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Abstract

As a generalization of Riemannian submersions, horizontally conformal submersions, semi-
invariant submersions, h-semi-invariant submersions, almost h-semi-invariant submersions,
conformal semi-invariant submersions, we introduce h-conformal semi-invariant submer-
sions and almost h-conformal semi-invariant submersions from almost quaternionic Her-
mitian manifolds onto Riemannian manifolds. We study their properties: the geometry of
foliations, the conditions for total manifolds to be locally product manifolds, the conditions
for such maps to be totally geodesic. Finally, we give some examples of such maps.
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1. Introduction

Riemannian submersions were independently introduced by B. O’Neill [20] and A. Gray
[11] in 1960s. Using the notion of almost Hermitian submersions, B. Watson [29] obtained
some differential geometric properties among fibers, base manifolds, and total manifolds.
After that, many geometers study this area and there are a lot of results on this topic.

As a generalization of Riemannian submersions, a horizontally conformal submersion
was introduced independently by B. Fuglede [14] and T. Ishihara [18] in 1970s and it is a
particular type of conformal maps.

Given a C*°-submersion F' from a Riemannian manifold (M, gps) onto a Riemannian
manifold (V, gn), according to the conditions on the map F' : (M, gy) — (N,gn), we
have the following types of submersions: a Riemannian submersion ([11,13,20]), an almost
Hermitian submersion [29], an invariant submersion [27], an anti-invariant submersion [24],
a slant submersion ([9, 25]), a semi-invariant submersion [26], a semi-slant submersion
[23], a quaternionic submersion [15], an h-anti-invariant submersion and an almost h-anti-
invariant submersion [22], an h-semi-invariant submersion and an almost h-semi-invariant
submersion [21], a horizontally conformal submersion ([4,12]), a conformal anti-invariant
submersion [1], a conformal semi-invariant submersion [2], etc.

It is well-known that Riemannian submersions are related with physics and have their
applications in the Yang-Mills theory ([7,30]), Kaluza-Klein theory ([8,16]), Supergrav-
ity and superstring theories ([17,19]), etc. And the quaternionic K&hler manifolds have
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applications in physics as the target spaces for nonlinear c—models with supersymmetry
[10].

The paper is organized as follows. In Section 2 we remind some notions, which are
needed in the following sections. In Section 3 we give the definitions of h-conformal semi-
invariant submersions and almost h-conformal semi-invariant submersions and obtain some
properties on them: the characterizations of such maps, the harmonicity of such maps,
the conditions for such maps to be totally geodesic, the integrability of distributions, the
geometry of foliations, etc. In Section 4 we give some examples of h-conformal semi-
invariant submersions and almost h-conformal semi-invariant submersions.

2. Preliminaries

Let (M, gy) and (N, gn) be Riemannian manifolds, where gyps and gn are Riemannian
metrics on C'"*°-manifolds M and N, respectively.

Let F': (M, gm) — (N,gn) be a C*°-map.

We call the map F' a C*-submersion if F is surjective and the differential (), has
maximal rank for any p € M.

Then the map F is said to be a Riemannian submersion ([13,20]) if F is a C°°-
submersion and

(Fo)p : ((ker(F*)p)J‘, (90)p) = (TrE) N, (9N) F(p))

is a linear isometry for any p € M, where (ker(F.),)" is the orthogonal complement of
the space ker(Fy), in the tangent space T, M to M at p.

The map F' is called horizontally weakly conformal at p € M if it satisfies either (i)
(Fy)p =0 or (ii) (F)p is surjective and there exists a positive number A(p) > 0 such that

N (F)pX, (Fu)pY) = Ngu(X,Y) for X,Y € (ker(F.),)" . (2.1)

We call the point p a critical point if it satisfies the type (i) and call the point p a regular
point if it satisfies the type (ii). And the positive number A(p) is said to be dilation of
F at p. The map F is called horizontally weakly conformal if it is horizontally weakly
conformal at any point of M. If the map F is horizontally weakly conformal and it has
no critical points, then we call the map F' a horizontally conformal submersion. The
horizontally conformal submersion F' is said to be horizontally homothetic if X (\) = 0 for
X € I'((ker Fy)™1).

Let F': (M, gy ) — (N, gn) be a horizontally conformal submersion.

Given any vector field U € T'(T'M), we write

U=VU+ HU, (2.2)

where VU € T'(ker F,) and HU € T'((ker F,)*).
Define the (O’Neill) tensors T and A by

TpF = HVygVF +VVypHF (2.4)

for vector fields E, F € TI'(T M), where V is the Levi-Civita connection of gas ([13,20]).
Then it is well-known that

g (TuV,W) = —gu(V, Ty W) (2.5)

gm(AuV, W) = —gu (V, Ay W) (2.6)

for U,V,W € I'(TM).
Let F': (M,gn) — (N,gn) be a C*°-map.
Then the second fundamental form of F' is given by

(VE)(X,Y) :=VEFEY - F.(VxY) for X,Y € I'(TM),
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where V¥ is the pullback connection and we denote conveniently by V the Levi-Civita
connections of the metrics gy and gy, [4].

Recall that F is said to be harmonic if the tension field 7(F') = trace(VF,) =0 and F
is called a totally geodesic map if (VF,)(X,Y) =0 for X,Y e I'(T'M), [4].

Lemma 2.1 ([28]). Let (M, grr) and (N, gn) be Riemannian manifolds and F : (M, gar) —
(N,gn) a C*®-map. Then we have
VEEY —VEFR.X - F([X,Y]) =0 (2.7)
for X, Y e T(TM).
Remark 2.2. (1) From (2.7), we see that the second fundamental form V F} is symmetric.
(2) By (2.7), we obtain
[V, X] € I'(ker F}) (2.8)
for V € T'(ker F,) and X € T'((ker F,)1).

Let F': (M, ga) — (N, gn) be a horizontally conformal submersion with dilation .
We call a vector field X € T(T'M) basic if (1) X € T'((ker F,)*) and (ii) X is F-related

with some vector field X € I'(T'N). (i.e., (Fy),X(p) = X(F(p)) for any p € M.)
Given any fiber F~1(y), ¥ € N, and any basic vector fields X,Y € I'((ker F,)*), we
have
Mz)2gum (X, Y)(x) = gn(FL X, F.Y)(y) = constant
for any x € F~!(y) so that
V()‘29M(Xv Y)) =Vgn(FxX,F.Y)) =0 for V € I'(ker Fy). (2.9)
Then we get

Proposition 2.3 ([12]). Let F : (M, gy ) — (N, gn) be a horizontally conformal submer-
sion with dilation X\. Then we obtain

AxY = %{V[X, Y] = Ngu(X, Y)Vv(%)} (2.10)
for X, Y € T'((ker F,)*).
Here, Vy denotes the gradient vector field in the distribution ker F, C TM. (i.e.,
Vyf = f:Vi(f)Vi for f € C°°(M) and a local orthonormal frame {V1,---,V,,} of ker F}.)
i=1

Lemma 2.4 ([4]). Let F : (M,gax) — (N,gn) be a horizontally conformal submersion
with dilation . Then we have

(VFE)(X,)Y) = X(InMEY +Y(In\)F.X — gy (X,Y)Fu(Vin ), (2.11)
(VE)V,W) = —F(TyW), (2.12)
(VE)(X,V) = —F,(VxV)=—F.(AxV) (2.13)
for X, Y € I'((ker F)*) and V,W € T'(ker Fy).
Let (M, gpr, J) be an almost Hermitian manifold, where J is a compatible almost com-
plex structure on M (i.e., J? = —id, gy (JX,JY) = gu(X,Y) for X, Y € T(TM)).
We call a horizontally conformal submersion F' : (M, gy, J) — (N,gn) a conformal
anti-invariant submersion [1] if J(ker F,) C (ker F})*.

A horizontally conformal submersion F : (M, gy, J) — (N, gn) is called a conformal
semi-invariant submersion [2] if there is a distribution D; C ker F such that

ker F, = D1 ® Do, J(D1) = Dy, J(Dy) C (ker F,)*,

where D5 is the orthogonal complement of Dy in ker F
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Let M be a 4m—dimensional C*°-manifold and let E be a rank 3 subbundle of End(T'M)
such that for any point p € M with a neighborhood U, there exists a local basis {J;, Ja2, J3}
of sections of F on U satisfying for all a € {1, 2, 3}

2 .
Ja = *Zd, JaJaJrl = - a+1Ja = Ja+2,

where the indices are taken from {1,2,3} modulo 3.

Then we call E an almost quaternionic structure on M and (M, E) an almost quater-
nionic manifold [3].

Moreover, let g be a Riemannian metric on M such that for any point p € M with a
neighborhood U, there exists a local basis {J1, Jo, J3} of sections of E on U satisfying for
all o € {1,2,3}

Jg = —iud, JaJa—l-l = - a+1Ja = Ja+2; (214)
9(JaX, JoY) = g(X,Y) (2.15)
for all vector fields X,Y € I'(T'M ), where the indices are taken from {1,2,3} modulo 3.

Then we call (M, E, g) an almost quaternionic Hermitian manifold [15].

For convenience, the above basis {Ji, J2, J3} satisfying (2.14) and (2.15) is said to be a
quaternionic Hermitian basis.

Let (M, E,g) be an almost quaternionic Hermitian manifold.

We call (M, E, g) a quaternionic Kihler manifold if there exist locally defined 1-forms
w1, we,ws such that for a € {1,2,3}

VxJa = ware(X)Jar1 — war1(X)Jaro

for any vector field X € I'(T'M'), where the indices are taken from {1,2, 3} modulo 3 [15].

If there exists a global parallel quaternionic Hermitian basis {.J1, J2, J3} of sections of E
on M (i.e., VJ, =0 for a € {1,2,3}, where V is the Levi-Civita connection of the metric
g), then (M, E,| g) is said to be a hyperkahler manifold. Furthermore, we call (J1, J2, J3, g)
a hyperkdhler structure on M and g a hyperkdahler metric [6].

Let (M, En, gar) and (N, En, gn) be almost quaternionic Hermitian manifolds.

A map F : M — N is called a (Eys, En)—holomorphic map if given a point = € M, for
any J € (Ep ). there exists J' € (En)p(y) such that

F.oJ=JoF,.

A Riemannian submersion F' : M +— N which is a (Ejs, En)—holomorphic map is called
a quaternionic submersion [15].

Moreover, if (M, Eyr, gar) is a quaternionic Kéahler manifold (or a hyperkéhler manifold),
then we say that F' is a quaternionic Kahler submersion (or a hyperkdihler submersion) [15].

Then we know that any quaternionic Kéhler submersion is a harmonic map [15].

Let (M, E, gyr) be an almost quaternionic Hermitian manifold and (N, gn) a Riemann-
ian manifold.

A Riemannian submersion F' : (M, E, gy) — (N,gn) is called an h-semi-invariant
submersion if given a point p € M with a neighborhood U, there exists a quaternionic
Hermitian basis {I, J, K'} of sections of E on U such that for any R € {I,J, K}, there is
a distribution D; C ker Fy on U such that

ker F, = Dy @ Do, R(D1) = Dy, R(Dy) C (ker F,)*,

where Dy is the orthogonal complement of D; in ker F, [21].

We call such a basis {I,J, K} an h-semi-invariant basis.

A Riemannian submersion F' : (M, E,gy) — (N,gn) is called an almost h-semi-
invariant submersion if given a point p € M with a neighborhood U, there exists a quater-
nionic Hermitian basis {I,J, K} of sections of E on U such that for each R € {I,J, K},
there is a distribution D{% C ker F, on U such that

ker F, = DE @ DI R(DF) = DE, R(DE) ¢ (ker F,)*t,
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where DI is the orthogonal complement of DI in ker F, [21].
We call such a basis {1, J, K} an almost h-semi-invariant basis.
Throughout this paper, we will use the above notations.

3. Almost h-conformal semi-invariant submersions

In this section, we define h-conformal semi-invariant submersions and almost h-conformal
semi-invariant submersions from almost quaternionic Hermitian manifolds onto Riemann-
ian manifolds. And we study their properties: the integrability of distributions, the ge-
ometry of foliations, the conditions for such maps to be totally geodesic, etc.

Definition 3.1. Let (M, E, gps) be an almost quaternionic Hermitian manifold and (V, gn)
a Riemannian manifold. A horizontally conformal submersion F': (M, E, gpr) — (N, gn)
is called an h-conformal semi-invariant submersion if given a point p € M with a neigh-
borhood U, there exists a quaternionic Hermitian basis {I,.J, K} of sections of F on U
such that for any R € {I,J, K}, there is a distribution Dy C ker F, on U such that

ker F, = D1 & Dy, R(D1) =Dy, R(D3) C (ker F,)*t,
where D5 is the orthogonal complement of Dy in ker Fl.
We call such a basis {1, J, K} an h-conformal semi-invariant basis.

Definition 3.2. Let (M, E, gpr) be an almost quaternionic Hermitian manifold and (V, gn)
a Riemannian manifold. A horizontally conformal submersion F': (M, E, gpr) — (N, gn)
is called an almost h-conformal semi-invariant submersion if given a point p € M with a
neighborhood U, there exists a quaternionic Hermitian basis {I, J, K} of sections of E on
U such that for each R € {I,J, K}, there is a distribution D{% C ker F, on U such that

ker F, = DE @ D R(DF) = DE, R(DE) ¢ (ker F,)*,
where DI is the orthogonal complement of D in ker F,.
We call such a basis {I, J, K} an almost h-conformal semi-invariant basis.

Remark 3.3. (1) Let F' be an h-conformal semi-invariant submersion from a hyperkéahler
manifold (M, I, J, K, gy) onto a Riemannian manifold (N, gy) such that (I,J, K) is an
h-conformal semi-invariant basis. Then the fibers of the map F are quaternionic CR-
submanifolds [5].

(2) Let F : (M, E,gyn) — (N, gn) be an h-conformal semi-invariant submersion. Then
the map F' is also an almost h-conformal semi-invariant submersion.

Let F': (M,E,gyn) — (N,gn) be an almost h-conformal semi-invariant submersion with
an almost h-conformal semi-invariant basis {I, J, K'}.

Denote the orthogonal complement of RDZ in (ker F,)* by pft for R € {I,J,K}. We
easily see that u® is R-invariant for R € {I,J, K}.

Then given X € I'(ker F}), we write

RX = ¢rX + wrX, (3.1)

where ¢prX € T'(DF) and wr X € T(RDE) for R {I,J,K}.
Given Z € T'((ker F,)*t), we get

RZ = BrZ + CgrZ, (3.2)
where BrZ € T'(D¥) and CrZ € T'(uf?) for R € {I,J,K}.
We see that
(ker F,)* = RDE @ uft for Re {I,J, K} (3.3)
and

gu(CrX, RV) =0 (3.4)
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for X € T'((ker F,)*) and V € T(DE).

~

Define VxY :=VVxY for X,Y € I'(ker F}).
We also define R ~
(Vxor)Y :=Vx¢rY — prVxY (3.5)
and
(Vxwgr)Y = HV xwrY —wpVxY (3.6)
for X, Y € I'(ker Fy) and R € {I,J, K}.
Then we easily obtain

Lemma 3.4. Let F' be an almost h-conformal semi-invariant submersion from a hyper-
kdhler manifold (M, 1, J, K, gnrr) onto a Riemannian manifold (N, gn) such that (I,J, K)
s an almost h-conformal semi-invariant basis. Then we get

(1)
Vx¢rY + TxwrY = ¢pVxY + BrTxY
TxorY + HV xwrY = wRﬁ)(Y + CrTxY
for XY € I'(ker F,) and R € {I, J, K}.
(2)
VWV zBrW 4+ AzCrW = ¢pAzW + BRHV ;W
AzBrW + HV zCpW = wrAzW + CprHV zW
for Z,W € T'((ker F,)*) and R € {I,J,K}.
(3)
VxBrZ +TxCrZ = ¢6rTxZ + BRHV x Z
TxBrZ + HVxCrZ = wrTxZ + CrHV x Z
for X € T'(ker F,), Z € T'((ker F,)*), and R € {I,J, K}.
Remark 3.5. By (3.5), (3.6), and Lemma 3.4 (1), we have
(Vxwr)Y = BRTxY — TxwgrY (3.7)
(Vxwr)Y = CrIxY — Tx¢rY
for X,Y € I'(ker Fy) and R € {I,J, K}.
Now, we investigate the integrability of some distributions.

Lemma 3.6. Let F be an h-conformal semi-invariant submersion from a hyperkdhler
manifold (M, I,J, K, gn) onto a Riemannian manifold (N, gn) such that (I,J,K) is an
h-conformal semi-invariant basis. Then we have the followings:
(i) The distribution Ds is always integrable.
(ii) The following conditions are equivalent:
(a) The distribution Dy is integrable.
(b) (VE)(W,IV) = (VE)(V,IW) € T(F.pu") for V,W € I'(Dy).
(c) (VE)(W,JV) — (VEN(V,JW) € T(F.u’) for V,W € T(Dy).
(d) (VFE)(W,KV) — (VFE)(V,KW) € T(F,u) for V(W € T'(Dy).

Proof. By (2.7), we have [V, W] € T'(ker F},) for V,W & I'(ker Fy).
We claim that Ty RW = Tw RV for V.W € I'(D2) and R € {I, J, K}.
Given X € I'(ker Fy), we get

g (TvRW, X) = —gu(RW,Vy X) = =gy (RW,VxV) = gu(VxRW, V)
= —gu(VxW,RV) = —gu(Vw X, RV) = gy (X, ViwRV)
= gu(X,TwRV),
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which means our claim.

Given VW € T'(D3) and Z € I'(D1), we obtain
g ((V.W1,Z) = gu(VyW = VwV, Z) = gy (TvRW — TwRV,RZ) = 0,

which implies (i).
For (ii), given V,W € I'(Dy), Z € T'(D2), and R € {I,J, K}, we have
1
g ([V.W),2) = 5598 (F.VvRW — E.Nw RV, F.RZ)
1
= 2In((VE)(W, RV) — (VE)(V, RW), F,RZ)
so that we get (a) < (b), (a) < (¢), (a) & (d).
Therefore, the result follows. O

Theorem 3.7. Let F' be an almost h-conformal semi-invariant submersion from a hyper-
kdhler manifold (M, I, J, K, gnr) onto a Riemannian manifold (N, gn) such that (I, J, K) is
an almost h-conformal semi-invariant basis. Then the following conditions are equivalent:

(a) The distribution (ker F,)* is integrable.
(b) AywirBr X — AxwiBrY + ¢[(Ayc[X — .AXC[Y) € F(@é) and

1
129N (VY ECLX = VERE.CrY, FIV)

= gM(.AyB]X - .AxB[Y — C’[Y(ln )\)X + C[X(ln )\)Y
+ 290 (X, CrY)V(In \), IV)

for X,Y € T((ker F})*) and V € T(D1).
(C) AywiBjX — AxwyBjY + (Zﬁj(ﬂyCJX — .AXCJY) € F(@g) and

1
Fgm(vxlimajx —VLFE.C)Y,F,JV)
= gM(.AyB]X — .AXBJY — CJY(II] /\)X + CJX(IH )\)Y
+ QQM(X, CJY)V(ID. )\), JV)
for X,Y € I((ker F)*) and V € T(D).
(d) .AwaBKX —AXwKBKY + ¢K(AyCKX —AXCKY) S F(@g) and

1
ﬁgN(ng*CKX — VRF,CY,F.KV)

= gM(AyBKX - AxBKY — CKY(IH )\)X + CKX(ID /\)Y
+ 29(X, CxY)V(In \), KV)

for X, Y € I((ker F)%) and V € T(DE).
Proof. Given X,Y € I'((ker F,)*), W € I'(D¥), and R € {I,J, K}, we have

g ([X, Y], W) = gm(VxBRrY, RW) + gn(VxCRrY, RW)
— g (VyBrX, RW) — gy (VyCrX, RW)
= —gu(VxRBRY, W) + gr(AxCRrY, RW)
+ g (VyRBRrX, W) — gy (AyCrX, RW)
= —gu(VxwrBRY,W) — gu(¢rAxCRY, W)
+ 9 (VywrBrX, W) + gu(¢orAyCrX, W) (since ¢pBpr = 0)
= g (AywrBrX — AxwrBRrY + ¢rAyCrX — ¢pAxCRY, W)
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so that
gu([X,Y],W) =0 for W e TI'(DF) (3.9)
& AywrBrX — AxwrBRY + ¢rAyCrX — ¢rAxCrY € T(DI).
Given V € I'(DL), by using (2.11) and (3.4), we get
gu([X, Y], V) = gu(VxBrY, RV) + gu(VxCRrY, RV)
— g (VyBrX,RV) — gn(VyCrX, RV)
= gu(AxBRrY — Ay BrX,RV)

1
+ 3298 (X (I ) F.CRY — CrY (InA) X

+ gm (X, CRY)FE,V(In \) + VL F.CrY

+Y(nA)F.CrX + CrX(InA\)F.Y — gp(Y,CrX)F.V(In \)
~VEE,CRX,F.RV)

= gm(AxBrY — Ay BrX + CrX(In\)Y — CrY (In \) X
+290(X, CRY)V(In \), RV)

— %gN(V{iF*CRX — VA F.CRY,F.RV)
so that
gu([X,Y],V)=0 for V e I(DF) (3.10)
& %gN(viF*CRX — VEF,.CRrY, F,RV)

=g (AxBRrY — Ay BrX + CrX(In\)Y — CrY (In M) X
+29M(X, CRY)V(IH )\),RV)
Using (3.9) and (3.10), we obtain (a) < (b), (a) < (¢), (a) < (d).
Therefore, we have the result. ]

Theorem 3.8. Let F' be an almost h-conformal semi-invariant submersion from a hyper-
kdhler manifold (M, 1,J, K, gyr) onto a Riemannian manifold (N, gn) such that (I, J, K)
is an almost h-conformal semi-invariant basis. Assume that the distribution (ker F,)* is
integrable. Then the following conditions are equivalent:
(a) The map F' is horizontally homothetic.
() Mgy (AyBrX — AxBrY,IV) = gn(VEF.C1X — VEF.C1Y,FIV) for X,Y €
I'((ker F})1) and V € T(D1).
(¢) Ngu(AyByX — AxB,Y,JV) = gn(VER.C; X — VEF.CY, F.JV) for X,Y €
['((ker F.)1) and V € T(DY).
(d) Ngum(AyBrxX —AxBrY,KV) = gn(V§ F.Oxk X =V F.CKY, F,KV) for X,Y €
I'((ker F,)1) and V € T(DL).

Proof. Given X,Y € I'((ker F,)*), V € TI'(DE), and R € {I,J, K}, from the proof of
Theorem 3.7, we have
gM([X,Y],V) = gM(AxBRY—.AyBRX—FCRX(ln)\)Y (3.11)
—CRY (In M) X + 290(X,CrY)V(In\), RV)

1
—pgN(VﬁF*CRX — VKF,CRrY, F,RV).

Using (3.11), it is easy to see (a) = (b), (a) = (¢), (a) = (d).
Conversely, from (3.11), we get

gu(CrX(InN)Y — CRrY (In \)X + 2g2/(X, CRY)V(In A), RV) = 0 (3.12)
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Applying Y = RV at (3.12), we obtain
gu(V(InA), CrX)gm (RV, RV) = 0,
which implies
g (V(A),X) =0 for X e D(pf). (3.13)
Applying Y = CrX, X € T'(u®), at (3.12), we have
200 (X, CEX)gr(V(In \), RV) = =290 (X, X)gnm(V(In \), RV) = 0,

which implies

gu(V(A),RV) =0 for V e (D). (3.14)
By (3.13) and (3.14), we get (b) = (a), (¢) = (a), (d) = (a).
Therefore, the result follows. O

We deal with some particular type of conformal submersions.

Definition 3.9. Let I’ be an almost h-conformal semi-invariant submersion from an al-
most quaternionic Hermitian manifold (M, E, gps) onto a Riemannian manifold (V, gn).
If R(DE) = (ker F,)* for R € {I, K} and J(ker F,) = ker F, (i.e., DJ = {0}), then we call
the map F' an almost h-conformal anti-holomorphic semi-invariant submersion.

We call such a basis {I,J, K} an almost h-conformal anti-holomorphic semi-invariant
basis.

Remark 3.10. (1) We easily see that J(ker F,) = ker F, implies J((ker F,)*) = (ker F,)*.
(2) Let F': (M, E, gr) — (N, gn) be an h-conformal semi-invariant submersion. Then it
is not possible to get R(Dy) = (ker F,)* for R € {I,J, K}. If not, then K (D3) = (ker F})*
and K (D3) = IJ(D3) = I((ker F,)*) = Dy, contradiction!
So, our definition makes sense for this case. See Example 4.7.

Corollary 3.11. Let F be an almost h-conformal anti-holomorphic semi-invariant sub-
mersion from a hyperkdhler manifold (M, I, J, K, gnr) onto a Riemannian manifold (N, gn)
such that (I, J, K) is an almost h-conformal anti-holomorphic semi-invariant basis. Then
the following conditions are equivalent:

(a) The distribution (ker F,)* is integrable.

(b) .A[Vlf‘/é = .A[szvl fOT' Vi, Vo € P(Dé)

(C) .AKVlKVQ = AKVszl fO?” Vi, Vo € F('Dé()

Proof. We see that Cr = 0, Bg = R on (ker F,)* and wg = R on DF for R € {I, K}.

Applying X = RVj and Y = RVa, V4,V € T(DE), at Theorem 3.7, we have

Arv, RV — Agy, RVi € T(DF)
and
0= gM(.ARVQRVl —.AvaRVQ,V) for V e F(@g),
which are equivalent to
Apy, RVy = Apy, RVi  for Vi, Va € T(DE).

Hence, we get (a) < (b), (a) & ().

Therefore, we obtain the result. O

We consider the geometry of foliations and the condition for such maps to be horizontally
homothetic throughout this section.

Theorem 3.12. Let F' be an almost h-conformal semi-invariant submersion from a hyper-
kdhler manifold (M, I, J, K, gnr) onto a Riemannian manifold (N, gn) such that (I, J, K) is
an almost h-conformal semi-invariant basis. Then the following conditions are equivalent:

(a) The distribution (ker F,)* defines a totally geodesic foliation on M.
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(b) AxC1Y +VVxBrY € I'(D}) and
g (VEEIV, F.C1V) = Mgy (AxBrY — C1Y (In M) X + gy (X, CrY)V(In \), IV)

for X,Y € I'((ker F})*) and V € T(DI).
(C) AxC;Y +VVxB;Y € F(Dg) and

gN(VEFLJV, F.CyV) = Mgy (AxByY — C;Y (In )X + gy (X, C,Y)V(In N), JV)

for X, Y € T'((ker F,)*) and V € T'(Dg).
(d) AxCkY + VVxBgY € T(DX) and

g (VEE.KV,F,CV) = Mgy (AxBgY — CxY(In M) X 4 ga (X, CY)V(In ), KV)
for X,Y € I'((ker F)*) and V € T(D).
Proof. Given X,Y € I'((ker F,)*), W € I'(D¥), and R € {I,J, K}, we obtain
g (VxY, W) = —gar(¢(AxCRrY + VVxBgY), W)
so that
g (VxY, W) =0a AxCrY 4+ VVxBrY € I'(D). (3.15)
Given V € I'(DL), by using (2.11) and (3.4), we have

g (VxY, V) = gu(AxBrY,RV) — gu(CRrY,VxRV)
(

1

g (AxBgrY,RV) + ﬁgN(F*CRY, RV(In M\ F. X

— gm(X,RV)F,V(In\) — VK F.RV)

= gu(AxBRrY + g (CrY, X)V(In \) — CrY (In \) X, RV)

1
— 129N (FCRY, VEFE.RV)

so that

gu(VxY, V) =0 (3.16)
& gn(F.CrY, VLK F,RV) = XN2gp (AxBrY
+9m(CRY, X)V(In \) — CRY (In \) X, RV).

By (3.15) and (3.16), we get (a) < (b), (a) < (¢), (a) < (d).
Therefore, the result follows. ]

We introduce another notion on distributions and investigate it.

Definition 3.13. Let F' be an almost h-conformal semi-invariant submersion from a
hyperkéhler manifold (M, I, J, K, gy) onto a Riemannian manifold (N, gy) such that
(I,J,K) is an almost h-conformal semi-invariant basis. Given R € {I,J, K}, we call
the distribution DL parallel along (ker F.)* if VxV € T'(DEF) for X € I'((ker F,)*) and
V e I(DE).

Lemma 3.14. Let F' be an almost h-conformal semi-invariant submersion from a hyper-
kdahler manifold (M, 1,J, K, gn) onto a Riemannian manifold (N, gn) such that (I, J, K)
is an almost h-conformal semi-invariant basis. Assume that the distribution DI is parallel
along (ker F,)* for R € {I,J,K}. Then the following conditions are equivalent:

(a) The map F is horizontally homothetic.
(b)
Ny (AxBY,1V) = gn(VXFIV, F.CrY)
for X,Y € I'((ker F)*) and V € T(D1).
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(c)
Ny (AxByY,JV) = gn(VEF.JV, F,.C;Y)
for X,Y € I((ker F)%) and V € T(DY).
(d)
Ngn(AxBrY,KV) = gn (VR F.KV, F,CkY)
for XY € T'((ker F,)*) and V € T'(DL).

Proof. Given X,Y € I'((ker F,)*), V € T(DEF), and R € {I,J, K}, by the proof of
Theorem 3.12, we have

gM(VXY, V) = gM(.AxBRY—i-gM(CRY,X)V(ID/\) (3.17)
1
—CRrY (In\)X,RV) — FgN(lu;cRY, VEF.RV).
Since g (VxY, V) = —gu(Y,VxV) = 0, from (3.17), we get (a) = (b), (a) = (o),

(a) = (d).
Conversely, from (3.17), we obtain

— gm(CrY,V(In A))gn (X, RV) + g (X, CrY )gm (V(In A), RV) = 0. (3.18)
Applying X = RV at (3.18), we have
—gm(CrY, V(InA))gn (RV, RV) =0,
which implies
g (X, V(A\) =0 for X € T(u%). (3.19)
Applying X = CrY at (3.18), we get
g (CRrY, CrY gy (V(In X)), RV) =0,

which implies

gu(V(A),RV) =0 for V e (D). (3.20)
Using (3.19) and (3.20), we obtain (b) = (a), (¢) = (a), (d) = (a).
Therefore, the result follows. O

Lemma 3.15. Let F be an almost h-conformal anti-holomorphic semi-invariant submer-
sion from a hyperkahler manifold (M,I,J, K, gy) onto a Riemannian manifold (N, gn)
such that (I, J, K) is an almost h-conformal anti-holomorphic semi-invariant basis. Then
the following conditions are equivalent:

(a) The distribution (ker F,)* defines a totally geodesic foliation on M.

(b) The distribution D is parallel along (ker F,)*.

(c) The distribution DL is parallel along (ker F,)= .

Proof. We see that Bg = R and Cr = 0 on (ker F,)* for R € {I,K}.
Given X,Y € I'((ker F})*) and V € T(DF), from Theorem 3.12, we have
(a) & VWxRY € T(DE) and gp(AxRY,RV) =0
& VxRY e I(DE).
Hence, we get (a) < (), (a) < (¢).

Therefore, we obtain the result. ]

Theorem 3.16. Let F' be an almost h-conformal semi-invariant submersion from a hyper-
kdhler manifold (M, 1, J, K, gyr) onto a Riemannian manifold (N, gn) such that (I, J, K) is
an almost h-conformal semi-invariant basis. Then the following conditions are equivalent:

(a) The distribution ker F, defines a totally geodesic foliation on M.
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(b) TywrU + VyérU € T(DL) and
gn(VE v EX, FawiU) = Xgy(CrTuérV + AwvérU + gu(wiV,wiU)V(In X), X)
for U,V € I'(ker F) and X € I(uh).
(¢) TywyU + Vyo, U € T(DY) and
gN(VE v X, FawsU) = Ngu(CrTuesV + Aw,vdaU + gu(wsV,wU)V(InA), X)
for U,V € I'(ker F) and X € ().
(d) TywrU + VyoxU € T'(DE) and
gn(VE v EX, FawrU) = Xaa(CxTuorV + AwevorU + gu(wiV,wiU)V(In A), X)
for U,V € I'(ker F,) and X € T'(ufS).
Proof. Given U,V € T'(ker F,,), W € T'(D¥), and R € {I, J, K}, by using (3.4), we have
g (VyU, RW) = —gar(wr(VyorU + TywrlU), RW)
so that
g (VyU, RW) =0 & VyérU + Tywrl € (D) (3.21)
Given X € I'(u®), by using (2.8) and (3.3), we get
gu(VuV, X)
= gm(VuorV, RX) + gm(0rU, Vv X) + gu(wrU, Vv X)
= gm(TuorV, RX) + g (SrU, Awpv X)
- %QM(V(IH A), X)gn (FiwrV, FuwgrU) + %QN(VERVF*X, F.wrU)
= gu(=CrIUuORV — AwpvdrU — gu(wrV,wrlU)V(In A), X)
+ %QN(VERVF*X, F,wrU)
so that

gu(VuV, X) =0 (3.22)
& gn(VE v FX, Fuwgl)

= Ngm(CRTUGRV + AwpvdrU + grr(wrV, wrU)V(InN), X).

Using (3.21) and (3.22), we obtain (a) < (b), (a) < (¢), (a) < (d).
Therefore, the result follows. g

Definition 3.17. Let F' be an almost h-conformal semi-invariant submersion from a
hyperkdhler manifold (M, 1, J, K, gy) onto a Riemannian manifold (N, gy) such that
(I,J,K) is an almost h-conformal semi-invariant basis. Then given R € {I,J, K}, we
call the distribution pu® parallel along ker F, if VyX € T'(uf) for X € T'(uf) and
U € I'(ker Fy.).

Lemma 3.18. Let F' be an almost h-conformal semi-invariant submersion from a hyper-
kahler manifold (M, 1,J, K, grr) onto a Riemannian manifold (N, gn) such that (I,J, K)
is an almost h-conformal semi-invariant basis. Assume that the distribution p® is parallel
along ker Fy, for any R € {I,J, K}.

Then given R € {I,J, K}, the following conditions are equivalent:

(a) Dilation X is constant on p't.

(b)

gn(VE v P X, FuwrU) = Ngu(CrTudrV + AwpvorU, X)
for X € T'(u®) and U,V € T'(ker F}).
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Proof. Given X € I'(uf) and U,V € I'(ker F\), by using the proof of Theorem 3.16 and
(3.4), we have

g (VuV, X) =gm(=CrIudrV — AwpvorU — gn(wrV,wrlU)V(In M), X)
1
+ FgN(vaVF*X, F.wrU)
so that since gy (VuV, X) = —gm(V,Vu X) =0, it is easy to get (a) < (b). O

Denote by Myer . and My, )+ the integral manifolds of the distributions ker F and
(ker F,)*, respectively.
Using Theorem 3.12 and Theorem 3.16, we have

Theorem 3.19. Let F' be an almost h-conformal semi-invariant submersion from a hyper-
kahler manifold (M, 1, J, K, gyr) onto a Riemannian manifold (N, gn) such that (I, J, K) is
an almost h-conformal semi-invariant basis. Then the following conditions are equivalent:
(a) M is locally a product Riemannian manifold Myer ., X Myer ) -
(b) AxCrY +VVxBrY € F(Dé),
gn(VEFIV, FE.CIV) = Ngy(AxBrY — C1Y(In \)X + gy (X, C1Y)V(In ), IV)
for X, Y € T'((ker F,)*), V € T(DL).
TvwiU 4+ Vy U € T(DY),
gn(VE v X, FawrU) = Mgy (CrTuérV + AwvérU + ga(wrV,wiU)V(In A), X)
for U,V € T(ker F,), X € T'(uh).
(c) AxC;Y +VVxB;Y € T(DY),
gn(VEFJV, E.CyV) = Ngy(AxByY — CyY (In N X + gy (X, C;Y)V(In ), JV)
for X,Y € I((ker F)*) and V € T(D).
TywsU + Vye U € D(DY),
gn(VE v EX, FawsU) = Xy (CrTud sV +Aw,vosU+gu(wsV,w U)V(InX), X)
for U,V € T'(ker F\) and X € T'(u”).
(d) AxCgY +VVxBgY € P(@g),
an(VEF.KV,F.CxV) = Ny (AxBrY —CkY (In \) X +g0 (X, CxY)V(In \), KV)
for X, Y € T((ker F,)*) and V € T'(DL).
TvwrU + VyoxU € T(DF),
gn(VE vEX, FuawgU) = Ny (CxTudrV+Awev o U+gn (Wi V,wrU)V(In A), X)
for U,V € T'(ker F,) and X € T'(u%).

Theorem 3.20. Let F' be an h-conformal semi-invariant submersion from a hyperkdhler
manifold (M, I,J, K, gn) onto a Riemannian manifold (N, gn) such that (I,J,K) is an
h-conformal semi-invariant basis. Then the following conditions are equivalent:

(a) The distribution Dy defines a totally geodesic foliation on M.
(b)

(VE)(V,IW) € T(Fph),

gn(VE)(V,IW), F.C1X) = Xgu (W, Tywr Br X)

for V,.W € I'(Dy) and X € I'((ker F,)™+).

()

(VE)(V,JW) € T(Fup”),

an(VE)(V, JW), F,C;X) = XNgy (W, Tyw By X)

for VW € T(Dy) and X € I'((ker F,)*).
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(VE)(V. KW) € T(Fp™),
an(VE)(V,EW), F.C X) = Ngu (W, Tywi B X)
for VW € T(Dy) and X € I'((ker F,)*).
Proof. Given U,V € I'(D;y), W € I'(Dg), and R € {I, J, K}, we get

g (Vv U, W) = gy (HVy RU, RW)

= 29N (VE)(V, RU), F.RW)

so that
g (VyU, W) =0 < (VE)(V,RU) € D(F,u®).
Given X € I'((ker F,)*), we obtain

g (VvU, X) = gy (U, Vy RBrX) + g (HKVy RU, CrX)
= (U, TvonBrX) — 33on (VE)(V, RU), F.CpX)
so that
g (VyvU, X) =0 < gy((VFE)(V,RU), F.CrX) = XN2gyn (U, Tywr BpX).

Using (3.23) and (3.24), we have (a) < (b), (a) < (¢), (a) < (d).
Therefore, we obtain the result.
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(3.23)

(3.24)

O

Theorem 3.21. Let F' be an h-conformal semi-invariant submersion from a hyperkdhler
manifold (M, I,J, K, gyr) onto a Riemannian manifold (N, gn) such that (I,J,K) is an

h-conformal semi-invariant basis. Then the following conditions are equivalent:

(a) The distribution Dy defines a totally geodesic foliation on M.
(b) (VE)(V,TW) € T(F.pul),

1
—ﬁgN(VfVF*IU, F.I1C;X) = gu(V, BTy B X)

+ gm (U, V) g (HV(In ), ICT X)

for U,V € T(Dy), W € T'(Dy), and X € T'((ker F,)*L).
(c) (VE)(V,JW) € T(Fop?),

1
—ﬁgN(ngF*JU, F,JC;X) = gu(V,B;TyBsX)
+ g0 (U, V) g (HV(n X, JC; X)

for U,V € T(Dy), W € T(Dy), and X € T'((ker F})4L).
(d) (VE)(V,KW) € T(F.pu™),

1
—FgN(Vf;VF*KU, F.KCkX) = gy(V, BkTyBr X)

+ 9 (U, V)gpr (HKV(In X)), KCr X)
for U,V € T(Dy), W € T(Dy), and X € T'((ker F,)4L).
Proof. Given U,V € I'(Dg), W € I'(Dy), R € {I,J, K}, we get

1
gu(VuV, W) = 59 (VE)(U, RW), FRV)

so that
g (VuV, W) =0 < (VE)(U,RW) € T'(F,.uf).

(3.25)
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Given X € TI'((ker F})*), by using (2.8), (2.11), (3.4), we obtain
g (Vo V, X) = —gu(RV, Ty BrX) + g (VryU, CrX)
= —gm(RV,TyBrX) + gum(V ey RU, RORX)
= gu(V, BRTuBrX) + gm (U, V)gu (HV(In X), RCrX)
- %QN(VEVF*RU, F.RCRrX)
so that
gu(VuV, X) =0
& —%gN(ngF*RU, F,RCRX)
= gm(V, BRTuBrX) + gu(U, V) gu (HV(In A), RCR X).

Using (3.25) and (3.26), we have (a) < (b), (a) < (¢), (a) < (d).
Therefore, the result follows.

Using Theorem 3.20 and Theorem 3.21, we obtain

(3.26)

Theorem 3.22. Let F' be an h-conformal semi-invariant submersion from a hyperkdhler
manifold (M, I,J, K, gn) onto a Riemannian manifold (N, gn) such that (I,J,K) is an

h-conformal semi-invariant basis. Then the following conditions are equivalent:

(a) The fibers of F' are locally product Riemannian manifolds Mp, x Mp,.

(b)
(VE)(V,IW) € T(Fp'),
gn((VE)(V,IW), F,CrX) = Ngy (W, TywrBr X)
for V,W € T(Dy) and X € T'((ker F,)*).
(VE)(V,IW) € T(Fuu'),
—%gN(VfVF*IU, F.I1C;X) = gu(V, BfTyBrX)
+ g0 (U, V) gpr (HV (In ), IC1 X)

for U,V € T(Dy), W € T(Dy), and X € T'((ker F,)L).
(c)
(VE)(V, JW) € T(Fop?),
an(VE)(V, JW), F,C;X) = XNgy (W, Tyw;B;X)

for V,W € T(D1) and X € I'((ker Fy)1).
(VE)(V, JW) € T(Fp”),

1
—ﬁgN(ngF*JU, F,JC;X) = gu(V,B;TyBsX)

+ 90 (U, V)gnr (HV(In ), JC; X)

for U,V € I'(D3), W € I'(Dy), and X € T'((ker F,)*).
(d)

(VE)(V,KW) € T(Fpu®),
gn(VE)(V,KW), F,.Cx X) = Ngar(W, Tywg Br X)

for VW € T(Dy) and X € I'((ker F,)*).
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(VE)(V, KW) € T(F.pu®),
1
—pgN(VfWF*KU, F.KCkX) = gu(V,BgTyBgX)
+gM(U, V)gM(fHV(ln )\),KCKX)
for U,V € T(Dy), W € T(D1), and X € T'((ker F},)1).
We know

Lemma 3.23 ([4]). Let F be a horizontally conformal submersion from a Riemannian
manifold (M, gyr) onto a Riemannian manifold (N, gn) with dilation X.
Then the tension field T(F) of F is given by

T(F)=-—mF.H+ (2 —n)F.(V(ln}\)), (3.27)
where H 1is the mean curvature vector field of the distribution ker F,, m = dimker F,
n = dim N.
Using Lemma 3.23, we easily get

Corollary 3.24. Let F be an almost h-conformal semi-invariant submersion from a hyper-
kahler manifold (M, 1, J, K, gyr) onto a Riemannian manifold (N, gn) such that (I, J, K) is
an almost h-conformal semi-invariant basis. Assume that F' is harmonic with dim ker F, >
0 and dim N > 2. Then the following conditions are equivalent:

(a) All the fibers of F' are minimal.

(b) The map F is horizontally homothetic.

Corollary 3.25. Let F' be an almost h-conformal semi-invariant submersion from a hyper-
kdhler manifold (M, 1, J, K, gyr) onto a Riemannian manifold (N, gn) such that (I, J, K) is
an almost h-conformal semi-invariant basis. Assume that dimker F, > 0 and dim N = 2.
Then the following conditions are equivalent:

(a) All the fibers of F' are minimal.

(b) The map F is harmonic.

We introduce another notion and investigate the condition for such a map to be totally
geodesic.

Definition 3.26. Let F' be an almost h-conformal semi-invariant submersion from a
hyperkéhler manifold (M, 1, J, K, gy) onto a Riemannian manifold (N, gy) such that
(I,J,K) is an almost h-conformal semi-invariant basis. Then given R € {I,J, K}, we
call the map F a (RD¥, u®)-totally geodesic map if (VF,)(RU,X) = 0 for U € I'(DE)
and X € T'(uf?).

Theorem 3.27. Let F' be an almost h-conformal semi-invariant submersion from a hyper-
kdahler manifold (M, 1, J, K, gyr) onto a Riemannian manifold (N, gn) such that (I, J, K) is
an almost h-conformal semi-invariant basis. Then the following conditions are equivalent:

(a) The map F is horizontally homothetic.

(b) The map F is a (IDL, u!)-totally geodesic map.

(c) The map F is a (JD9,u’)-totally geodesic map.

(d) The map F is a (KDXK, 1) -totally geodesic map.

Proof. Given U € I'(DF), X € T'(u®), and R € {I, J, K}, we have

(VF,)(RU, X) (3.28)
= RU(In\)F,.X + X(In \)F,RU — gy (RU, X)F,V(In \)
= RU(In\)F. X + X (In\)F,RU

so that we easily get (a) = (), (a) = (¢), (a) = (d).
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Conversely, from (3.28), we obtain
RU(In \)F. X + X(In \)F,RU = 0.

Since {F. X, FLRU} is linearly independent for nonzero X, U, we have RU(In ) = 0 and
X(InA) =0, which means (a) <= (), (a) < (¢), (a) < (d).
Therefore, the result follows. ]

Theorem 3.28. Let F' be an almost h-conformal semi-invariant submersion from a hyper-
kdhler manifold (M, I, J, K, gnr) onto a Riemannian manifold (N, gn) such that (I, J, K) is
an almost h-conformal semi-invariant basis. Then the following conditions are equivalent:
(a) The map F is totally geodesic.
(b) (i) CrTyIV +w;VyIV =0 for U,V € T(D).
(ii) CIHVyIW + w;TyIW =0 for U € T'(ker F,) and W € T'(DL).
(iii) The map F is horizontally homothetic.
(iv) TuBrX + HVyCrX € T(IDL) and VyBrX + TyCrX € T(DD) for U €
['(ker F,) and X € T'((ker F,)").
(¢) () CyTuJV +wyVyJV =0 for U,V € I'(D]).
(ii) CyHVyJW +w;TyJW =0 for U € T'(ker F,) and W € T'(Dy).
(iii) The map F is horizontally homothetic.
(iv) TyBsX + HVyCyX € T(JDYJ) and VyBsX + TyCsX € I(D]) for U €
['(ker F.) and X € T'((ker F})™*).
(d) (i) CkTuKV +wgVyKV =0 for U,V € T(DK).
(ii) CkHVyKW +wgTy KW =0 for U € T'(ker F,) and W € T'(DL).
(iii) The map F is horizontally homothetic.
(iv) TuyBgX + HVyCxX € T(KDY) and VyBgX + TyCxX € T(DE) for
U € I'(ker F,) and X € T'((ker F,)*).

Proof. Given U,V € T(D¥) and R € {I,J, K}, we have
(VE,)(U,V) = F,(R(TyRV + VyRV))
= F.(BRTuRV 4 CrTyRV + ¢rVyRV + wrVyRV)
= F.(CRTURV +wrVyRV)

so that R
(VF*)(U, V) =0« CrIyRV +wrVyRV =0. (3.29)
Given U € I'(ker F,) and W € T'(DL), we get

(VE)(U,W) = F.(R(VyRW))

= Fu(R(TyRW + HVyRW))
= F.(CRHVyRW 4 wrTyRW)
so that
(VE)(U,W) =0 < CRHVyRW + wpTyRW = 0. (3.30)
We claim that
(VE)(X,Y)=0 for X,Y € T'((ker F,)") (3.31)

< F'is horizontally homothetic.
Given X,Y € I'((ker F,)1), by (2.11), we obtain
(VE)(X,Y) = X(In\)EY +Y(In\)F.X — gu(X,Y)E.V(In \) (3.32)

so that the part from right to left immediately follows.
Conversely, we have

0=X(nMNEY +Y(InNFEX — gy (X,Y)F,V(In \). (3.33)
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Applying Y = RX, X € I'(pf?), at (3.33), we get
0= X(InNE.RX + RX(In \)F.X — g (X, RX)F.V(In \)
= X(In\)F.RX + RX(In \)F,. X

so that since { FxRX, F, X} is linearly independent for nonzero X, we obtain X(In\) =0
and RX (In\) = 0, which implies

X(\) =0 for X e D(uf). (3.34)
Applying X =Y = RU, U € I'(DE), at (3.33), we obtain
0 =2RU(In \)FLRU — gy (RU, RU)FV(In \). (3.35)

Taking inner product with F,RU at (3.35), we have
0 =29y (RU,V(In X\))gn (FxRU, FLRU) — gp(RU, RU)gn (FV(In M), F,RU)
= Agm(RU, RU) gy (RU,V(In X)),
which implies
RU(\) =0 for U e T(DE). (3.36)
By (3.34) and (3.36), we get the part from left to right.
Given U € I'(ker F,) and X € I'((ker F,)*), we obtain

(VE) (U, X) = F.(R(VyRX))
= F.(R(TyBrX + VyBrX) + R(TyCrX + HVyCrX))
= F,(Cr(TuBrX + HVyCrX) + wr(VyBrX + TyCrX))
so that
(VE)U,X)=0<  TyBrX + HVyCrX € T(RDE), (3.37)
VuBrX + TyCrX € T(RDH)

By (3.29), (3.30), (3.31), (3.37), we have (a) < (b), (a) < (¢), (a) < (d).
Therefore, we get the result. O

Let F' : (M,gax) — (N,gn) be a horizontally conformal submersion. The map F is
called a horizontally conformal submersion with totally umbilical fibers if

TxY =gu(X,Y)H for X,Y € I'(ker F}), (3.38)
where H is the mean curvature vector field of the distribution ker F..

Lemma 3.29. Let F' be an almost h-conformal semi-invariant submersion with totally
umbilical fibers from a hyperkahler manifold (M, I, J, K, gyr) onto a Riemannian manifold
(N, gn) such that (I,J, K) is an almost h-conformal semi-invariant basis. Then

H e T(RDY) for Re{I,J, K}. (3.39)
Proof. Given X,Y € T'(DI), W e T'(u®), and R € {I, J, K}, we have
TxRY + VxRY = VxRY = RVxY
= BrTxY + CrTxY 4+ ¢rVxY +wrVxY

so that
g (TxRY, W) = gy (CrIxY, W) = —gp(TxY, RW).
Using (3.38), we obtain

gm (X, RY )gu(H, W) = =g (X, Y)gm (H, RW).
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Interchanging the role of X and Y, we get
gu (Y, RX)gn(H, W) = —gu (Y, X)gn (H, RW).
Combining the above two equations, we have
gvm (X, Y)gnm (H, RW) =0,
which implies H € T'(RDE) (since Ruft = u®). O
Theorem 3.30. Let F' be an h-conformal semi-invariant submersion with totally umbilical
fibers from a hyperkdihler manifold (M, 1, J, K, gy) onto a Riemannian manifold (N, gn)

such that (I,J, K) is an h-conformal semi-invariant basis. Then all the fibers of F are
totally geodesic.

Proof. By Lemma 3.29, we have
H eT'(RDy) for Re{l,J K}

so that
{IH,JH,KH} C T'(Dj).
But
KH =1I1JH =I1(JH) € T'(Ds) with JH € I'(Dy).
Since IDy C (ker F,)*, we must have H = 0. By (3.38), we obtain the result. O
4. Examples
Note that given a Euclidean space R*" with coordinates (1,22, ,Z4m), We can
canonically choose complex structures I, J, K on R*™ as follows:
o) _ o) o) _ o) e) _ 0 0 _ e}
I<814k+1) T Oz’ I<814k+2) T Owapgr’ I(3x4k+3) T Omgpia’ I(3x4k+4) T Owapgs’
o) _ 0 o) _ 0 0 _ 0 o _ o)
J(3$4k+1) T OT443’ J(8$4k+2) T Ozapq4a’ J(3$4k+3) T Ozapt1’ J(3$4k+4) T Owgpqo’
o) _ o) o _ o) o) _ o 0 _ o)
K(3$4k+1) T Omapya’ K(3$4k+2) T Omypy3’ K(3$4k+3) T Owang 2’ K(3$4k+4) T Ozakg

for k € {0,1,--- ,m — 1}.

Then we easily check that (I,J,K,( , )) is a hyperkihler structure on R*™ where
(, ) denotes the Euclidean metric on R*". Throughout this section, we will use these
notations.

Example 4.1. Let (M, E,g) be an almost quaternionic Hermitian manifold. Let 7 :
TM — M be the natural projection [15]. Then the map 7 is an h-conformal semi-invariant
submersion such that Dy = ker w, and dilation A = 1.

Example 4.2. Let (M, Eyr, gyr) and (N, En, gn) be almost quaternionic Hermitian man-
ifolds. Let F : M — N be a quaternionic submersion [15]. Then the map F' is an
h-conformal semi-invariant submersion such that D; = ker F, and dilation A = 1.

Example 4.3. Let (M, E, gys) be an almost quaternionic Hermitian manifold and (N, gn)
a Riemannian manifold. Let F': (M, E, gar) — (N, gn) be an h-semi-invariant submersion
[21]. Then the map F' is an h-conformal semi-invariant submersion with dilation A = 1.

Example 4.4. Let (M, E, gys) be an almost quaternionic Hermitian manifold and (N, gn)
a Riemannian manifold. Let F' : (M, E,gy) — (INV,gn) be an almost h-semi-invariant
submersion [21]. Then the map F' is an almost h-conformal semi-invariant submersion
with dilation A = 1.

Example 4.5. Let (M, E, gar) be a 4n-dimensional almost quaternionic Hermitian man-
ifold and (N, gn) a (4n — 1)-dimensional Riemannian manifold. Let F' : (M, E, gn) —
(N, gn) be a horizontally conformal submersion with dilation A. Then the map F' is an
h-conformal semi-invariant submersion such that Dy = ker F, and dilation A.
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Example 4.6. Let F : R* — R? be a horizontally conformal submersion with dilation \.
Then the map F' is an h-conformal semi-invariant submersion such that Dy = ker F, and
dilation \.

Example 4.7. Define a map F : R* — R? by
F(zy,-- ,xq4) = el (zq, 29).

Then the map F is an almost h-conformal anti-holomorphic semi-invariant submersion

such that I(ker F,) = ker Fy, J(ker F},) = (ker F})*, K (ker F,) = (ker F,)*, and dilation
\ = 1934

Here, (K, I,J) is an almost h-conformal anti-holomorphic semi-invariant basis.
Example 4.8. Define a map F : R® — RS by
F(ay,--- w8) = m P (2, wg).

Then the map F' is an almost h-conformal semi-invariant submersion such that I (ker F) =
ker F, J(ker F},) C (ker F,)*, K (ker F},) C (ker F,)*, and dilation A = 71934,

Example 4.9. Define a map F : R® — R* by
F(xla to axS) = 61968($1’$27$57x7)'

Then the map F is an almost h-conformal semi-invariant submersion such that DI =

J _ o) 0 I _ nJ 0 0 _ 1L 1ati —
91368—< Forr 9e; 0 Do = Di =< g, 25 >, K(ker Fy) = (ker F)~, and dilation A =
ee.

Example 4.10. Define a map F : R® — R? by

F($1, T ,.’L‘g) = 7-‘-1978($67'gj'7>1‘8)'
Then the map F' is a h-conformal semi-invariant submersion such that D1 =< 8%17 cee B
Dy =< 6%5 >, and dilation \ = 71978,
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