M}) onto a Riemannian manifold $\left(N, g_{N}\right)$, according to the conditions on the map $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$, we have the following types of submersions: a Riemannian submersion ([11,13,20]), an almost Hermitian submersion [29], an invariant submersion [27], an anti-invariant submersion [24], a slant submersion ([9,25]), a semi-invariant submersion [26], a semi-slant submersion [23], a quaternionic submersion [15], an h-anti-invariant submersion and an almost h-antiinvariant submersion [22], an h-semi-invariant submersion and an almost h-semi-invariant submersion [21], a horizontally conformal submersion ([4, 12]), a conformal anti-invariant submersion [1], a conformal semi-invariant submersion [2], etc.

It is well-known that Riemannian submersions are related with physics and have their applications in the Yang-Mills theory ($[7,30]$), Kaluza-Klein theory ($[8,16]$), Supergravity and superstring theories ([17,19]), etc. And the quaternionic Kähler manifolds have

[^0]applications in physics as the target spaces for nonlinear σ-models with supersymmetry [10].

The paper is organized as follows. In Section 2 we remind some notions, which are needed in the following sections. In Section 3 we give the definitions of h -conformal semiinvariant submersions and almost h-conformal semi-invariant submersions and obtain some properties on them: the characterizations of such maps, the harmonicity of such maps, the conditions for such maps to be totally geodesic, the integrability of distributions, the geometry of foliations, etc. In Section 4 we give some examples of h-conformal semiinvariant submersions and almost h-conformal semi-invariant submersions.

2. Preliminaries

Let $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$ be Riemannian manifolds, where g_{M} and g_{N} are Riemannian metrics on C^{∞}-manifolds M and N, respectively.

Let $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a C^{∞}-map.
We call the map F a C^{∞}-submersion if F is surjective and the differential $\left(F_{*}\right)_{p}$ has maximal rank for any $p \in M$.

Then the map F is said to be a Riemannian submersion ($[13,20]$) if F is a C^{∞} _ submersion and

$$
\left(F_{*}\right)_{p}:\left(\left(\operatorname{ker}\left(F_{*}\right)_{p}\right)^{\perp},\left(g_{M}\right)_{p}\right) \mapsto\left(T_{F(p)} N,\left(g_{N}\right)_{F(p)}\right)
$$

is a linear isometry for any $p \in M$, where $\left(\operatorname{ker}\left(F_{*}\right)_{p}\right)^{\perp}$ is the orthogonal complement of the space $\operatorname{ker}\left(F_{*}\right)_{p}$ in the tangent space $T_{p} M$ to M at p.

The map F is called horizontally weakly conformal at $p \in M$ if it satisfies either (i) $\left(F_{*}\right)_{p}=0$ or (ii) $\left(F_{*}\right)_{p}$ is surjective and there exists a positive number $\lambda(p)>0$ such that

$$
\begin{equation*}
g_{N}\left(\left(F_{*}\right)_{p} X,\left(F_{*}\right)_{p} Y\right)=\lambda^{2} g_{M}(X, Y) \quad \text { for } X, Y \in\left(\operatorname{ker}\left(F_{*}\right)_{p}\right)^{\perp} . \tag{2.1}
\end{equation*}
$$

We call the point p a critical point if it satisfies the type (i) and call the point p a regular point if it satisfies the type (ii). And the positive number $\lambda(p)$ is said to be dilation of F at p. The map F is called horizontally weakly conformal if it is horizontally weakly conformal at any point of M. If the map F is horizontally weakly conformal and it has no critical points, then we call the map F a horizontally conformal submersion. The horizontally conformal submersion F is said to be horizontally homothetic if $X(\lambda)=0$ for $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

Let $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a horizontally conformal submersion.
Given any vector field $U \in \Gamma(T M)$, we write

$$
\begin{equation*}
U=V U+\mathcal{H} U \tag{2.2}
\end{equation*}
$$

where $\mathcal{V} U \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $\mathcal{H} U \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Define the (O^{\prime} Neill) tensors \mathcal{T} and \mathcal{A} by

$$
\begin{align*}
\mathcal{A}_{E} F & =\mathcal{H} \nabla_{\mathcal{H} E} \mathcal{V} F+\mathcal{v} \nabla_{\mathcal{H} E} \mathcal{H} F \tag{2.3}\\
\mathcal{T}_{E} F & =\mathcal{H} \nabla_{v_{E}} \mathcal{V} F+\mathcal{v} \nabla_{\mathcal{V}} \mathcal{H} F \tag{2.4}
\end{align*}
$$

for vector fields $E, F \in \Gamma(T M)$, where ∇ is the Levi-Civita connection of $g_{M}([13,20])$. Then it is well-known that

$$
\begin{align*}
g_{M}\left(\mathcal{T}_{U} V, W\right) & =-g_{M}\left(V, \mathcal{T}_{U} W\right) \tag{2.5}\\
g_{M}\left(\mathcal{A}_{U} V, W\right) & =-g_{M}\left(V, \mathcal{A}_{U} W\right) \tag{2.6}
\end{align*}
$$

for $U, V, W \in \Gamma(T M)$.
Let $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a C^{∞}-map.
Then the second fundamental form of F is given by

$$
\left(\nabla F_{*}\right)(X, Y):=\nabla_{X}^{F} F_{*} Y-F_{*}\left(\nabla_{X} Y\right) \quad \text { for } X, Y \in \Gamma(T M)
$$

where ∇^{F} is the pullback connection and we denote conveniently by ∇ the Levi-Civita connections of the metrics g_{M} and $g_{N},[4]$.

Recall that F is said to be harmonic if the tension field $\tau(F)=\operatorname{trace}\left(\nabla F_{*}\right)=0$ and F is called a totally geodesic map if $\left(\nabla F_{*}\right)(X, Y)=0$ for $X, Y \in \Gamma(T M),[4]$.
Lemma 2.1 ([28]). Let $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$ be Riemannian manifolds and $F:\left(M, g_{M}\right) \mapsto$ $\left(N, g_{N}\right)$ a C^{∞}-map. Then we have

$$
\begin{equation*}
\nabla_{X}^{F} F_{*} Y-\nabla_{Y}^{F} F_{*} X-F_{*}([X, Y])=0 \tag{2.7}
\end{equation*}
$$

for $X, Y \in \Gamma(T M)$.
Remark 2.2. (1) From (2.7), we see that the second fundamental form ∇F_{*} is symmetric.
(2) By (2.7), we obtain

$$
\begin{equation*}
[V, X] \in \Gamma\left(\operatorname{ker} F_{*}\right) \tag{2.8}
\end{equation*}
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Let $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a horizontally conformal submersion with dilation λ.
We call a vector field $X \in \Gamma(T M)$ basic if (i) $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and (ii) X is F-related with some vector field $\bar{X} \in \Gamma(T N)$. (i.e., $\left(F_{*}\right)_{p} X(p)=\bar{X}(F(p))$ for any $p \in M$.)

Given any fiber $F^{-1}(y), y \in N$, and any basic vector fields $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we have

$$
\lambda(x)^{2} g_{M}(X, Y)(x)=g_{N}\left(F_{*} X, F_{*} Y\right)(y)=\text { constant }
$$

for any $x \in F^{-1}(y)$ so that

$$
\begin{equation*}
V\left(\lambda^{2} g_{M}(X, Y)\right)=V\left(g_{N}\left(F_{*} X, F_{*} Y\right)\right)=0 \quad \text { for } V \in \Gamma\left(\operatorname{ker} F_{*}\right) . \tag{2.9}
\end{equation*}
$$

Then we get
Proposition 2.3 ([12]). Let $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a horizontally conformal submersion with dilation λ. Then we obtain

$$
\begin{equation*}
\mathcal{A}_{X} Y=\frac{1}{2}\left\{\mathcal{V}[X, Y]-\lambda^{2} g_{M}(X, Y) \nabla_{\mathcal{V}}\left(\frac{1}{\lambda^{2}}\right)\right\} \tag{2.10}
\end{equation*}
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Here, $\nabla_{\mathcal{V}}$ denotes the gradient vector field in the distribution $\operatorname{ker} F_{*} \subset T M$. (i.e., $\nabla \mathcal{v} f=\sum_{i=1}^{m} V_{i}(f) V_{i}$ for $f \in C^{\infty}(M)$ and a local orthonormal frame $\left\{V_{1}, \cdots, V_{m}\right\}$ of ker F_{*}.)
Lemma 2.4 ([4]). Let $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a horizontally conformal submersion with dilation λ. Then we have

$$
\begin{align*}
\left(\nabla F_{*}\right)(X, Y) & =X(\ln \lambda) F_{*} Y+Y(\ln \lambda) F_{*} X-g_{M}(X, Y) F_{*}(\nabla \ln \lambda), \tag{2.11}\\
\left(\nabla F_{*}\right)(V, W) & =-F_{*}\left(\mathcal{T}_{V} W\right), \tag{2.12}\\
\left(\nabla F_{*}\right)(X, V) & =-F_{*}\left(\nabla_{X} V\right)=-F_{*}\left(\mathcal{A}_{X} V\right) \tag{2.13}
\end{align*}
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
Let $\left(M, g_{M}, J\right)$ be an almost Hermitian manifold, where J is a compatible almost complex structure on M (i.e., $J^{2}=-i d, g_{M}(J X, J Y)=g_{M}(X, Y)$ for $\left.X, Y \in \Gamma(T M)\right)$.

We call a horizontally conformal submersion $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ a conformal anti-invariant submersion [1] if $J\left(\operatorname{ker} F_{*}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}$.

A horizontally conformal submersion $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ is called a conformal semi-invariant submersion [2] if there is a distribution $\mathcal{D}_{1} \subset \operatorname{ker} F_{*}$ such that

$$
\operatorname{ker} F_{*}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, J\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1}, J\left(\mathcal{D}_{2}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp},
$$

where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\operatorname{ker} F_{*}$

Let M be a $4 m$-dimensional C^{∞}-manifold and let E be a rank 3 subbundle of $\operatorname{End}(T M)$ such that for any point $p \in M$ with a neighborhood U, there exists a local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of sections of E on U satisfying for all $\alpha \in\{1,2,3\}$

$$
J_{\alpha}^{2}=-i d, \quad J_{\alpha} J_{\alpha+1}=-J_{\alpha+1} J_{\alpha}=J_{\alpha+2},
$$

where the indices are taken from $\{1,2,3\}$ modulo 3 .
Then we call E an almost quaternionic structure on M and (M, E) an almost quaternionic manifold [3].
Moreover, let g be a Riemannian metric on M such that for any point $p \in M$ with a neighborhood U, there exists a local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of sections of E on U satisfying for all $\alpha \in\{1,2,3\}$

$$
\begin{gather*}
J_{\alpha}^{2}=-i d, \quad J_{\alpha} J_{\alpha+1}=-J_{\alpha+1} J_{\alpha}=J_{\alpha+2}, \tag{2.14}\\
g\left(J_{\alpha} X, J_{\alpha} Y\right)=g(X, Y) \tag{2.15}
\end{gather*}
$$

for all vector fields $X, Y \in \Gamma(T M)$, where the indices are taken from $\{1,2,3\}$ modulo 3 .
Then we call (M, E, g) an almost quaternionic Hermitian manifold [15].
For convenience, the above basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ satisfying (2.14) and (2.15) is said to be a quaternionic Hermitian basis.

Let (M, E, g) be an almost quaternionic Hermitian manifold.
We call (M, E, g) a quaternionic Kähler manifold if there exist locally defined 1-forms $\omega_{1}, \omega_{2}, \omega_{3}$ such that for $\alpha \in\{1,2,3\}$

$$
\nabla_{X} J_{\alpha}=\omega_{\alpha+2}(X) J_{\alpha+1}-\omega_{\alpha+1}(X) J_{\alpha+2}
$$

for any vector field $X \in \Gamma(T M)$, where the indices are taken from $\{1,2,3\}$ modulo 3 [15].
If there exists a global parallel quaternionic Hermitian basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of sections of E on M (i.e., $\nabla J_{\alpha}=0$ for $\alpha \in\{1,2,3\}$, where ∇ is the Levi-Civita connection of the metric $g)$, then (M, E, g) is said to be a hyperkähler manifold. Furthermore, we call $\left(J_{1}, J_{2}, J_{3}, g\right)$ a hyperkähler structure on M and g a hyperkähler metric [6].

Let $\left(M, E_{M}, g_{M}\right)$ and (N, E_{N}, g_{N}) be almost quaternionic Hermitian manifolds.
A map $F: M \mapsto N$ is called a $\left(E_{M}, E_{N}\right)$-holomorphic map if given a point $x \in M$, for any $J \in\left(E_{M}\right)_{x}$ there exists $J^{\prime} \in\left(E_{N}\right)_{F(x)}$ such that

$$
F_{*} \circ J=J^{\prime} \circ F_{*} .
$$

A Riemannian submersion $F: M \mapsto N$ which is a $\left(E_{M}, E_{N}\right)$-holomorphic map is called a quaternionic submersion [15].

Moreover, if (M, E_{M}, g_{M}) is a quaternionic Kähler manifold (or a hyperkähler manifold), then we say that F is a quaternionic Kähler submersion (or a hyperkähler submersion) [15].

Then we know that any quaternionic Kähler submersion is a harmonic map [15].
Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a Riemannian manifold.

A Riemannian submersion $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ is called an h-semi-invariant submersion if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that for any $R \in\{I, J, K\}$, there is a distribution $\mathcal{D}_{1} \subset \operatorname{ker} F_{*}$ on U such that

$$
\operatorname{ker} F_{*}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, R\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1}, R\left(\mathcal{D}_{2}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}
$$

where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\operatorname{ker} F_{*}$ [21].
We call such a basis $\{I, J, K\}$ an h-semi-invariant basis.
A Riemannian submersion $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ is called an almost h-semiinvariant submersion if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that for each $R \in\{I, J, K\}$, there is a distribution $\mathcal{D}_{1}^{R} \subset \operatorname{ker} F_{*}$ on U such that

$$
\operatorname{ker} F_{*}=\mathcal{D}_{1}^{R} \oplus \mathcal{D}_{2}^{R}, R\left(\mathcal{D}_{1}^{R}\right)=\mathcal{D}_{1}^{R}, R\left(\mathcal{D}_{2}^{R}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}
$$

where \mathcal{D}_{2}^{R} is the orthogonal complement of \mathcal{D}_{1}^{R} in $\operatorname{ker} F_{*}$ [21].
We call such a basis $\{I, J, K\}$ an almost h-semi-invariant basis.
Throughout this paper, we will use the above notations.

3. Almost h-conformal semi-invariant submersions

In this section, we define h-conformal semi-invariant submersions and almost h-conformal semi-invariant submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds. And we study their properties: the integrability of distributions, the geometry of foliations, the conditions for such maps to be totally geodesic, etc.
Definition 3.1. Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. A horizontally conformal submersion $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ is called an h-conformal semi-invariant submersion if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that for any $R \in\{I, J, K\}$, there is a distribution $\mathcal{D}_{1} \subset \operatorname{ker} F_{*}$ on U such that

$$
\operatorname{ker} F_{*}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, \quad R\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1}, \quad R\left(\mathcal{D}_{2}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}
$$

where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\operatorname{ker} F_{*}$.
We call such a basis $\{I, J, K\}$ an h-conformal semi-invariant basis.
Definition 3.2. Let (M, E, g_{M}) be an almost quaternionic Hermitian manifold and (N, g_{N}) a Riemannian manifold. A horizontally conformal submersion $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ is called an almost h-conformal semi-invariant submersion if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that for each $R \in\{I, J, K\}$, there is a distribution $\mathcal{D}_{1}^{R} \subset \operatorname{ker} F_{*}$ on U such that

$$
\operatorname{ker} F_{*}=\mathcal{D}_{1}^{R} \oplus \mathcal{D}_{2}^{R}, \quad R\left(\mathcal{D}_{1}^{R}\right)=\mathcal{D}_{1}^{R}, \quad R\left(\mathcal{D}_{2}^{R}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}
$$

where \mathcal{D}_{2}^{R} is the orthogonal complement of \mathcal{D}_{1}^{R} in $\operatorname{ker} F_{*}$.
We call such a basis $\{I, J, K\}$ an almost h-conformal semi-invariant basis.
Remark 3.3. (1) Let F be an h-conformal semi-invariant submersion from a hyperkähler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an h-conformal semi-invariant basis. Then the fibers of the map F are quaternionic CRsubmanifolds [5].
(2) Let $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be an h-conformal semi-invariant submersion. Then the map F is also an almost h-conformal semi-invariant submersion.

Let $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be an almost h-conformal semi-invariant submersion with an almost h-conformal semi-invariant basis $\{I, J, K\}$.

Denote the orthogonal complement of $R \mathcal{D}_{2}^{R}$ in $\left(\operatorname{ker} F_{*}\right)^{\perp}$ by μ^{R} for $R \in\{I, J, K\}$. We easily see that μ^{R} is R-invariant for $R \in\{I, J, K\}$.

Then given $X \in \Gamma\left(\operatorname{ker} F_{*}\right)$, we write

$$
\begin{equation*}
R X=\phi_{R} X+\omega_{R} X \tag{3.1}
\end{equation*}
$$

where $\phi_{R} X \in \Gamma\left(\mathcal{D}_{1}^{R}\right)$ and $\omega_{R} X \in \Gamma\left(R \mathcal{D}_{2}^{R}\right)$ for $R \in\{I, J, K\}$.
Given $Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we get

$$
\begin{equation*}
R Z=B_{R} Z+C_{R} Z \tag{3.2}
\end{equation*}
$$

where $B_{R} Z \in \Gamma\left(\mathcal{D}_{2}^{R}\right)$ and $C_{R} Z \in \Gamma\left(\mu^{R}\right)$ for $R \in\{I, J, K\}$.
We see that

$$
\begin{equation*}
\left(\operatorname{ker} F_{*}\right)^{\perp}=R \mathcal{D}_{2}^{R} \oplus \mu^{R} \quad \text { for } R \in\{I, J, K\} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{M}\left(C_{R} X, R V\right)=0 \tag{3.4}
\end{equation*}
$$

for $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(D_{2}^{R}\right)$.
Define $\widehat{\nabla}_{X} Y:=\mathcal{V} \nabla_{X} Y$ for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
We also define

$$
\begin{equation*}
\left(\nabla_{X} \phi_{R}\right) Y:=\widehat{\nabla}_{X} \phi_{R} Y-\phi_{R} \hat{\nabla}_{X} Y \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} \omega_{R}\right) Y:=\mathcal{H} \nabla_{X} \omega_{R} Y-\omega_{R} \hat{\nabla}_{X} Y \tag{3.6}
\end{equation*}
$$

for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $R \in\{I, J, K\}$.
Then we easily obtain
Lemma 3.4. Let F be an almost h-conformal semi-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an almost h-conformal semi-invariant basis. Then we get
(1)

$$
\begin{aligned}
& \hat{\nabla}_{X} \phi_{R} Y+\mathcal{T}_{X} \omega_{R} Y=\phi_{R} \hat{\nabla}_{X} Y+B_{R} \mathcal{T}_{X} Y \\
& \mathcal{T}_{X} \phi_{R} Y+\mathcal{H} \nabla_{X} \omega_{R} Y=\omega_{R} \hat{\nabla}_{X} Y+C_{R} \mathcal{T}_{X} Y
\end{aligned}
$$

for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $R \in\{I, J, K\}$.
(2)

$$
\begin{aligned}
& \mathcal{V} \nabla_{Z} B_{R} W+\mathcal{A}_{Z} C_{R} W=\phi_{R} \mathcal{A}_{Z} W+B_{R} \mathcal{H} \nabla_{Z} W \\
& \mathcal{A}_{Z} B_{R} W+\mathcal{H} \nabla_{Z} C_{R} W=\omega_{R} \mathcal{A}_{Z} W+C_{R} \mathcal{H} \nabla_{Z} W
\end{aligned}
$$

for $Z, W \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $R \in\{I, J, K\}$.
(3)

$$
\begin{aligned}
& \hat{\nabla}_{X} B_{R} Z+\mathcal{T}_{X} C_{R} Z=\phi_{R} \mathcal{J}_{X} Z+B_{R} \mathcal{H} \nabla_{X} Z \\
& \mathcal{T}_{X} B_{R} Z+\mathcal{H} \nabla_{X} C_{R} Z=\omega_{R} \mathcal{T}_{X} Z+C_{R} \mathcal{H} \nabla_{X} Z
\end{aligned}
$$

for $X \in \Gamma\left(\operatorname{ker} F_{*}\right), Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, and $R \in\{I, J, K\}$.
Remark 3.5. By (3.5), (3.6), and Lemma 3.4 (1), we have

$$
\begin{align*}
& \left(\nabla_{X} \omega_{R}\right) Y=B_{R} \mathcal{T}_{X} Y-\mathcal{T}_{X} \omega_{R} Y \tag{3.7}\\
& \left(\nabla_{X} \omega_{R}\right) Y=C_{R} \mathcal{T}_{X} Y-\mathcal{T}_{X} \phi_{R} Y \tag{3.8}
\end{align*}
$$

for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $R \in\{I, J, K\}$.
Now, we investigate the integrability of some distributions.
Lemma 3.6. Let F be an h-conformal semi-invariant submersion from a hyperkähler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an h-conformal semi-invariant basis. Then we have the followings:
(i) The distribution \mathcal{D}_{2} is always integrable.
(ii) The following conditions are equivalent:
(a) The distribution \mathcal{D}_{1} is integrable.
(b) $\left(\nabla F_{*}\right)(W, I V)-\left(\nabla F_{*}\right)(V, I W) \in \Gamma\left(F_{*} \mu^{I}\right)$ for $V, W \in \Gamma\left(\mathcal{D}_{1}\right)$.
(c) $\left(\nabla F_{*}\right)(W, J V)-\left(\nabla F_{*}\right)(V, J W) \in \Gamma\left(F_{*} \mu^{J}\right)$ for $V, W \in \Gamma\left(\mathcal{D}_{1}\right)$.
(d) $\left(\nabla F_{*}\right)(W, K V)-\left(\nabla F_{*}\right)(V, K W) \in \Gamma\left(F_{*} \mu^{K}\right)$ for $V, W \in \Gamma\left(\mathcal{D}_{1}\right)$.

Proof. By (2.7), we have $[V, W] \in \Gamma\left(\operatorname{ker} F_{*}\right)$ for $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
We claim that $\mathcal{T}_{V} R W=\mathcal{T}_{W} R V$ for $V, W \in \Gamma\left(\mathcal{D}_{2}\right)$ and $R \in\{I, J, K\}$.
Given $X \in \Gamma\left(\operatorname{ker} F_{*}\right)$, we get

$$
\begin{aligned}
g_{M}\left(\mathcal{T}_{V} R W, X\right) & =-g_{M}\left(R W, \nabla_{V} X\right)=-g_{M}\left(R W, \nabla_{X} V\right)=g_{M}\left(\nabla_{X} R W, V\right) \\
& =-g_{M}\left(\nabla_{X} W, R V\right)=-g_{M}\left(\nabla_{W} X, R V\right)=g_{M}\left(X, \nabla_{W} R V\right) \\
& =g_{M}\left(X, \mathcal{T}_{W} R V\right),
\end{aligned}
$$

which means our claim.
Given $V, W \in \Gamma\left(\mathcal{D}_{2}\right)$ and $Z \in \Gamma\left(\mathcal{D}_{1}\right)$, we obtain

$$
g_{M}([V, W], Z)=g_{M}\left(\nabla_{V} W-\nabla_{W} V, Z\right)=g_{M}\left(\mathcal{T}_{V} R W-\mathcal{T}_{W} R V, R Z\right)=0,
$$

which implies (i).
For (ii), given $V, W \in \Gamma\left(\mathcal{D}_{1}\right), Z \in \Gamma\left(\mathcal{D}_{2}\right)$, and $R \in\{I, J, K\}$, we have

$$
\begin{aligned}
g_{M}([V, W], Z) & =\frac{1}{\lambda^{2}} g_{N}\left(F_{*} \nabla_{V} R W-F_{*} \nabla_{W} R V, F_{*} R Z\right) \\
& =\frac{1}{\lambda^{2}} g_{N}\left(\left(\nabla F_{*}\right)(W, R V)-\left(\nabla F_{*}\right)(V, R W), F_{*} R Z\right)
\end{aligned}
$$

so that we get $(a) \Leftrightarrow(b),(a) \Leftrightarrow(c),(a) \Leftrightarrow(d)$.
Therefore, the result follows.
Theorem 3.7. Let F be an almost h-conformal semi-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an almost h-conformal semi-invariant basis. Then the following conditions are equivalent:
(a) The distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ is integrable.
(b) $\mathcal{A}_{Y} \omega_{I} B_{I} X-\mathcal{A}_{X} \omega_{I} B_{I} Y+\phi_{I}\left(\mathcal{A}_{Y} C_{I} X-\mathcal{A}_{X} C_{I} Y\right) \in \Gamma\left(\mathcal{D}_{2}^{I}\right)$ and

$$
\begin{aligned}
& \frac{1}{\lambda^{2}} g_{N}\left(\nabla_{Y}^{F} F_{*} C_{I} X-\nabla_{X}^{F} F_{*} C_{I} Y, F_{*} I V\right) \\
& =g_{M}\left(\mathcal{A}_{Y} B_{I} X-\mathcal{A}_{X} B_{I} Y-C_{I} Y(\ln \lambda) X+C_{I} X(\ln \lambda) Y\right. \\
& \left.+2 g_{M}\left(X, C_{I} Y\right) \nabla(\ln \lambda), I V\right)
\end{aligned}
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\mathcal{D}_{2}^{I}\right)$.
(c) $\mathcal{A}_{Y} \omega_{J} B_{J} X-\mathcal{A}_{X} \omega_{J} B_{J} Y+\phi_{J}\left(\mathcal{A}_{Y} C_{J} X-\mathcal{A}_{X} C_{J} Y\right) \in \Gamma\left(\mathcal{D}_{2}^{J}\right)$ and

$$
\begin{aligned}
& \frac{1}{\lambda^{2}} g_{N}\left(\nabla_{Y}^{F} F_{*} C_{J} X-\nabla_{X}^{F} F_{*} C_{J} Y, F_{*} J V\right) \\
& =g_{M}\left(\mathcal{A}_{Y} B_{J} X-\mathcal{A}_{X} B_{J} Y-C_{J} Y(\ln \lambda) X+C_{J} X(\ln \lambda) Y\right. \\
& \left.+2 g_{M}\left(X, C_{J} Y\right) \nabla(\ln \lambda), J V\right)
\end{aligned}
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\mathcal{D}_{2}^{J}\right)$.
(d) $\mathcal{A}_{Y} \omega_{K} B_{K} X-\mathcal{A}_{X} \omega_{K} B_{K} Y+\phi_{K}\left(\mathcal{A}_{Y} C_{K} X-\mathcal{A}_{X} C_{K} Y\right) \in \Gamma\left(\mathcal{D}_{2}^{K}\right)$ and

$$
\begin{aligned}
& \frac{1}{\lambda^{2}} g_{N}\left(\nabla_{Y}^{F} F_{*} C_{K} X-\nabla_{X}^{F} F_{*} C_{K} Y, F_{*} K V\right) \\
& =g_{M}\left(\mathcal{A}_{Y} B_{K} X-\mathcal{A}_{X} B_{K} Y-C_{K} Y(\ln \lambda) X+C_{K} X(\ln \lambda) Y\right. \\
& \left.+2 g_{M}\left(X, C_{K} Y\right) \nabla(\ln \lambda), K V\right)
\end{aligned}
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\mathcal{D}_{2}^{K}\right)$.
Proof. Given $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right), W \in \Gamma\left(\mathcal{D}_{1}^{R}\right)$, and $R \in\{I, J, K\}$, we have

$$
\begin{aligned}
g_{M}([X, Y], W) & =g_{M}\left(\nabla_{X} B_{R} Y, R W\right)+g_{M}\left(\nabla_{X} C_{R} Y, R W\right) \\
& -g_{M}\left(\nabla_{Y} B_{R} X, R W\right)-g_{M}\left(\nabla_{Y} C_{R} X, R W\right) \\
& =-g_{M}\left(\nabla_{X} R B_{R} Y, W\right)+g_{M}\left(\mathcal{A}_{X} C_{R} Y, R W\right) \\
& +g_{M}\left(\nabla_{Y} R B_{R} X, W\right)-g_{M}\left(\mathcal{A}_{Y} C_{R} X, R W\right) \\
& =-g_{M}\left(\nabla_{X} \omega_{R} B_{R} Y, W\right)-g_{M}\left(\phi_{R} \mathcal{A}_{X} C_{R} Y, W\right) \\
& +g_{M}\left(\nabla_{Y} \omega_{R} B_{R} X, W\right)+g_{M}\left(\phi_{R} \mathcal{A}_{Y} C_{R} X, W\right)\left(\text { since } \phi_{R} B_{R}=0\right) \\
& =g_{M}\left(\mathcal{A}_{Y} \omega_{R} B_{R} X-\mathcal{A}_{X} \omega_{R} B_{R} Y+\phi_{R} \mathcal{A}_{Y} C_{R} X-\phi_{R} \mathcal{A}_{X} C_{R} Y, W\right)
\end{aligned}
$$

so that

$$
\begin{align*}
& g_{M}([X, Y], W)=0 \quad \text { for } W \in \Gamma\left(\mathcal{D}_{1}^{R}\right) \tag{3.9}\\
& \Leftrightarrow \mathcal{A}_{Y} \omega_{R} B_{R} X-\mathcal{A}_{X} \omega_{R} B_{R} Y+\phi_{R} \mathcal{A}_{Y} C_{R} X-\phi_{R} \mathcal{A}_{X} C_{R} Y \in \Gamma\left(\mathcal{D}_{2}^{R}\right) .
\end{align*}
$$

Given $V \in \Gamma\left(\mathcal{D}_{2}^{R}\right)$, by using (2.11) and (3.4), we get

$$
\begin{aligned}
g_{M}([X, Y], V) & =g_{M}\left(\nabla_{X} B_{R} Y, R V\right)+g_{M}\left(\nabla_{X} C_{R} Y, R V\right) \\
& -g_{M}\left(\nabla_{Y} B_{R} X, R V\right)-g_{M}\left(\nabla_{Y} C_{R} X, R V\right) \\
& =g_{M}\left(\mathcal{A}_{X} B_{R} Y-\mathcal{A}_{Y} B_{R} X, R V\right) \\
& +\frac{1}{\lambda^{2}} g_{N}\left(-X(\ln \lambda) F_{*} C_{R} Y-C_{R} Y(\ln \lambda) F_{*} X\right. \\
& +g_{M}\left(X, C_{R} Y\right) F_{*} \nabla(\ln \lambda)+\nabla_{X}^{F} F_{*} C_{R} Y \\
& +Y(\ln \lambda) F_{*} C_{R} X+C_{R} X(\ln \lambda) F_{*} Y-g_{M}\left(Y, C_{R} X\right) F_{*} \nabla(\ln \lambda) \\
& \left.-\nabla_{Y}^{F} F_{*} C_{R} X, F_{*} R V\right) \\
& =g_{M}\left(\mathcal{A}_{X} B_{R} Y-\mathcal{A}_{Y} B_{R} X+C_{R} X(\ln \lambda) Y-C_{R} Y(\ln \lambda) X\right. \\
& \left.+2 g_{M}\left(X, C_{R} Y\right) \nabla(\ln \lambda), R V\right) \\
& -\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{Y}^{F} F_{*} C_{R} X-\nabla_{X}^{F} F_{*} C_{R} Y, F_{*} R V\right)
\end{aligned}
$$

so that

$$
\begin{align*}
& g_{M}([X, Y], V)=0 \quad \text { for } V \in \Gamma\left(\mathcal{D}_{2}^{R}\right) \tag{3.10}\\
& \Leftrightarrow \frac{1}{\lambda^{2}} g_{N}\left(\nabla_{Y}^{F} F_{*} C_{R} X-\nabla_{X}^{F} F_{*} C_{R} Y, F_{*} R V\right) \\
& =g_{M}\left(\mathcal{A}_{X} B_{R} Y-\mathcal{A}_{Y} B_{R} X+C_{R} X(\ln \lambda) Y-C_{R} Y(\ln \lambda) X\right. \\
& \left.+2 g_{M}\left(X, C_{R} Y\right) \nabla(\ln \lambda), R V\right)
\end{align*}
$$

Using (3.9) and (3.10), we obtain $(a) \Leftrightarrow(b),(a) \Leftrightarrow(c),(a) \Leftrightarrow(d)$.
Therefore, we have the result.
Theorem 3.8. Let F be an almost h-conformal semi-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that $(I, J, K$) is an almost h-conformal semi-invariant basis. Assume that the distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ is integrable. Then the following conditions are equivalent:
(a) The map F is horizontally homothetic.
(b) $\lambda^{2} g_{M}\left(\mathcal{A}_{Y} B_{I} X-\mathcal{A}_{X} B_{I} Y, I V\right)=g_{N}\left(\nabla_{Y}^{F} F_{*} C_{I} X-\nabla_{X}^{F} F_{*} C_{I} Y, F_{*} I V\right)$ for $X, Y \in$ $\Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\mathcal{D}_{2}^{I}\right)$.
(c) $\lambda^{2} g_{M}\left(\mathcal{A}_{Y} B_{J} X-\mathcal{A}_{X} B_{J} Y, J V\right)=g_{N}\left(\nabla_{Y}^{F} F_{*} C_{J} X-\nabla_{X}^{F} F_{*} C_{J} Y, F_{*} J V\right)$ for $X, Y \in$ $\Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\mathcal{D}_{2}^{J}\right)$.
(d) $\lambda^{2} g_{M}\left(\mathcal{A}_{Y} B_{K} X-\mathcal{A}_{X} B_{K} Y, K V\right)=g_{N}\left(\nabla_{Y}^{F} F_{*} C_{K} X-\nabla_{X}^{F} F_{*} C_{K} Y, F_{*} K V\right)$ for $X, Y \in$ $\Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\mathcal{D}_{2}^{K}\right)$.
Proof. Given $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right), V \in \Gamma\left(\mathcal{D}_{2}^{R}\right)$, and $R \in\{I, J, K\}$, from the proof of Theorem 3.7, we have

$$
\begin{align*}
g_{M}([X, Y], V)= & g_{M}\left(\mathcal{A}_{X} B_{R} Y-\mathcal{A}_{Y} B_{R} X+C_{R} X(\ln \lambda) Y\right. \tag{3.11}\\
& \left.-C_{R} Y(\ln \lambda) X+2 g_{M}\left(X, C_{R} Y\right) \nabla(\ln \lambda), R V\right) \\
& -\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{Y}^{F} F_{*} C_{R} X-\nabla_{X}^{F} F_{*} C_{R} Y, F_{*} R V\right) .
\end{align*}
$$

Using (3.11), it is easy to see $(a) \Rightarrow(b),(a) \Rightarrow(c),(a) \Rightarrow(d)$.
Conversely, from (3.11), we get

$$
\begin{equation*}
g_{M}\left(C_{R} X(\ln \lambda) Y-C_{R} Y(\ln \lambda) X+2 g_{M}\left(X, C_{R} Y\right) \nabla(\ln \lambda), R V\right)=0 \tag{3.12}
\end{equation*}
$$

Applying $Y=R V$ at (3.12), we obtain

$$
g_{M}\left(\nabla(\ln \lambda), C_{R} X\right) g_{M}(R V, R V)=0
$$

which implies

$$
\begin{equation*}
g_{M}(\nabla(\lambda), X)=0 \quad \text { for } X \in \Gamma\left(\mu^{R}\right) \tag{3.13}
\end{equation*}
$$

Applying $Y=C_{R} X, X \in \Gamma\left(\mu^{R}\right)$, at (3.12), we have

$$
2 g_{M}\left(X, C_{R}^{2} X\right) g_{M}(\nabla(\ln \lambda), R V)=-2 g_{M}(X, X) g_{M}(\nabla(\ln \lambda), R V)=0
$$

which implies

$$
\begin{equation*}
g_{M}(\nabla(\lambda), R V)=0 \quad \text { for } V \in \Gamma\left(\mathcal{D}_{2}^{R}\right) \tag{3.14}
\end{equation*}
$$

By (3.13) and (3.14), we get $(b) \Rightarrow(a),(c) \Rightarrow(a),(d) \Rightarrow(a)$.
Therefore, the result follows.
We deal with some particular type of conformal submersions.
Definition 3.9. Let F be an almost h-conformal semi-invariant submersion from an almost quaternionic Hermitian manifold $\left(M, E, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. If $R\left(\mathcal{D}_{2}^{R}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}$ for $R \in\{I, K\}$ and $J\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}\left(\right.$ i.e., $\left.\mathcal{D}_{2}^{J}=\{0\}\right)$, then we call the map F an almost h-conformal anti-holomorphic semi-invariant submersion.

We call such a basis $\{I, J, K\}$ an almost h-conformal anti-holomorphic semi-invariant basis.

Remark 3.10. (1) We easily see that $J\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}$ implies $J\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}$.
(2) Let $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be an h-conformal semi-invariant submersion. Then it is not possible to get $R\left(\mathcal{D}_{2}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}$ for $R \in\{I, J, K\}$. If not, then $K\left(\mathcal{D}_{2}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}$ and $K\left(\mathcal{D}_{2}\right)=I J\left(\mathcal{D}_{2}\right)=I\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)=\mathcal{D}_{2}$, contradiction!

So, our definition makes sense for this case. See Example 4.7.
Corollary 3.11. Let F be an almost h-conformal anti-holomorphic semi-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an almost h-conformal anti-holomorphic semi-invariant basis. Then the following conditions are equivalent:
(a) The distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ is integrable.
(b) $\mathcal{A}_{I V_{1}} I V_{2}=\mathcal{A}_{I V_{2}} I V_{1}$ for $V_{1}, V_{2} \in \Gamma\left(\mathcal{D}_{2}^{I}\right)$.
(c) $\mathcal{A}_{K V_{1}} K V_{2}=\mathcal{A}_{K V_{2}} K V_{1}$ for $V_{1}, V_{2} \in \Gamma\left(\mathcal{D}_{2}^{K}\right)$.

Proof. We see that $C_{R}=0, B_{R}=R$ on $\left(\operatorname{ker} F_{*}\right)^{\perp}$ and $\omega_{R}=R$ on \mathcal{D}_{2}^{R} for $R \in\{I, K\}$. Applying $X=R V_{1}$ and $Y=R V_{2}, V_{1}, V_{2} \in \Gamma\left(\mathcal{D}_{2}^{R}\right)$, at Theorem 3.7, we have

$$
\mathcal{A}_{R V_{1}} R V_{2}-\mathcal{A}_{R V_{2}} R V_{1} \in \Gamma\left(\mathcal{D}_{2}^{R}\right)
$$

and

$$
0=g_{M}\left(\mathcal{A}_{R V_{2}} R V_{1}-\mathcal{A}_{R V_{1}} R V_{2}, V\right) \quad \text { for } V \in \Gamma\left(\mathcal{D}_{2}^{R}\right)
$$

which are equivalent to

$$
\mathcal{A}_{R V_{1}} R V_{2}=\mathcal{A}_{R V_{2}} R V_{1} \quad \text { for } V_{1}, V_{2} \in \Gamma\left(\mathcal{D}_{2}^{R}\right)
$$

Hence, we get $(a) \Leftrightarrow(b),(a) \Leftrightarrow(c)$.
Therefore, we obtain the result.
We consider the geometry of foliations and the condition for such maps to be horizontally homothetic throughout this section.

Theorem 3.12. Let F be an almost h-conformal semi-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an almost h-conformal semi-invariant basis. Then the following conditions are equivalent:
(a) The distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ defines a totally geodesic foliation on M.
(b) $\mathcal{A}_{X} C_{I} Y+\mathcal{V} \nabla_{X} B_{I} Y \in \Gamma\left(\mathcal{D}_{2}^{I}\right)$ and
$g_{N}\left(\nabla_{X}^{F} F_{*} I V, F_{*} C_{I} V\right)=\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{I} Y-C_{I} Y(\ln \lambda) X+g_{M}\left(X, C_{I} Y\right) \nabla(\ln \lambda), I V\right)$
for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\mathcal{D}_{2}^{I}\right)$.
(c) $\mathcal{A}_{X} C_{J} Y+\mathcal{V} \nabla_{X} B_{J} Y \in \Gamma\left(\mathcal{D}_{2}^{J}\right)$ and
$g_{N}\left(\nabla_{X}^{F} F_{*} J V, F_{*} C_{J} V\right)=\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{J} Y-C_{J} Y(\ln \lambda) X+g_{M}\left(X, C_{J} Y\right) \nabla(\ln \lambda), J V\right)$
for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\mathcal{D}_{2}^{J}\right)$.
(d) $\mathcal{A}_{X} C_{K} Y+\mathcal{V} \nabla_{X} B_{K} Y \in \Gamma\left(\mathcal{D}_{2}^{K}\right)$ and

$$
g_{N}\left(\nabla_{X}^{F} F_{*} K V, F_{*} C_{K} V\right)=\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{K} Y-C_{K} Y(\ln \lambda) X+g_{M}\left(X, C_{K} Y\right) \nabla(\ln \lambda), K V\right)
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\mathcal{D}_{2}^{K}\right)$.
Proof. Given $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right), W \in \Gamma\left(\mathcal{D}_{1}^{R}\right)$, and $R \in\{I, J, K\}$, we obtain

$$
g_{M}\left(\nabla_{X} Y, W\right)=-g_{M}\left(\phi\left(\mathcal{A}_{X} C_{R} Y+\mathcal{V} \nabla_{X} B_{R} Y\right), W\right)
$$

so that

$$
\begin{equation*}
g_{M}\left(\nabla_{X} Y, W\right)=0 \Leftrightarrow \mathcal{A}_{X} C_{R} Y+\mathcal{V} \nabla_{X} B_{R} Y \in \Gamma\left(\mathcal{D}_{2}^{R}\right) . \tag{3.15}
\end{equation*}
$$

Given $V \in \Gamma\left(\mathcal{D}_{2}^{R}\right)$, by using (2.11) and (3.4), we have

$$
\begin{aligned}
g_{M}\left(\nabla_{X} Y, V\right) & =g_{M}\left(\mathcal{A}_{X} B_{R} Y, R V\right)-g_{M}\left(C_{R} Y, \nabla_{X} R V\right) \\
& =g_{M}\left(\mathcal{A}_{X} B_{R} Y, R V\right)+\frac{1}{\lambda^{2}} g_{N}\left(F_{*} C_{R} Y, R V(\ln \lambda) F_{*} X\right. \\
& \left.-g_{M}(X, R V) F_{*} \nabla(\ln \lambda)-\nabla_{X}^{F} F_{*} R V\right) \\
& =g_{M}\left(\mathcal{A}_{X} B_{R} Y+g_{M}\left(C_{R} Y, X\right) \nabla(\ln \lambda)-C_{R} Y(\ln \lambda) X, R V\right) \\
& -\frac{1}{\lambda^{2}} g_{N}\left(F_{*} C_{R} Y, \nabla_{X}^{F} F_{*} R V\right)
\end{aligned}
$$

so that

$$
\begin{align*}
& g_{M}\left(\nabla_{X} Y, V\right)=0 \tag{3.16}\\
& \Leftrightarrow g_{N}\left(F_{*} C_{R} Y, \nabla_{X}^{F} F_{*} R V\right)=\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{R} Y\right. \\
& \left.+g_{M}\left(C_{R} Y, X\right) \nabla(\ln \lambda)-C_{R} Y(\ln \lambda) X, R V\right)
\end{align*}
$$

By (3.15) and (3.16), we get $(a) \Leftrightarrow(b),(a) \Leftrightarrow(c),(a) \Leftrightarrow(d)$.
Therefore, the result follows.
We introduce another notion on distributions and investigate it.
Definition 3.13. Let F be an almost h-conformal semi-invariant submersion from a hyperkähler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an almost h-conformal semi-invariant basis. Given $R \in\{I, J, K\}$, we call the distribution \mathcal{D}_{2}^{R} parallel along $\left(\operatorname{ker} F_{*}\right)^{\perp}$ if $\nabla_{X} V \in \Gamma\left(\mathcal{D}_{2}^{R}\right)$ for $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\mathcal{D}_{2}^{R}\right)$.

Lemma 3.14. Let F be an almost h-conformal semi-invariant submersion from a hyperkähler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an almost h-conformal semi-invariant basis. Assume that the distribution \mathcal{D}_{2}^{R} is parallel along $\left(\operatorname{ker} F_{*}\right)^{\perp}$ for $R \in\{I, J, K\}$. Then the following conditions are equivalent:
(a) The map F is horizontally homothetic.
(b)

$$
\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{I} Y, I V\right)=g_{N}\left(\nabla_{X}^{F} F_{*} I V, F_{*} C_{I} Y\right)
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\mathcal{D}_{2}^{I}\right)$.
(c)

$$
\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{J} Y, J V\right)=g_{N}\left(\nabla_{X}^{F} F_{*} J V, F_{*} C_{J} Y\right)
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\mathcal{D}_{2}^{J}\right)$.
(d)

$$
\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{K} Y, K V\right)=g_{N}\left(\nabla_{X}^{F} F_{*} K V, F_{*} C_{K} Y\right)
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\mathcal{D}_{2}^{K}\right)$.
Proof. Given $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right), V \in \Gamma\left(\mathcal{D}_{2}^{R}\right)$, and $R \in\{I, J, K\}$, by the proof of Theorem 3.12, we have

$$
\begin{align*}
g_{M}\left(\nabla_{X} Y, V\right)= & g_{M}\left(\mathcal{A}_{X} B_{R} Y+g_{M}\left(C_{R} Y, X\right) \nabla(\ln \lambda)\right. \tag{3.17}\\
& \left.-C_{R} Y(\ln \lambda) X, R V\right)-\frac{1}{\lambda^{2}} g_{N}\left(F_{*} C_{R} Y, \nabla_{X}^{F} F_{*} R V\right)
\end{align*}
$$

Since $g_{M}\left(\nabla_{X} Y, V\right)=-g_{M}\left(Y, \nabla_{X} V\right)=0$, from (3.17), we get $(a) \Rightarrow(b),(a) \Rightarrow(c)$, $(a) \Rightarrow(d)$.

Conversely, from (3.17), we obtain

$$
\begin{equation*}
-g_{M}\left(C_{R} Y, \nabla(\ln \lambda)\right) g_{M}(X, R V)+g_{M}\left(X, C_{R} Y\right) g_{M}(\nabla(\ln \lambda), R V)=0 \tag{3.18}
\end{equation*}
$$

Applying $X=R V$ at (3.18), we have

$$
-g_{M}\left(C_{R} Y, \nabla(\ln \lambda)\right) g_{M}(R V, R V)=0
$$

which implies

$$
\begin{equation*}
g_{M}(X, \nabla(\lambda))=0 \quad \text { for } X \in \Gamma\left(\mu^{R}\right) \tag{3.19}
\end{equation*}
$$

Applying $X=C_{R} Y$ at (3.18), we get

$$
g_{M}\left(C_{R} Y, C_{R} Y\right) g_{M}(\nabla(\ln \lambda), R V)=0
$$

which implies

$$
\begin{equation*}
g_{M}(\nabla(\lambda), R V)=0 \quad \text { for } V \in \Gamma\left(\mathcal{D}_{2}^{R}\right) . \tag{3.20}
\end{equation*}
$$

Using (3.19) and (3.20), we obtain $(b) \Rightarrow(a),(c) \Rightarrow(a),(d) \Rightarrow(a)$.
Therefore, the result follows.
Lemma 3.15. Let F be an almost h-conformal anti-holomorphic semi-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an almost h-conformal anti-holomorphic semi-invariant basis. Then the following conditions are equivalent:
(a) The distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ defines a totally geodesic foliation on M.
(b) The distribution \mathcal{D}_{2}^{I} is parallel along $\left(\operatorname{ker} F_{*}\right)^{\perp}$.
(c) The distribution \mathcal{D}_{2}^{K} is parallel along $\left(\operatorname{ker} F_{*}\right)^{\perp}$.

Proof. We see that $B_{R}=R$ and $C_{R}=0$ on $\left(\operatorname{ker} F_{*}\right)^{\perp}$ for $R \in\{I, K\}$.
Given $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\mathcal{D}_{2}^{R}\right)$, from Theorem 3.12, we have

$$
\begin{aligned}
(a) & \Leftrightarrow \mathcal{V}_{X} R Y \in \Gamma\left(\mathcal{D}_{2}^{R}\right) \text { and } g_{M}\left(\mathcal{A}_{X} R Y, R V\right)=0 \\
& \Leftrightarrow \nabla_{X} R Y \in \Gamma\left(\mathcal{D}_{2}^{R}\right) .
\end{aligned}
$$

Hence, we get $(a) \Leftrightarrow(b),(a) \Leftrightarrow(c)$.
Therefore, we obtain the result.
Theorem 3.16. Let F be an almost h-conformal semi-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an almost h-conformal semi-invariant basis. Then the following conditions are equivalent:
(a) The distribution $\operatorname{ker} F_{*}$ defines a totally geodesic foliation on M.
(b) $\mathcal{T}_{V} \omega_{I} U+\hat{\nabla}_{V} \phi_{I} U \in \Gamma\left(\mathcal{D}_{1}^{I}\right)$ and
$g_{N}\left(\nabla_{\omega_{I} V}^{F} F_{*} X, F_{*} \omega_{I} U\right)=\lambda^{2} g_{M}\left(C_{I} \mathfrak{J}_{U} \phi_{I} V+\mathcal{A}_{\omega_{I} V} \phi_{I} U+g_{M}\left(\omega_{I} V, \omega_{I} U\right) \nabla(\ln \lambda), X\right)$
for $U, V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\mu^{I}\right)$.
(c) $\mathcal{T}_{V} \omega_{J} U+\hat{\nabla}_{V} \phi_{J} U \in \Gamma\left(\mathcal{D}_{1}^{J}\right)$ and
$g_{N}\left(\nabla_{\omega_{J} V}^{F} F_{*} X, F_{*} \omega_{J} U\right)=\lambda^{2} g_{M}\left(C_{J} \mathcal{I}_{U} \phi_{J} V+\mathcal{A}_{\omega_{J} V} \phi_{J} U+g_{M}\left(\omega_{J} V, \omega_{J} U\right) \nabla(\ln \lambda), X\right)$
for $U, V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\mu^{J}\right)$.
(d) $\mathcal{T}_{V} \omega_{K} U+\widehat{\nabla}_{V} \phi_{K} U \in \Gamma\left(\mathcal{D}_{1}^{K}\right)$ and
$g_{N}\left(\nabla_{\omega_{K} V}^{F} F_{*} X, F_{*} \omega_{K} U\right)=\lambda^{2} g_{M}\left(C_{K} \mathcal{I}_{U} \phi_{K} V+\mathcal{A}_{\omega_{K} V} \phi_{K} U+g_{M}\left(\omega_{K} V, \omega_{K} U\right) \nabla(\ln \lambda), X\right)$ for $U, V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\mu^{K}\right)$.
Proof. Given $U, V \in \Gamma\left(\operatorname{ker} F_{*}\right), W \in \Gamma\left(\mathcal{D}_{2}^{R}\right)$, and $R \in\{I, J, K\}$, by using (3.4), we have

$$
g_{M}\left(\nabla_{V} U, R W\right)=-g_{M}\left(\omega_{R}\left(\hat{\nabla}_{V} \phi_{R} U+\mathcal{T}_{V} \omega_{R} U\right), R W\right)
$$

so that

$$
\begin{equation*}
g_{M}\left(\nabla_{V} U, R W\right)=0 \Leftrightarrow \hat{\nabla}_{V} \phi_{R} U+\mathcal{T}_{V} \omega_{R} U \in \Gamma\left(\mathcal{D}_{1}^{R}\right) \tag{3.21}
\end{equation*}
$$

Given $X \in \Gamma\left(\mu^{R}\right)$, by using (2.8) and (3.3), we get

$$
\begin{aligned}
& g_{M}\left(\nabla_{U} V, X\right) \\
& =g_{M}\left(\nabla_{U} \phi_{R} V, R X\right)+g_{M}\left(\phi_{R} U, \nabla_{\omega_{R} V} X\right)+g_{M}\left(\omega_{R} U, \nabla_{\omega_{R} V} X\right) \\
& =g_{M}\left(\mathcal{T}_{U} \phi_{R} V, R X\right)+g_{M}\left(\phi_{R} U, \mathcal{A}_{\omega_{R} V} X\right) \\
& \quad-\frac{1}{\lambda^{2}} g_{M}(\nabla(\ln \lambda), X) g_{N}\left(F_{*} \omega_{R} V, F_{*} \omega_{R} U\right)+\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{\omega_{R} V}^{F} F_{*} X, F_{*} \omega_{R} U\right) \\
& =g_{M}\left(-C_{R} \mathcal{I}_{U} \phi_{R} V-\mathcal{A}_{\omega_{R} V} \phi_{R} U-g_{M}\left(\omega_{R} V, \omega_{R} U\right) \nabla(\ln \lambda), X\right) \\
& \quad+\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{\omega_{R} V}^{F} F_{*} X, F_{*} \omega_{R} U\right)
\end{aligned}
$$

so that

$$
\begin{align*}
& g_{M}\left(\nabla_{U} V, X\right)=0 \tag{3.22}\\
& \qquad \quad \Leftrightarrow g_{N}\left(\nabla_{\omega_{R} V}^{F} F_{*} X, F_{*} \omega_{R} U\right) \\
& \quad=\lambda^{2} g_{M}\left(C_{R} \mathfrak{T}_{U} \phi_{R} V+\mathcal{A}_{\omega_{R} V} \phi_{R} U+g_{M}\left(\omega_{R} V, \omega_{R} U\right) \nabla(\ln \lambda), X\right) .
\end{align*}
$$

Using (3.21) and (3.22), we obtain $(a) \Leftrightarrow(b),(a) \Leftrightarrow(c),(a) \Leftrightarrow(d)$.
Therefore, the result follows.
Definition 3.17. Let F be an almost h-conformal semi-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an almost h-conformal semi-invariant basis. Then given $R \in\{I, J, K\}$, we call the distribution μ^{R} parallel along ker F_{*} if $\nabla_{U} X \in \Gamma\left(\mu^{R}\right)$ for $X \in \Gamma\left(\mu^{R}\right)$ and $U \in \Gamma\left(\operatorname{ker} F_{*}\right)$.

Lemma 3.18. Let F be an almost h-conformal semi-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that $(I, J, K$) is an almost h-conformal semi-invariant basis. Assume that the distribution μ^{R} is parallel along $\operatorname{ker} F_{*}$ for any $R \in\{I, J, K\}$.

Then given $R \in\{I, J, K\}$, the following conditions are equivalent:
(a) Dilation λ is constant on μ^{R}.
(b)

$$
g_{N}\left(\nabla_{\omega_{R} V}^{F} F_{*} X, F_{*} \omega_{R} U\right)=\lambda^{2} g_{M}\left(C_{R} \mathcal{I}_{U} \phi_{R} V+\mathcal{A}_{\omega_{R} V} \phi_{R} U, X\right)
$$

for $X \in \Gamma\left(\mu^{R}\right)$ and $U, V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.

Proof. Given $X \in \Gamma\left(\mu^{R}\right)$ and $U, V \in \Gamma\left(\operatorname{ker} F_{*}\right)$, by using the proof of Theorem 3.16 and (3.4), we have

$$
\begin{aligned}
g_{M}\left(\nabla_{U} V, X\right)= & g_{M}\left(-C_{R} \mathfrak{I}_{U} \phi_{R} V-\mathcal{A}_{\omega_{R} V} \phi_{R} U-g_{M}\left(\omega_{R} V, \omega_{R} U\right) \nabla(\ln \lambda), X\right) \\
& +\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{\omega_{R} V}^{F} F_{*} X, F_{*} \omega_{R} U\right)
\end{aligned}
$$

so that since $g_{M}\left(\nabla_{U} V, X\right)=-g_{M}\left(V, \nabla_{U} X\right)=0$, it is easy to get $(a) \Leftrightarrow(b)$.
Denote by $M_{\text {ker } F_{*}}$ and $M_{\left(\text {ker } F_{*}\right)^{\perp}}$ the integral manifolds of the distributions ker F_{*} and $\left(\text { ker } F_{*}\right)^{\perp}$, respectively.

Using Theorem 3.12 and Theorem 3.16, we have
Theorem 3.19. Let F be an almost h-conformal semi-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an almost h-conformal semi-invariant basis. Then the following conditions are equivalent:
(a) M is locally a product Riemannian manifold $M_{\text {ker } F_{*}} \times M_{\left(\operatorname{ker} F_{*}\right)^{\perp}}$.
(b) $\mathcal{A}_{X} C_{I} Y+\nu \nabla_{X} B_{I} Y \in \Gamma\left(\mathcal{D}_{2}^{I}\right)$,
$g_{N}\left(\nabla_{X}^{F} F_{*} I V, F_{*} C_{I} V\right)=\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{I} Y-C_{I} Y(\ln \lambda) X+g_{M}\left(X, C_{I} Y\right) \nabla(\ln \lambda), I V\right)$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right), V \in \Gamma\left(\mathcal{D}_{2}^{I}\right)$.
$\mathcal{T}_{V} \omega_{I} U+\hat{\nabla}_{V} \phi_{I} U \in \Gamma\left(\mathcal{D}_{1}^{I}\right)$,
$g_{N}\left(\nabla_{\omega_{I} V}^{F} F_{*} X, F_{*} \omega_{I} U\right)=\lambda^{2} g_{M}\left(C_{I} \mathcal{T}_{U} \phi_{I} V+\mathcal{A}_{\omega_{I} V} \phi_{I} U+g_{M}\left(\omega_{I} V, \omega_{I} U\right) \nabla(\ln \lambda), X\right)$ for $U, V \in \Gamma\left(\operatorname{ker} F_{*}\right), X \in \Gamma\left(\mu^{I}\right)$.
(c) $\mathcal{A}_{X} C_{J} Y+\mathcal{V} \nabla_{X} B_{J} Y \in \Gamma\left(\mathcal{D}_{2}^{J}\right)$,
$g_{N}\left(\nabla_{X}^{F} F_{*} J V, F_{*} C_{J} V\right)=\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{J} Y-C_{J} Y(\ln \lambda) X+g_{M}\left(X, C_{J} Y\right) \nabla(\ln \lambda), J V\right)$
for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\mathcal{D}_{2}^{J}\right)$.
$\mathcal{T}_{V} \omega_{J} U+\hat{\nabla}_{V} \phi_{J} U \in \Gamma\left(\mathcal{D}_{1}^{J}\right)$,
$g_{N}\left(\nabla_{\omega_{J} V}^{F} F_{*} X, F_{*} \omega_{J} U\right)=\lambda^{2} g_{M}\left(C_{J} \mathcal{T}_{U} \phi_{J} V+\mathcal{A}_{\omega_{J} V} \phi_{J} U+g_{M}\left(\omega_{J} V, \omega_{J} U\right) \nabla(\ln \lambda), X\right)$
for $U, V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\mu^{J}\right)$.
(d) $\mathcal{A}_{X} C_{K} Y+\mathcal{V} \nabla_{X} B_{K} Y \in \Gamma\left(\mathcal{D}_{2}^{K}\right)$,
$g_{N}\left(\nabla_{X}^{F} F_{*} K V, F_{*} C_{K} V\right)=\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{K} Y-C_{K} Y(\ln \lambda) X+g_{M}\left(X, C_{K} Y\right) \nabla(\ln \lambda), K V\right)$
for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\mathcal{D}_{2}^{K}\right)$.
$\mathcal{T}_{V} \omega_{K} U+\hat{\nabla}_{V} \phi_{K} U \in \Gamma\left(\mathcal{D}_{1}^{K}\right)$,
$g_{N}\left(\nabla_{\omega_{K} V}^{F} F_{*} X, F_{*} \omega_{K} U\right)=\lambda^{2} g_{M}\left(C_{K} \mathcal{J}_{U} \phi_{K} V+\mathcal{A}_{\omega_{K} V} \phi_{K} U+g_{M}\left(\omega_{K} V, \omega_{K} U\right) \nabla(\ln \lambda), X\right)$
for $U, V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\mu^{K}\right)$.
Theorem 3.20. Let F be an h-conformal semi-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an h-conformal semi-invariant basis. Then the following conditions are equivalent:
(a) The distribution \mathcal{D}_{1} defines a totally geodesic foliation on M.
(b)

$$
\begin{aligned}
& \left(\nabla F_{*}\right)(V, I W) \in \Gamma\left(F_{*} \mu^{I}\right), \\
& g_{N}\left(\left(\nabla F_{*}\right)(V, I W), F_{*} C_{I} X\right)=\lambda^{2} g_{M}\left(W, \mathcal{T}_{V} \omega_{I} B_{I} X\right)
\end{aligned}
$$

for $V, W \in \Gamma\left(\mathcal{D}_{1}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(c)

$$
\begin{aligned}
& \left(\nabla F_{*}\right)(V, J W) \in \Gamma\left(F_{*} \mu^{J}\right), \\
& g_{N}\left(\left(\nabla F_{*}\right)(V, J W), F_{*} C_{J} X\right)=\lambda^{2} g_{M}\left(W, \mathcal{T}_{V} \omega_{J} B_{J} X\right)
\end{aligned}
$$

for $V, W \in \Gamma\left(\mathcal{D}_{1}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(d)

$$
\begin{aligned}
& \left(\nabla F_{*}\right)(V, K W) \in \Gamma\left(F_{*} \mu^{K}\right), \\
& g_{N}\left(\left(\nabla F_{*}\right)(V, K W), F_{*} C_{K} X\right)=\lambda^{2} g_{M}\left(W, \mathcal{T}_{V} \omega_{K} B_{K} X\right)
\end{aligned}
$$

for $V, W \in \Gamma\left(\mathcal{D}_{1}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Proof. Given $U, V \in \Gamma\left(\mathcal{D}_{1}\right), W \in \Gamma\left(\mathcal{D}_{2}\right)$, and $R \in\{I, J, K\}$, we get

$$
\begin{aligned}
g_{M}\left(\nabla_{V} U, W\right) & =g_{M}\left(\mathcal{H} \nabla_{V} R U, R W\right) \\
& =-\frac{1}{\lambda^{2}} g_{N}\left(\left(\nabla F_{*}\right)(V, R U), F_{*} R W\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
g_{M}\left(\nabla_{V} U, W\right)=0 \Leftrightarrow\left(\nabla F_{*}\right)(V, R U) \in \Gamma\left(F_{*} \mu^{R}\right) . \tag{3.23}
\end{equation*}
$$

Given $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we obtain

$$
\begin{aligned}
g_{M}\left(\nabla_{V} U, X\right) & =g_{M}\left(U, \nabla_{V} R B_{R} X\right)+g_{M}\left(\mathcal{H} \nabla_{V} R U, C_{R} X\right) \\
& =g_{M}\left(U, \mathcal{T}_{V} \omega_{R} B_{R} X\right)-\frac{1}{\lambda^{2}} g_{N}\left(\left(\nabla F_{*}\right)(V, R U), F_{*} C_{R} X\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
g_{M}\left(\nabla_{V} U, X\right)=0 \Leftrightarrow g_{N}\left(\left(\nabla F_{*}\right)(V, R U), F_{*} C_{R} X\right)=\lambda^{2} g_{M}\left(U, \mathcal{T}_{V} \omega_{R} B_{R} X\right) . \tag{3.24}
\end{equation*}
$$

Using (3.23) and (3.24), we have $(a) \Leftrightarrow(b),(a) \Leftrightarrow(c),(a) \Leftrightarrow(d)$.
Therefore, we obtain the result.
Theorem 3.21. Let F be an h-conformal semi-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal semi-invariant basis. Then the following conditions are equivalent:
(a) The distribution \mathcal{D}_{2} defines a totally geodesic foliation on M.
(b) $\left(\nabla F_{*}\right)(V, I W) \in \Gamma\left(F_{*} \mu^{I}\right)$,

$$
\begin{aligned}
-\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{I V}^{F} F_{*} I U, F_{*} I C_{I} X\right) & =g_{M}\left(V, B_{I} \mathfrak{I}_{U} B_{I} X\right) \\
& +g_{M}(U, V) g_{M}\left(\mathcal{H} \nabla(\ln \lambda), I C_{I} X\right)
\end{aligned}
$$

for $U, V \in \Gamma\left(\mathcal{D}_{2}\right), W \in \Gamma\left(\mathcal{D}_{1}\right)$, and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(c) $\left(\nabla F_{*}\right)(V, J W) \in \Gamma\left(F_{*} \mu^{J}\right)$,

$$
\begin{aligned}
-\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{J V}^{F} F_{*} J U, F_{*} J C_{J} X\right) & =g_{M}\left(V, B_{J} \mathcal{J}_{U} B_{J} X\right) \\
& +g_{M}(U, V) g_{M}\left(\mathcal{H} \nabla(\ln \lambda), J C_{J} X\right)
\end{aligned}
$$

for $U, V \in \Gamma\left(\mathcal{D}_{2}\right), W \in \Gamma\left(\mathcal{D}_{1}\right)$, and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(d) $\left(\nabla F_{*}\right)(V, K W) \in \Gamma\left(F_{*} \mu^{K}\right)$,

$$
\begin{aligned}
-\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{K V}^{F} F_{*} K U, F_{*} K C_{K} X\right) & =g_{M}\left(V, B_{K} \mathcal{J}_{U} B_{K} X\right) \\
& +g_{M}(U, V) g_{M}\left(\mathcal{H} \nabla(\ln \lambda), K C_{K} X\right)
\end{aligned}
$$

for $U, V \in \Gamma\left(\mathcal{D}_{2}\right), W \in \Gamma\left(\mathcal{D}_{1}\right)$, and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Proof. Given $U, V \in \Gamma\left(\mathcal{D}_{2}\right), W \in \Gamma\left(\mathcal{D}_{1}\right), R \in\{I, J, K\}$, we get

$$
g_{M}\left(\nabla_{U} V, W\right)=\frac{1}{\lambda^{2}} g_{N}\left(\left(\nabla F_{*}\right)(U, R W), F_{*} R V\right)
$$

so that

$$
\begin{equation*}
g_{M}\left(\nabla_{U} V, W\right)=0 \Leftrightarrow\left(\nabla F_{*}\right)(U, R W) \in \Gamma\left(F_{*} \mu^{R}\right) . \tag{3.25}
\end{equation*}
$$

Given $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, by using (2.8), (2.11), (3.4), we obtain

$$
\begin{aligned}
g_{M}\left(\nabla_{U} V, X\right)= & -g_{M}\left(R V, \mathcal{T}_{U} B_{R} X\right)+g_{M}\left(\nabla_{R V} U, C_{R} X\right) \\
= & -g_{M}\left(R V, \mathcal{T}_{U} B_{R} X\right)+g_{M}\left(\nabla_{R V} R U, R C_{R} X\right) \\
= & g_{M}\left(V, B_{R} \mathcal{T}_{U} B_{R} X\right)+g_{M}(U, V) g_{M}\left(\mathcal{H} \nabla(\ln \lambda), R C_{R} X\right) \\
& +\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{R V}^{F} F_{*} R U, F_{*} R C_{R} X\right)
\end{aligned}
$$

so that

$$
\begin{align*}
& g_{M}\left(\nabla_{U} V, X\right)=0 \tag{3.26}\\
& \Leftrightarrow-\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{R V}^{F} F_{*} R U, F_{*} R C_{R} X\right) \\
& =g_{M}\left(V, B_{R} \mathcal{J}_{U} B_{R} X\right)+g_{M}(U, V) g_{M}\left(\mathcal{H} \nabla(\ln \lambda), R C_{R} X\right) .
\end{align*}
$$

Using (3.25) and (3.26), we have $(a) \Leftrightarrow(b),(a) \Leftrightarrow(c),(a) \Leftrightarrow(d)$.
Therefore, the result follows.
Using Theorem 3.20 and Theorem 3.21, we obtain
Theorem 3.22. Let F be an h-conformal semi-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an h-conformal semi-invariant basis. Then the following conditions are equivalent:
(a) The fibers of F are locally product Riemannian manifolds $M_{\mathcal{D}_{1}} \times M_{\mathcal{D}_{2}}$.
(b)

$$
\begin{aligned}
& \left(\nabla F_{*}\right)(V, I W) \in \Gamma\left(F_{*} \mu^{I}\right) \\
& g_{N}\left(\left(\nabla F_{*}\right)(V, I W), F_{*} C_{I} X\right)=\lambda^{2} g_{M}\left(W, \mathcal{T}_{V} \omega_{I} B_{I} X\right)
\end{aligned}
$$

for $V, W \in \Gamma\left(\mathcal{D}_{1}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
$\left(\nabla F_{*}\right)(V, I W) \in \Gamma\left(F_{*} \mu^{I}\right)$,

$$
-\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{I V}^{F} F_{*} I U, F_{*} I C_{I} X\right)=g_{M}\left(V, B_{I} \mathcal{T}_{U} B_{I} X\right)
$$

$$
+g_{M}(U, V) g_{M}\left(\mathcal{H} \nabla(\ln \lambda), I C_{I} X\right)
$$

for $U, V \in \Gamma\left(\mathcal{D}_{2}\right)$, $W \in \Gamma\left(\mathcal{D}_{1}\right)$, and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(c)

$$
\begin{aligned}
& \left(\nabla F_{*}\right)(V, J W) \in \Gamma\left(F_{*} \mu^{J}\right), \\
& g_{N}\left(\left(\nabla F_{*}\right)(V, J W), F_{*} C_{J} X\right)=\lambda^{2} g_{M}\left(W, \mathcal{T}_{V} \omega_{J} B_{J} X\right)
\end{aligned}
$$

for $V, W \in \Gamma\left(\mathcal{D}_{1}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

$$
\left(\nabla F_{*}\right)(V, J W) \in \Gamma\left(F_{*} \mu^{J}\right),
$$

$$
-\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{J V}^{F} F_{*} J U, F_{*} J C_{J} X\right)=g_{M}\left(V, B_{J} \mathcal{I}_{U} B_{J} X\right)
$$

$$
+g_{M}(U, V) g_{M}\left(\mathcal{H} \nabla(\ln \lambda), J C_{J} X\right)
$$

for $U, V \in \Gamma\left(\mathcal{D}_{2}\right), W \in \Gamma\left(\mathcal{D}_{1}\right)$, and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(d)

$$
\begin{aligned}
& \left(\nabla F_{*}\right)(V, K W) \in \Gamma\left(F_{*} \mu^{K}\right), \\
& g_{N}\left(\left(\nabla F_{*}\right)(V, K W), F_{*} C_{K} X\right)=\lambda^{2} g_{M}\left(W, \mathcal{T}_{V} \omega_{K} B_{K} X\right)
\end{aligned}
$$

for $V, W \in \Gamma\left(\mathcal{D}_{1}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

$$
\begin{aligned}
&\left(\nabla F_{*}\right)(V, K W) \in \Gamma\left(F_{*} \mu^{K}\right), \\
&-\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{K V}^{F} F_{*} K U, F_{*} K C_{K} X\right)=g_{M}\left(V, B_{K} \mathcal{I}_{U} B_{K} X\right) \\
&+g_{M}(U, V) g_{M}\left(\mathcal{H} \nabla(\ln \lambda), K C_{K} X\right)
\end{aligned}
$$

$$
\text { for } U, V \in \Gamma\left(\mathcal{D}_{2}\right), W \in \Gamma\left(\mathcal{D}_{1}\right) \text {, and } X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right) \text {. }
$$

We know
Lemma 3.23 ([4]). Let F be a horizontally conformal submersion from a Riemannian manifold $\left(M, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ with dilation λ.

Then the tension field $\tau(F)$ of F is given by

$$
\begin{equation*}
\tau(F)=-m F_{*} H+(2-n) F_{*}(\nabla(\ln \lambda)), \tag{3.27}
\end{equation*}
$$

where H is the mean curvature vector field of the distribution $\operatorname{ker} F_{*}, m=\operatorname{dim} \operatorname{ker} F_{*}$, $n=\operatorname{dim} N$.

Using Lemma 3.23, we easily get
Corollary 3.24. Let F be an almost h-conformal semi-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an almost h-conformal semi-invariant basis. Assume that F is harmonic with $\operatorname{dim} \operatorname{ker} F_{*}>$ 0 and $\operatorname{dim} N>2$. Then the following conditions are equivalent:
(a) All the fibers of F are minimal.
(b) The map F is horizontally homothetic.

Corollary 3.25. Let F be an almost h-conformal semi-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an almost h-conformal semi-invariant basis. Assume that $\operatorname{dim} \operatorname{ker} F_{*}>0$ and $\operatorname{dim} N=2$. Then the following conditions are equivalent:
(a) All the fibers of F are minimal.
(b) The map F is harmonic.

We introduce another notion and investigate the condition for such a map to be totally geodesic.

Definition 3.26. Let F be an almost h-conformal semi-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an almost h-conformal semi-invariant basis. Then given $R \in\{I, J, K\}$, we call the map F a $\left(R \mathcal{D}_{2}^{R}, \mu^{R}\right)$-totally geodesic map if $\left(\nabla F_{*}\right)(R U, X)=0$ for $U \in \Gamma\left(\mathcal{D}_{2}^{R}\right)$ and $X \in \Gamma\left(\mu^{R}\right)$.
Theorem 3.27. Let F be an almost h-conformal semi-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an almost h-conformal semi-invariant basis. Then the following conditions are equivalent:
(a) The map F is horizontally homothetic.
(b) The map F is a $\left(I \mathcal{D}_{2}^{I}, \mu^{I}\right)$-totally geodesic map.
(c) The map F is a $\left(J \mathcal{D}_{2}^{J}, \mu^{J}\right)$-totally geodesic map.
(d) The map F is a $\left(K \mathcal{D}_{2}^{K}, \mu^{K}\right)$-totally geodesic map.

Proof. Given $U \in \Gamma\left(\mathcal{D}_{2}^{R}\right), X \in \Gamma\left(\mu^{R}\right)$, and $R \in\{I, J, K\}$, we have

$$
\begin{align*}
& \left(\nabla F_{*}\right)(R U, X) \tag{3.28}\\
& =R U(\ln \lambda) F_{*} X+X(\ln \lambda) F_{*} R U-g_{M}(R U, X) F_{*} \nabla(\ln \lambda) \\
& =R U(\ln \lambda) F_{*} X+X(\ln \lambda) F_{*} R U
\end{align*}
$$

so that we easily get $(a) \Rightarrow(b),(a) \Rightarrow(c),(a) \Rightarrow(d)$.

Conversely, from (3.28), we obtain

$$
R U(\ln \lambda) F_{*} X+X(\ln \lambda) F_{*} R U=0
$$

Since $\left\{F_{*} X, F_{*} R U\right\}$ is linearly independent for nonzero X, U, we have $R U(\ln \lambda)=0$ and $X(\ln \lambda)=0$, which means $(a) \Leftarrow(b),(a) \Leftarrow(c),(a) \Leftarrow(d)$.

Therefore, the result follows.
Theorem 3.28. Let F be an almost h-conformal semi-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an almost h-conformal semi-invariant basis. Then the following conditions are equivalent:
(a) The map F is totally geodesic.
(b) (i) $C_{I} \mathfrak{T}_{U} I V+\omega_{I} \widehat{\nabla}_{U} I V=0$ for $U, V \in \Gamma\left(D_{1}^{I}\right)$.
(ii) $C_{I} \mathcal{H} \nabla_{U} I W+\omega_{I} \mathcal{T}_{U} I W=0$ for $U \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $W \in \Gamma\left(\mathcal{D}_{2}^{I}\right)$.
(iii) The map F is horizontally homothetic.
(iv) $\mathcal{T}_{U} B_{I} X+\mathcal{H} \nabla_{U} C_{I} X \in \Gamma\left(I \mathcal{D}_{2}^{I}\right)$ and $\hat{\nabla}_{U} B_{I} X+\mathcal{T}_{U} C_{I} X \in \Gamma\left(\mathcal{D}_{1}^{I}\right)$ for $U \in$ $\Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(c) (i) $C_{J} \mathfrak{T}_{U} J V+\omega_{J} \widehat{\nabla}_{U} J V=0$ for $U, V \in \Gamma\left(\mathcal{D}_{1}^{J}\right)$.
(ii) $C_{J} \mathcal{H} \nabla_{U} J W+\omega_{J} \mathcal{T}_{U} J W=0$ for $U \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $W \in \Gamma\left(\mathcal{D}_{2}^{J}\right)$.
(iii) The map F is horizontally homothetic.
(iv) $\mathcal{T}_{U} B_{J} X+\mathcal{H} \nabla_{U} C_{J} X \in \Gamma\left(J \mathcal{D}_{2}^{J}\right)$ and $\widehat{\nabla}_{U} B_{J} X+\mathcal{T}_{U} C_{J} X \in \Gamma\left(\mathcal{D}_{1}^{J}\right)$ for $U \in$ $\Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(d) (i) $C_{K} \mathfrak{T}_{U} K V+\omega_{K} \widehat{\nabla}_{U} K V=0$ for $U, V \in \Gamma\left(\mathcal{D}_{1}^{K}\right)$.
(ii) $C_{K} \mathcal{H} \nabla_{U} K W+\omega_{K} \mathcal{T}_{U} K W=0$ for $U \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $W \in \Gamma\left(\mathcal{D}_{2}^{K}\right)$.
(iii) The map F is horizontally homothetic.
(iv) $\mathcal{T}_{U} B_{K} X+\mathcal{H} \nabla_{U} C_{K} X \in \Gamma\left(K \mathcal{D}_{2}^{K}\right)$ and $\hat{\nabla}_{U} B_{K} X+\mathcal{T}_{U} C_{K} X \in \Gamma\left(\mathcal{D}_{1}^{K}\right)$ for $U \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Proof. Given $U, V \in \Gamma\left(\mathcal{D}_{1}^{R}\right)$ and $R \in\{I, J, K\}$, we have

$$
\begin{aligned}
\left(\nabla F_{*}\right)(U, V) & =F_{*}\left(R\left(\mathcal{T}_{U} R V+\hat{\nabla}_{U} R V\right)\right) \\
& =F_{*}\left(B_{R} \mathcal{J}_{U} R V+C_{R} \mathcal{T}_{U} R V+\phi_{R} \hat{\nabla}_{U} R V+\omega_{R} \hat{\nabla}_{U} R V\right) \\
& =F_{*}\left(C_{R} \mathcal{T}_{U} R V+\omega_{R} \hat{\nabla}_{U} R V\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
\left(\nabla F_{*}\right)(U, V)=0 \Leftrightarrow C_{R} \mathcal{T}_{U} R V+\omega_{R} \hat{\nabla}_{U} R V=0 \tag{3.29}
\end{equation*}
$$

Given $U \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $W \in \Gamma\left(\mathcal{D}_{2}^{R}\right)$, we get

$$
\begin{aligned}
\left(\nabla F_{*}\right)(U, W) & =F_{*}\left(R\left(\nabla_{U} R W\right)\right) \\
& =F_{*}\left(R\left(\mathcal{T}_{U} R W+\mathcal{H} \nabla_{U} R W\right)\right) \\
& =F_{*}\left(C_{R} \mathcal{H} \nabla_{U} R W+\omega_{R} \mathfrak{I}_{U} R W\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
\left(\nabla F_{*}\right)(U, W)=0 \Leftrightarrow C_{R} \mathcal{H} \nabla_{U} R W+\omega_{R} \mathcal{I}_{U} R W=0 . \tag{3.30}
\end{equation*}
$$

We claim that

$$
\begin{align*}
& \left(\nabla F_{*}\right)(X, Y)=0 \text { for } X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right) \tag{3.31}\\
& \Leftrightarrow F \text { is horizontally homothetic. }
\end{align*}
$$

Given $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, by (2.11), we obtain

$$
\begin{equation*}
\left(\nabla F_{*}\right)(X, Y)=X(\ln \lambda) F_{*} Y+Y(\ln \lambda) F_{*} X-g_{M}(X, Y) F_{*} \nabla(\ln \lambda) \tag{3.32}
\end{equation*}
$$

so that the part from right to left immediately follows.
Conversely, we have

$$
\begin{equation*}
0=X(\ln \lambda) F_{*} Y+Y(\ln \lambda) F_{*} X-g_{M}(X, Y) F_{*} \nabla(\ln \lambda) . \tag{3.33}
\end{equation*}
$$

Applying $Y=R X, X \in \Gamma\left(\mu^{R}\right)$, at (3.33), we get

$$
\begin{aligned}
0 & =X(\ln \lambda) F_{*} R X+R X(\ln \lambda) F_{*} X-g_{M}(X, R X) F_{*} \nabla(\ln \lambda) \\
& =X(\ln \lambda) F_{*} R X+R X(\ln \lambda) F_{*} X
\end{aligned}
$$

so that since $\left\{F_{*} R X, F_{*} X\right\}$ is linearly independent for nonzero X, we obtain $X(\ln \lambda)=0$ and $R X(\ln \lambda)=0$, which implies

$$
\begin{equation*}
X(\lambda)=0 \quad \text { for } X \in \Gamma\left(\mu^{R}\right) . \tag{3.34}
\end{equation*}
$$

Applying $X=Y=R U, U \in \Gamma\left(\mathcal{D}_{2}^{R}\right)$, at (3.33), we obtain

$$
\begin{equation*}
0=2 R U(\ln \lambda) F_{*} R U-g_{M}(R U, R U) F_{*} \nabla(\ln \lambda) . \tag{3.35}
\end{equation*}
$$

Taking inner product with $F_{*} R U$ at (3.35), we have

$$
\begin{aligned}
0 & =2 g_{M}(R U, \nabla(\ln \lambda)) g_{N}\left(F_{*} R U, F_{*} R U\right)-g_{M}(R U, R U) g_{N}\left(F_{*} \nabla(\ln \lambda), F_{*} R U\right) \\
& =\lambda g_{M}(R U, R U) g_{M}(R U, \nabla(\ln \lambda)),
\end{aligned}
$$

which implies

$$
\begin{equation*}
R U(\lambda)=0 \quad \text { for } U \in \Gamma\left(\mathcal{D}_{2}^{R}\right) \tag{3.36}
\end{equation*}
$$

By (3.34) and (3.36), we get the part from left to right.
Given $U \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we obtain

$$
\begin{aligned}
\left(\nabla F_{*}\right)(U, X) & =F_{*}\left(R\left(\nabla_{U} R X\right)\right) \\
& =F_{*}\left(R\left(\mathcal{T}_{U} B_{R} X+\hat{\nabla}_{U} B_{R} X\right)+R\left(\mathcal{T}_{U} C_{R} X+\mathcal{H} \nabla_{U} C_{R} X\right)\right) \\
& =F_{*}\left(C_{R}\left(\mathcal{T}_{U} B_{R} X+\mathcal{H} \nabla_{U} C_{R} X\right)+\omega_{R}\left(\widehat{\nabla}_{U} B_{R} X+\mathcal{T}_{U} C_{R} X\right)\right)
\end{aligned}
$$

so that

$$
\begin{array}{ll}
\left(\nabla F_{*}\right)(U, X)=0 \Leftrightarrow & \mathcal{I}_{U} B_{R} X+\mathcal{H}_{U} C_{R} X \in \Gamma\left(R \mathcal{D}_{2}^{R}\right), \tag{3.37}\\
& \hat{\nabla}_{U} B_{R} X+\mathcal{T}_{U} C_{R} X \in \Gamma\left(R \mathcal{D}_{1}^{R}\right)
\end{array}
$$

By (3.29), (3.30), (3.31), (3.37), we have $(a) \Leftrightarrow(b),(a) \Leftrightarrow(c),(a) \Leftrightarrow(d)$.
Therefore, we get the result.
Let $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a horizontally conformal submersion. The map F is called a horizontally conformal submersion with totally umbilical fibers if

$$
\begin{equation*}
\mathcal{T}_{X} Y=g_{M}(X, Y) H \quad \text { for } X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right), \tag{3.38}
\end{equation*}
$$

where H is the mean curvature vector field of the distribution ker F_{*}.
Lemma 3.29. Let F be an almost h-conformal semi-invariant submersion with totally umbilical fibers from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an almost h-conformal semi-invariant basis. Then

$$
\begin{equation*}
H \in \Gamma\left(R \mathcal{D}_{2}^{R}\right) \quad \text { for } R \in\{I, J, K\} . \tag{3.39}
\end{equation*}
$$

Proof. Given $X, Y \in \Gamma\left(\mathcal{D}_{1}^{R}\right), W \in \Gamma\left(\mu^{R}\right)$, and $R \in\{I, J, K\}$, we have

$$
\begin{aligned}
& \mathcal{T}_{X} R Y+\hat{\nabla}_{X} R Y=\nabla_{X} R Y=R \nabla_{X} Y \\
& =B_{R} \mathfrak{T}_{X} Y+C_{R} \mathfrak{T}_{X} Y+\phi_{R} \hat{\nabla}_{X} Y+\omega_{R} \hat{\nabla}_{X} Y
\end{aligned}
$$

so that

$$
g_{M}\left(\mathcal{T}_{X} R Y, W\right)=g_{M}\left(C_{R} \mathcal{T}_{X} Y, W\right)=-g_{M}\left(\mathcal{T}_{X} Y, R W\right) .
$$

Using (3.38), we obtain

$$
g_{M}(X, R Y) g_{M}(H, W)=-g_{M}(X, Y) g_{M}(H, R W) .
$$

Interchanging the role of X and Y, we get

$$
g_{M}(Y, R X) g_{M}(H, W)=-g_{M}(Y, X) g_{M}(H, R W) .
$$

Combining the above two equations, we have

$$
g_{M}(X, Y) g_{M}(H, R W)=0,
$$

which implies $H \in \Gamma\left(R \mathcal{D}_{2}^{R}\right)\left(\right.$ since $\left.R \mu^{R}=\mu^{R}\right)$.
Theorem 3.30. Let F be an h-conformal semi-invariant submersion with totally umbilical fibers from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal semi-invariant basis. Then all the fibers of F are totally geodesic.
Proof. By Lemma 3.29, we have

$$
H \in \Gamma\left(R \mathcal{D}_{2}\right) \quad \text { for } R \in\{I, J, K\}
$$

so that

$$
\{I H, J H, K H\} \subset \Gamma\left(\mathcal{D}_{2}\right) .
$$

But

$$
K H=I J H=I(J H) \in \Gamma\left(\mathcal{D}_{2}\right) \quad \text { with } J H \in \Gamma\left(\mathcal{D}_{2}\right) .
$$

Since $I \mathcal{D}_{2} \subset\left(\operatorname{ker} F_{*}\right)^{\perp}$, we must have $H=0$. By (3.38), we obtain the result.

4. Examples

Note that given a Euclidean space $\mathbb{R}^{4 m}$ with coordinates $\left(x_{1}, x_{2}, \cdots, x_{4 m}\right)$, we can canonically choose complex structures I, J, K on $\mathbb{R}^{4 m}$ as follows:

$$
\begin{aligned}
& I\left(\frac{\partial}{\partial x_{4 k+1}}\right)=\frac{\partial}{\partial x_{4 k+2}}, I\left(\frac{\partial}{\partial x_{4 k+2}}\right)=-\frac{\partial}{\partial x_{4 k+1}}, I\left(\frac{\partial}{\partial x_{4 k+3}}\right)=\frac{\partial}{\partial x_{4 k+4}}, I\left(\frac{\partial}{\partial x_{4 k+4}}\right)=-\frac{\partial}{\partial x_{4 k+3}}, \\
& J\left(\frac{\partial}{\partial x_{4 k+1}}\right)=\frac{\partial}{\partial x_{4 k+3}}, J\left(\frac{\partial}{\partial x_{4 k+2}}\right)=-\frac{\partial}{\partial x_{4 k+4}}, J\left(\frac{\partial}{\partial x_{4 k+3}}\right)=-\frac{\partial}{\partial x_{4 k+1}}, J\left(\frac{\partial}{\partial x_{4 k+4}}\right)=\frac{\partial}{\partial x_{4 k+2}}, \\
& K\left(\frac{\partial}{\partial x_{4 k+1}}\right)=\frac{\partial}{\partial x_{4 k+4}}, K\left(\frac{\partial}{\partial x_{4 k+2}}\right)=\frac{\partial}{\partial x_{4 k+3}}, K\left(\frac{\partial}{\partial x_{4 k+3}}\right)=-\frac{\partial}{\partial x_{4 k+2}}, K\left(\frac{\partial}{\partial x_{4 k+4}}\right)=-\frac{\partial}{\partial x_{4 k+1}}
\end{aligned}
$$

for $k \in\{0,1, \cdots, m-1\}$.
Then we easily check that $(I, J, K,\langle\rangle$,$) is a hyperkähler structure on \mathbb{R}^{4 m}$, where \langle,$\rangle denotes the Euclidean metric on \mathbb{R}^{4 m}$. Throughout this section, we will use these notations.
Example 4.1. Let (M, E, g) be an almost quaternionic Hermitian manifold. Let π : $T M \mapsto M$ be the natural projection [15]. Then the map π is an h-conformal semi-invariant submersion such that $\mathcal{D}_{1}=\operatorname{ker} \pi_{*}$ and dilation $\lambda=1$.

Example 4.2. Let $\left(M, E_{M}, g_{M}\right)$ and (N, E_{N}, g_{N}) be almost quaternionic Hermitian manifolds. Let $F: M \mapsto N$ be a quaternionic submersion [15]. Then the map F is an h-conformal semi-invariant submersion such that $\mathcal{D}_{1}=\operatorname{ker} F_{*}$ and dilation $\lambda=1$.

Example 4.3. Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Let $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be an h-semi-invariant submersion [21]. Then the map F is an h-conformal semi-invariant submersion with dilation $\lambda=1$.
Example 4.4. Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and (N, g_{N}) a Riemannian manifold. Let $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be an almost h-semi-invariant submersion [21]. Then the map F is an almost h-conformal semi-invariant submersion with dilation $\lambda=1$.

Example 4.5. Let $\left(M, E, g_{M}\right)$ be a $4 n$-dimensional almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a $(4 n-1)$-dimensional Riemannian manifold. Let $F:\left(M, E, g_{M}\right) \mapsto$ (N, g_{N}) be a horizontally conformal submersion with dilation λ. Then the map F is an h-conformal semi-invariant submersion such that $\mathcal{D}_{2}=\operatorname{ker} F_{*}$ and dilation λ.

Example 4.6. Let $F: \mathbb{R}^{4} \mapsto \mathbb{R}^{3}$ be a horizontally conformal submersion with dilation λ. Then the map F is an h-conformal semi-invariant submersion such that $\mathcal{D}_{2}=\operatorname{ker} F_{*}$ and dilation λ.

Example 4.7. Define a map $F: \mathbb{R}^{4} \mapsto \mathbb{R}^{2}$ by

$$
F\left(x_{1}, \cdots, x_{4}\right)=e^{1934}\left(x_{1}, x_{2}\right)
$$

Then the map F is an almost h-conformal anti-holomorphic semi-invariant submersion such that $I\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}, J\left(\operatorname{ker} F_{*}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}, K\left(\operatorname{ker} F_{*}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}$, and dilation $\lambda=e^{1934}$.

Here, (K, I, J) is an almost h-conformal anti-holomorphic semi-invariant basis.
Example 4.8. Define a map $F: \mathbb{R}^{8} \mapsto \mathbb{R}^{6}$ by

$$
F\left(x_{1}, \cdots, x_{8}\right)=\pi^{1934}\left(x_{3}, \cdots, x_{8}\right)
$$

Then the $\operatorname{map} F$ is an almost h-conformal semi-invariant submersion such that $I\left(\operatorname{ker} F_{*}\right)=$ $\operatorname{ker} F_{*}, J\left(\operatorname{ker} F_{*}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}, K\left(\operatorname{ker} F_{*}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}$, and dilation $\lambda=\pi^{1934}$.

Example 4.9. Define a map $F: \mathbb{R}^{8} \mapsto \mathbb{R}^{4}$ by

$$
F\left(x_{1}, \cdots, x_{8}\right)=e^{1968}\left(x_{1}, x_{2}, x_{5}, x_{7}\right)
$$

Then the map F is an almost h-conformal semi-invariant submersion such that $\mathcal{D}_{1}^{I}=$ $\mathcal{D}_{2}^{J}=<\frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}}>, \mathcal{D}_{2}^{I}=\mathcal{D}_{1}^{J}=<\frac{\partial}{\partial x_{6}}, \frac{\partial}{\partial x_{8}}>, K\left(\operatorname{ker} F_{*}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}$, and dilation $\lambda=$ e^{1968}.

Example 4.10. Define a map $F: \mathbb{R}^{8} \mapsto \mathbb{R}^{3}$ by

$$
F\left(x_{1}, \cdots, x_{8}\right)=\pi^{1978}\left(x_{6}, x_{7}, x_{8}\right)
$$

Then the map F is a h-conformal semi-invariant submersion such that $\mathcal{D}_{1}=<\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{4}}>$, $\mathcal{D}_{2}=<\frac{\partial}{\partial x_{5}}>$, and dilation $\lambda=\pi^{1978}$.

References

[1] M.A. Akyol and B. Sahin, Conformal anti-invariant submersions from almost Hermitian manifolds, Turkish J. Math. 40 (1), 43-70, 2016.
[2] M.A. Akyol and B. Sahin, Conformal semi-invariant submersions, Commun. Contemp. Math. 19 (2), 1650011, 2017.
[3] D.V. Alekseevsky and S. Marchiafava, Almost complex submanifolds of quaternionic manifolds, In: Proceedings of the colloquium on differential geometry, Debrecen (Hungary), 25-30 July 2000, Inst. Math. Inform. Debrecen, 23-38, 2001.
[4] P. Baird and J.C. Wood, Harmonic morphisms between Riemannian manifolds, Oxford Science Publications, 2003.
[5] M. Barros, B.Y. Chen and F. Urbano, Quaternion CR-submanifolds of quaternion manifolds, Kodai Math. J. 4, 399-417, 1980.
[6] A.L. Besse, Einstein manifolds, Springer Verlag, Berlin, 1987.
[7] J.P. Bourguignon and H.B. Lawson, Stability and isolation phenomena for Yang-mills fields, Commum. Math. Phys. 79, 189-230, 1981.
[8] J.P. Bourguignon and H.B. Lawson, A mathematician's visit to Kaluza-Klein theory, Rend. Semin. Mat. Torino Fasc. Spec. 1989, 143-163, 1989.
[9] B.Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, Leuven, 1990.
[10] V. Cortés, C. Mayer, T. Mohaupt and F. Saueressig, Special geometry of Euclidean supersymmetry 1. Vector multiplets, J. High Energy Phys. 3, 028, 2004.
[11] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16, 715-737, 1967.
[12] S. Gudmundsson, The geometry of harmonic morphisms, Ph.D. thesis, University of Leeds, 1992.
[13] M. Falcitelli, S. Ianus and A.M. Pastore, Riemannian submersions and related topics, World Scientific Publishing Co., 2004.
[14] B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble), 28 (2), 107-144, 1978.
[15] S. Ianus, R. Mazzocco and G.E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta. Appl. Math. 104, 83-89, 2008.
[16] S. Ianus and M. Visinescu, Kaluza-Klein theory with scalar fields and generalized Hopf manifolds, Class. Quantum Gravity, 4, 1317-1325, 1987.
[17] S. Ianus and M. Visinescu, Space-time compactification and Riemannian submersions, In: Rassias, G.(ed.) The Mathematical Heritage of C. F. Gauss, 358-371, World Scientific, River Edge, 1991.
[18] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto University, 19 (2), 215-229, 1979.
[19] M.T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41 (10), 6918-6929, 2000.
[20] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13, 458469, 1966.
[21] K.S. Park, H-semi-invariant submersions, Taiwanese J. Math. 16 (5), 1865-1878, 2012.
[22] K.S. Park, H-anti-invariant submersions from almost quaternionic Hermitian manifolds, Czechoslovak Math. J. 67 (142), 557-578, 2017.
[23] K.S. Park and R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc. 50 (3), 951-962, 2013.
[24] B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math. 8 (3), 437-447, 2010.
[25] B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie Tome, 54(102) (1), 93-105, 2011.
[26] B. Sahin, Semi-invariant submersions from almost Hermitian manifolds, Canad. Math. Bull. 56 (1), 173-183, 2013.
[27] B. Sahin, Riemannian submersions from almost Hermitian manifolds, Taiwanese J. Math. 17 (2), 629-659, 2013.
[28] H. Urakawa, Calculus of variations and harmonic maps, Translations of Mathematical Monographs, Amer. Math. Soc. 2013.
[29] B. Watson, Almost Hermitian submersions, J. Differential Geometry, 11 (1), 147-165, 1976.
[30] B. Watson, G, G^{\prime}-Riemannian submersions and nonlinear gauge field equations of general relativity, in: Rassias, T. (ed.) Global Analysis - Analysis on manifolds, dedicated M. Morse. Teubner-Texte Math., 57, 324-349, Teubner, Leipzig, 1983.

[^0]: Email address: parkksn@gmail.com
 Received: 31.07.2019; Accepted: 24.01.2020

