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Abstract
Let H be a locally compact group, K a locally compact abelian group with dual group
K̂. In this article, we consider the wave packet group GΘ which is the semidirect product
of locally compact groups H and K × K̂, where Θ is a continuous homomorphism from
H into Aut(K × K̂). We review the quasi regular representation on GΘ and extend the
continuous Zak transform to L2(GΘ). Moreover, we state a continuous frame based on GΘ

to reconstruct the element of L2
(
K × K̂

)
. These results are extended to more general

wave packet groups. Finally, we establish some methods to find dual of such continuous
frames in the form of original frames.
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1. Introduction and preliminaries
The concept Zak transform was first introduced and used in 1950 by Gelfand for a

problem in differential equations [15]. It was developed by Zak in quantum mechanic
[34], and later became a fundamental tool in the analysis of Gabor systems. A basic of
the theory and applications to signal analysis can be found in the survey article of [27].
The Zak transform on locally compact abelian groups widely studied by several authors
[3, 23, 28, 30]. An approach to define the Zak transform on semidirect product groups
Gτ = HnτK where H is a locally compact group, K a locally compact abelian group and
τ : H → Aut(K) is a continuous homomorphism can be found in [4]. Many non-abelian
groups which appear in mathematical physics and quantum mechanics can be considered
as semidirect product of locally compact abelian groups. In this article, we introduce a
compatible extension of the Zak transform to such groups, which is a generalization of
the Fourier transform. This leads to the development of admissibility conditions on wave
packet groups. When G is the Affine group (which is the semidirect product of the two
locally compact groups (R\{0}, .) and (R,+), the group operations on G are

(a, b) (c, d) = (ac, b+ ad) , (a, b)−1 =
(1
a
,− b

a

)
.
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The quasi regular representation ρ of G on the Hilbert space L2(R) is defined by

(ρ (a, b) f) (x) = |a|−
1
2 f

(
x− b

a

)
.

Then ρ is an irreducible representation of G. Moreover, a vector ψ ∈ L2(R) is an admissible
vector for ρ if C2

ψ =
∫
R

|ψ̂(ω)|2
|ω| dω < ∞, [29]. Many authors have considered, as a general

form, the semidirect product group of the locally compact group H and Rn [4, 5, 18]. In
[9], Cordoba and Fefferman introduced wave packets by applying collections of dilations,
modulations and translations to the Gaussian function. Wave packet transform on R has
been well studied and extended for higher dimension by several authors, see [2,13,16,22].
As other recent direction of wave packet theory see [18–21]. In this paper, we study
harmonic analysis properties of quasi regular representation on the wave packet group.
Also, we can construct functions of L2(K × K̂) from the quasi regular coefficients. More
precisely, we first establish the representation frames based on a wave packet group; so
called the wave packet representation frames on the Hilbert space L2

(
K × K̂

)
, then try

to characterize their duals. As a well known result; the elements of underlying Hilbert
space can be constructed by a pair of dual representation frames. One of our aim is to
provide a construction of a pair of dual wave packet frames.

Throughout this article, let H be a locally compact group and K a locally compact
abelian group, also let h 7→ τh be a homomorphism of H into the group of automorphisms
of K such that the mapping (h, k) 7−→ kh := τh(k) from H × K onto K is continuous.
Then the set H ×K with the product topology and the operations

(h, k).(h′, k′) = (hh′, kτh(k′)), ((h, k) ∈ Gτ )

(h, k)−1 =
(
h−1, τh−1

(
k−1

))
,

which is a (not necessarily abelian) locally compact group, is called the semidirect product
of H and K, respectively. This group is denoted by Gτ = HnτK and its left Haar measure
is given by dmGτ (h, k) = δ(h)dmH(h)dmK(k) where dmH(h) and dmK(k) are the left Haar
measures of H and K respectively, and the positive continuous homomorphism δ on H is
given by (15.29 of [26])

dmK(k) = δ(h)dmK(τh(k)).

The above τ -dual action on K induces the homomorphism τ̂ : H → Aut(K̂) via h 7→ τ̂h,
given by

τ̂h(ω) := ωh = ω ◦ τh−1

for all ω ∈ K̂, where ωh(k) = ω(τh−1(k)) for all k ∈ K [4]. Also, (h, ω) 7→ ω ◦ τh from
H × K̂ into K̂ is continuous. Hence, the semidirect product Gτ̂ = H ×τ̂ K̂, which is a
locally compact group, can play the role of dual for Gτ . Furthermore, the continuous
action (h, k) 7→ τh(k) induces a mapping Θ : H → Aut(K × K̂) given by h 7→ Θh where

Θh(k, ω) = (τh(k), ωh). (1.1)

In [20], it is shown that Θ is well defined and (h, k, ω) 7→ Θh(k, ω) is a continuous homo-
morphism. Thus Θ induces the semidirect product group GΘ = H nΘ (K × K̂) which is
called the wave packet group. It is a locally compact group with the left Haar measure

dmΘ(h, k, ω) = dmH(h)dmK(k)dm
K̂

(ω)

and the modular function
∆GΘ(h, k, ω) = ∆H(h),

for all (h, k, ω) ∈ GΘ, for more details see Theorem 3.2 of [20].
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Suppose G is a locally compact abelian group with the left Haar measure mG, the
Fourier transform f̂ of any function f ∈ L1(G), denoted by F(f) or f̂ , is defined by

f̂(ξ) =
∫
G
f(x)ξ(x)dmG(x).

The Fourier transform can be extended to an isometry from L2(G) onto L2(Ĝ), the so-
called Plancherel isomorphism. By the Fourier inversion, we can reconstruct a function
from its Fourier transform as following

f(x) =
∫
Ĝ
f̂(ξ)ξ(x)dm

Ĝ
(ξ) (1.2)

for all f ∈ L1 (G) and f̂ ∈ L1
(
Ĝ
)
. For (k, ω) ∈ K × K̂ the translation operator T(k,ω) is

defined on L2
(
K × K̂

)
by

T(k,ω)f(x, ξ) = f(xk−1, ξω).

Also the modulation of f by (ω, x) is defined as

M(ω,x)f(y, ξ) = ω(y)ξ(x)f(y, ξ),
(
(ω, x) ∈ K̂ ×K

)
.

The Fourier transform has served as a bridge between unitary operators modulation and
translation as

M̂(ω,k)f = T(ω,k−1)f̂ , T̂(k,ω)f = M(k,ω)f̂ ,

for all f ∈ L2(K × K̂), k ∈ K and ω ∈ K̂.
Let (π,H) be a unitary representation of G. By an admissible vector we mean a vector

ψ ∈ H such that ∫
G

|〈f, π(x)ψ〉|2dmG(x) < ∞, (f ∈ H) . (1.3)

If π is irreducible (1.3) is equivalent to

Cψ :=
∫
G

| 〈ψ, π(x)ψ〉 |2dmG(x) < ∞.

Also we have the reconstruction formula as

f = C
−1/2
ψ

∫
G

〈f, π(x)ψ〉π(x)ψ dmG(x), (f ∈ H) , (1.4)

for more details see [1].
For every semidirect productGτ = HnτK, the quasi regular representation

(
Uτ , L

2 (K)
)

on Gτ is defined by

(Uτ (h, k) f) (x) = δ(h)−1/2f
(
τh−1

(
xk−1

))
,
(
f ∈ L2 (K)

)
. (1.5)

It is not irreducible, in general, see [5] for more details.
Let H be a separable Hilbert space and X a locally compact Hausdorff space endowed

with a positive Radon measure ν. A mapping F : X → H is called a continuous frame
if the mapping x → 〈F (x), f〉 is measurable for all f ∈ H and there exist constants
0 < A,B < +∞ such that

A‖f‖2 ≤
∫
X

| 〈F (x), f〉 |2dν(x) ≤ B‖f‖2 (f ∈ H) . (1.6)

A continuous frame is said to be tight when A = B. The mapping F is called Bessel if
the second inequality in (1.6) holds. Suppose that F is Bessel, then the operator TF :
L2(X) → H defined weakly by

TFu =
∫
X
u(x)F (x)dν(x)
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is a bounded linear operator; so called the synthesis operator. The continuous frame operator
is defined to be SF = TFT

∗
F [7]. It is useful to reconstruct the elements of H as

f = S−1
F SF f =

∫
X

〈f, F (x)〉S−1
F F (x)dν(x). (1.7)

The paper is organized as follows. In Section 2, we introduce the concept of Zak
transform on wave packet group GΘ and give sufficient admissibility condition for the
quasi regular representation on GΘ. This leads to obtain the reconstruction formula and
orthogonality relation. Section 3 is devoted to frame analysis on generalized wave packet
groups. In Section 4, we establish a method to find dual of representation frames on wave
packet and generalized wave packet groups. Finally, in Section 5, we give some examples
to illustrate our results.

2. Continuous Zak transforms on abstract wave packet groups
Throughout this paper, we assume that H is a locally compact group with the left

Haar measure mH and K a locally compact abelian group with the dual group K̂. We
also denote the normalized Plancherel measure of K̂ by m

K̂
. In this section, we state a

representation frame based on GΘ, where the homomorphism Θ is defined by (1.1). It
is worthwide to mention that the dilation operator and its Fourier transform, denoted
respectively by Dh and D̂h for every h ∈ H, are defined by [20]

Dhf(k) = δ(h)1/2f(τh−1(k))
(
f ∈ L2(K)

)
,

D̂hg(ω) = δ(h)−1/2g(τ̂h−1(ω))
(
g ∈ L2(K̂)

)
.

Moreover, the dilation operator extends on L2(K × K̂) by

Dhϕ (k, ω) = ϕ (τh−1(k), τ̂h−1 (ω)) ,

and

D̂hψ (ω, k) = ψ (τ̂h−1 (ω) , τh−1 (k)) ,

where ψ ∈ L2
(
K̂ ×K

)
and ϕ ∈ L2

(
K × K̂

)
. We summerize the basic properties of the

dilation operators Dh and D̂h on wave packet group GΘ in the following:

Lemma 2.1. For every wave packet group GΘ = H nΘ
(
K × K̂

)
the following assertions

hold.

(1) The mapping h 7→ D(h) := Dh defines a continuous unitary representation of H
on the Hilbert space L2(K × K̂).

(2) The maping h 7→ D̂(h) := D̂h defines a continuous unitary representation of H on
the Hilbert space L2(K̂ ×K).

(3) D̂hf = D̂hf̂ , for all h ∈ H and f ∈ L2(K × K̂).
(4) DhT(k,ω) = T(kh,ωh)Dh.

(5) T(k,ξ)M(ω,x) = ω(k)ξ(x)M(ω,x)T(k,ξ).
(6) DhM(ω,x) = M(ωh,xh)Dh.
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Proof. (1) If f ∈ L2(K × K̂) then for h ∈ H, k ∈ K and ω ∈ K̂ we have

‖Dhψ‖2
L2(K×K̂)

=
∫
K

∫
K̂

|Dhψ(k, ω)|2dmK(k)dm
K̂

(ω)

=
∫
K

∫
K̂

|ψ(τh−1(k), τ̂h−1(ω))|2dmK(k)dm
K̂

(ω)

=
∫
K

∫
K̂

|ψ(k, ω)|2dmK(τh(k))dm
K̂

(τ̂h(ω))

=
∫
K

∫
K̂

|ψ(k, ω)|2dmK(k)dm
K̂

(ω)

= ‖ψ‖2
L2(K×K̂)

.

Thus Dh : L2(K × K̂) → L2(K × K̂) is an isometry. Also Dhh́ = DhDh́ for h, h′ ∈ H.
So the map D : H → U

(
L2(K̂ ×K)

)
given by h 7→ D(h) := Dh is a continuous unitary

representation of H on the Hilbert space L2(K̂ ×K).
The rest follows immediately. �

The quasi regular representation of GΘ can be stated by the quasi regular representa-
tions of Gτ and Gτ̂ .

Theorem 2.2. Let
(
Uτ , L

2 (K)
)

and
(
Uτ̂ , L

2
(
K̂
))

be the quasi regular representations
on Gτ and Gτ̂ respectively. Then

(1) GΘ is isomorphic with the subgroup D := {(h, k, h, ω) : h ∈ H, k ∈ K,ω ∈ K̂} of
Gτ ×Gτ̂ .

(2) The restriction of the representation Uτ⊗Uτ̂ to the subgroup D is unitary equivalent
to the quasi regular representation on wave packet group GΘ.

Proof. (1) Define Φ : GΘ → Gτ × Gτ̂ by Φ(h, k, ω) = ((h, k) , (h, ω)). Clearly , it is an
one to one homomorphis. This easily follows (1). In order to show (2) notice that the
quasi regular representation U on GΘ acts on L2(K × K̂) by

U(h, k, ω)φ(x, ξ) = T(k,ω)Dhφ (x, ξ) .

Define the operator Γ : L2(K) ⊗ L2(K̂) → L2(K × K̂), by f1 ⊗ f2 7→ f1 × f2. Due to
Section 5.3 of [33], it is enough to show that Γ is an intertwing operator only on the tensor
product elements f1 ⊗ f2. In fact,

U(h, k, ω)Γ(f1 ⊗ f2)(x, ξ) = U(h, k, ω)(f1 × f2) (x, ξ)

= f1
(
τh−1

(
xk−1

))
f2 ((ξω)h−1)

= Γ
(
Uτ (h, k) f1(x) ⊗ Uτ̂ (h, ω)f2(ξ)

)
= Γ

(
Uτ ⊗ Uτ̂

)
((h, k)(h, ω)) f1 ⊗ f2(x, ξ).

�

Now we try to extend the notion of Zak transform to wave packet groups. The contin-
uous Zak transform of F ∈ Cc(GΘ) is defined on GΘ by

ZcF (h, ω, x) =
∫
K

∫
K̂
F (h, y, γ)ω(y)γ(x)dmK(y)dm

K̂
(γ). (2.1)
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Suppose F = f ⊗ φ where f ∈ Cc(H) and φ ∈ Cc
(
K × K̂

)
then F can be considered as

an element of L2(GΘ). Using the inversion formula (1.2) we obtain

‖ZcF‖2
2 =

∫
GΘ

∣∣∣∫K ∫K̂ f(h)φ(y, γ)ω(y)γ(x)dmK(y)dm
K̂

(γ)
∣∣∣2 dmH(h)dm

K̂
(ω)dmK(x)

=
∫
H |f(h)|2dmH(h)

∫
K

∫
K̂

∣∣∣∫K ∫K̂ φ(y, γ)ω(y)γ(x)dmK(y)dm
K̂

(γ)
∣∣∣2 dm

K̂
(ω)dmK(x)

= ‖f‖2
2 ‖φ̂‖2

2

= ‖f ⊗ φ‖2 = ‖F‖2.

So, Zc is a linear isometry in L2−norm on Cc(GΘ) and therefore can be extended uniquely
to the continuous Zak transform Zc : L2(GΘ) → L2(GΘ̂). In particular Zc (f ⊗ φ) = f⊗φ̂,
for every f ∈ L2(H) and φ ∈ L2

(
K × K̂

)
. Hence, Zc on L2

(
K × K̂

)
is the same classical

Fourier transform.
In the next, we need the following lemma to state our main result.

Lemma 2.3. Let ψ ∈ L2(K × K̂). Then

ZcT(k,ω)Dhψ(η, x) = η(k)ω(x)ZcDhψ(η, x),
(
(η, x) ∈ K̂ ×K

)
,

where h ∈ H, k ∈ K and ω ∈ K̂.

Proof. Using (2.1), for every ψ ∈ L2(K × K̂) we obtain

ZcT(k,ω)Dhψ(η, x) =
∫
K

∫
K̂
Dhψ(yk−1, γω)η(y)γ(x)dmK(y)dm

K̂
(γ)

=
∫
K

∫
K̂
Dhψ(y, γ)η(yk)γω(x)dmK(y)dm

K̂
(γ)

= η(k)ω(x)
∫
K

∫
K̂
Dhψ(y, γ)η(y)γ(x)dmK(y)dm

K̂
(γ)

= η(k)ω(x)ZcDhψ(η, x),

for every h ∈ H, k ∈ K and ω ∈ K̂. �

Theorem 2.4. Let
(
U,L2

(
K × K̂

))
be the quasi regular representation on the wave

packet group GΘ = H nΘ
(
K × K̂

)
and ψ ∈ L2

(
K × K̂

)
. Then

(1) The family F(ψ) :=
{
T(k,ω)Dhψ; (h, k, ω) ∈ GΘ

}
is a representation frame based

on GΘ with bounds A and B if and only if A ≤ γψ ≤ B a.e., where

γψ (ξ, y) :=
∫
H

|(ZcDhψ)(ξ, y)|2dmH(h). (2.2)

(2) ψ is an admissible vector if and only if ‖γψ‖∞ < ∞.

Proof. (1) Let F(ψ) be a continuous frame with bounds A,B and φ ∈ L2
(
K × K̂

)
.

Then the frame operator of F(ψ) on φ, which is given by

Sψφ =
∫
GΘ

〈
φ, T(k,ω)Dhψ

〉
T(k,ω)DhψdmH(h)dmK(k)dm

K̂
(ω),
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defines as element of L2
(
K × K̂

)
weakly. Using Lemma 2.3 and inversion formula

(1.2) yields

(ZcSψφ) (ξ, y) =
∫
GΘ

〈φ, T(k,ω)Dhψ〉ZcT(k,ω)Dhψ(ξ, y)dmH(h)dmK(k)dm
K̂

(ω)

=
∫
H

(ZcDhψ)(ξ, y)
∫
K

∫
K̂

∫
K

∫
K̂

(ZcφZcDhψ)(γ, s)γ(k)ω(s)ξ(k)

ω(y)dmH(h)dm
K̂

(γ)dmK(s)dm
K̂

(ω)dmK(k)

=
∫
H

(ZcDhψ)(ξ, y)Zcφ(ξ, y)(ZcDhψ)(ξ, y)dmH(h)

= Zcφ(ξ, y)γψ(ξ, y),

where γψ, as a function on K × K̂, is given by (2.2). In particular,

Ŝψφ = γψφ̂. (2.3)

Thus,

A‖φ‖2
2 ≤ 〈Zcφγψ, Zcφ〉 ≤ B‖φ‖2

2.
(
φ ∈ L2

(
K × K̂

))
,

or equivalently,
A ≤ γψ ≤ B, a.e..

Conversely, assume that A ≤ γψ ≤ B a.e., using the above computations we obtain〈∫
GΘ

〈
φ, T(k,ω)Dhψ

〉
T(k,ω)DhψdmH(h)dmK(k)dm

K̂
(ω), φ

〉

=
〈∫

GΘ

〈
φ, T(k,ω)Dhψ

〉
ZcT(k,ω)DhψdmH(h)dmK(k)dm

K̂
(ω), Zcφ

〉
= 〈γψφ̂, φ̂〉 .

i.e. F(ψ) is a frame with bounds A and B.
(2) Suppose ‖γψ‖∞ ≤ ∞, then F(ψ) is a Bessel sequence. Applying (2.3) we have

Cψ :=
∫
GΘ

∣∣∣〈ψ, T(k,ω)Dhψ
〉∣∣∣2 dm

K̂
(ω)dmK(k)dmH(h)

=
〈
Ŝψψ, ψ̂

〉
=
〈
γψψ̂, ψ̂

〉
,

So Cψ ≤ ‖γψ‖∞ ‖ψ‖2 < ∞. The converse is follows immediately.
�

The representation frame F (ψ), introduced in the above theorem, is called the wave
packet representation frame associated to ψ ∈ L2

(
K × K̂

)
.

Corollary 2.5. Let GΘ = H nΘ
(
K × K̂

)
and ψ ∈ L2

(
K × K̂

)
generates wave packet

representation frame F (ψ). Then
(1) The following reconstruction formula for the elements of L2(K × K̂) holds

φ =
∫
GΘ

〈
φ̂, γψ

−1M(k,ω)D̂hψ̂
〉
T(k,ω)DhψdmH(h)dm

K̂
(ω)dmK(k) (2.4)

(2) The optimal frame bounds of F(ψ) are given by ‖γ−1
ψ ‖−1

∞ and ‖γψ‖∞, respectively.



1832 A. Arefijamaal, A. Razghandi

Proof. (1) Using Theorem 2.4 follows that〈
Ŝψφ, φ̂

〉
= 〈γψφ̂, φ̂〉 ,

(
φ ∈ L2

(
K × K̂

))
where Sψ is the frame operator of F(ψ). This easily follows that

̂(S−1
ψ φ) = γψ

−1φ̂. (2.5)

Therefore, we can rewrite (1.7) as

φ =
∫
GΘ

〈
φ̂,F

(
S−1T(k,ω)Dhψ

)〉
T(k,ω)DhψdmH(h)dm

K̂
(ω)dmK(k)

=
∫
GΘ

〈
φ̂, γψ

−1M(ω,k)D̂hψ̂
〉
T(k,ω)DhψdmH(h)dm

K̂
(ω)dmK(k).

(2) Applying (2.3) yields ‖Ŝψ‖ = ‖γψ‖∞. Hence
‖Sψ‖ = ‖γψ‖∞.

Using Proposition 5.1.1 of [24] follows the desired results.
�

As usual, by using the quasi regular representation U on GΘ, for an admissible vector
ψ ∈ L2

(
K × K̂

)
one can define the wave packet transform on L2

(
K × K̂

)
by

Wψφ (h, k, ω) := 〈φ,U (h, k, ω)ψ〉 =
〈
φ, T(k,ω)Dhψ

〉
.

In this case, the reconstruction formula (1.7) can be read as

φ = Cψ
−1/2

∫
GΘ

〈
φ, T(k,ω)Dhψ

〉
T(k,ω)DhψdmH(h)dmK(k)dm

K̂
(ω), (2.6)

which is different from the inversion formula (2.4). In fact, (2.6) is followed from the
continuous wavelet theory and is obtained by the constant Cψ, see also (1.4). However,
(2.4) is the reconstruction formula (1.6) and follows from the frame theory.

Corollary 2.6. Let F(ψ) be the representation frame given by Theorem 2.4. Then the
wave packet transform satisfies the following orthogonality relation

〈Wψφ,Wψη〉 = 〈γψφ̂, η̂〉 .

As a consequence of Theorem 2.4, we can construct the admissible vectors of
(
U,L2(K × K̂)

)
by using its components.

Corollary 2.7. Let ψ1 ∈ L2 (K) and ψ2 ∈ L2
(
K̂
)
. The following assertions hold.

(1) If ψ1 is an admissible vector with respect to the representation
(
Uτ , L

2 (K)
)

and
ψ2 ∈ L2

(
K̂
)

is bounded, then ψ1 ⊗ ψ2 is admissible with respect to the represen-

tation
(
U,L2

(
K × K̂

))
.

(2) If ψ2 is an admissible vector with respect to the representation
(
Uτ̂ , L

2
(
K̂
))

and
ψ1 ∈ L2 (K) is bounded, then ψ1⊗ψ2 is admissible with respect to the representation(
U,L2

(
K × K̂

))
.

(3) The vector ψ ∈ L2
(
K × K̂

)
defined as∣∣∣ψ̂∣∣∣ =
∣∣∣ψ̂1
∣∣∣1/2

⊗
∣∣∣ψ̂2
∣∣∣1/2

is an admissible vector for
(
U,L2

(
K × K̂

))
provided that ψ1 and ψ2 are admis-

sible.
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Proof. (1) Putting Ψ = ψ1 ⊗ ψ2 ∈ L2(K × K̂). Using the continuous Zak transform
we obtain

γΨ(ω, x) =
∫
H

|ZcDhΨ(ω, x)|2 dmH(h)

=
∫
H

∣∣∣Zc(Dhψ1 ⊗ D̂hψ2)(ω, x)
∣∣∣2 dmH(h)

=
∫
H

∣∣∣∣∫
K
Dhψ1(y)ω(y)dmK(y)

∫
K̂
D̂hψ2(γ)γ(x)dm

K̂
(γ)
∣∣∣∣2 dmH(h)

=
∫
H

∣∣∣(ZcDhψ1 ⊗ ZcD̂hψ2)(ω, x)
∣∣∣2 dmH(h)

≤
∫
H

∣∣∣ψ̂1(w ◦ τh)
∣∣∣2 dmH(h)‖ψ̂2‖∞ < ∞.

The result follows from Theorem 2.4.
(2) For (ω, x) ∈ K̂ oK we have

γψ(ω, x) =
∫
H

|ZcDhψ(ω, x)|2 dmH(h)

=
∫
H

∣∣∣ψ̂ (τ̂h−1 (ω) , τh−1 (x))
∣∣∣2 dmH(h)

=
∫
H

∣∣∣ψ̂1 (τ̂h−1 (ω))
∣∣∣⊗ ∣∣∣ψ̂2 (τh−1 (x))

∣∣∣ dmH(h)

≤ γψ1 (ω)1/2 γψ2 (x)1/2 ,

it follows the results. �

3. Frame analysis on generalized wave packet groups
Gabor systems generated by the action of translations and modulations on a signal give

the time- frequency content of a signal. This is often not the most desired resolution, which
leads to the appearance of wavelet analysis. Wavelet systems are obtained by shifting and
dilating a finite family of functions. In [9], Cordoba and Fefferman by using certain
collections of dilations, modulations and translations, introduced wave packet systems. In
fact, Gabor systems and wavelet systems can be considered as special cases of wave packet
systems. In this section, we show that the interplay of all three operators gives generalized
wave packet system on locally compact groups, this leads up to sufficient conditions that
generalized wave packet system be the tight frame.

Let H be a locally compact group and K be a locally compact abelian group. The
action H ×K → K; (h, k) 7→ τh(k) and its dual indicate us to consider the action

H × (K × K̂ × K̂ ×K) → K × K̂ × K̂ ×K

(h, k, ω, ξ, x) 7→ ℘h (k, ω, ξ, x) :=
(
kh, ωh, ξh, x

h
)
.

It is not difficult to see that ℘h is a homomorphism on K× K̂× K̂×K, and therefore, the
semidirect product G℘ := H n℘ (K × K̂ × K̂ ×K); so called the generalized wave packet
group, is well defined. A direct calculations shows that

dmG℘(h, k, ω, ξ, x) = dmH(h)dmK(k)dm
K̂

(ω)dm
K̂

(ξ)dmK(x)
4G℘(h, k, ω, ξ, x) = 4H(h).

Let ψ ∈ L2
(
K × K̂

)
. The generalized wave packet system

α(ψ) :=
{
DhT(k,ω)M(ξ,x)ψ; (h, k, ω, ξ, x) ∈ G℘

}
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introduces the unitary representation
(
Λ, L2

(
K × K̂

))
on G℘ given by

Λ(h, k, ω, ξ, x)ψ := DhT(k,ω)M(ξ,x)ψ.

In the rest, we discuss on the irreducibility of Λ and characterize its admissible vector.

Theorem 3.1. The homomorphism
(
Λ, L2

(
K × K̂

))
on the generalized wave packet

group G℘ is a continuous unitary irreducible representation.

Proof. Obviously, Λ is a continuous unitary representation. In order to show the irre-
ducibility of Λ, let M be a nonzero closed invariant subspace of L2

(
K × K̂

)
. Then we

claim that M = L2
(
K × K̂

)
, or equivalently M⊥ = {0}. Let φ ∈ M⊥ and ψ ∈ M be

nonzero. Then for each h0 ∈ H we have

0 =
∫
K

∫
K̂

∫
K

∫
K̂

| 〈Λ (h0, k, ω, ξ, x)ψ,φ〉 |2dmK(k)dm
K̂

(ω)dm
K̂

(ξ)dmK(x)

=
∫
K

∫
K̂

∫
K

∫
K̂

|
〈
Dh0T(k,ω)M(ξ,x)ψ,φ

〉
|2dmK(k)dm

K̂
(ω)dm

K̂
(ξ)dmK(x)

=
∫
K

∫
K̂

∫
K

∫
K̂

|
〈
M(ξ,x)ψ, T(k−1,ω)Dh−1

0
φ
〉

|2dmK(k)dm
K̂

(ω)dm
K̂

(ξ)dmK(x)

=
∫
K

∫
K̂

∫
K

∫
K̂

|F
(
ψ.T(k−1,ω)Dh−1

0
φ
)

(ξ, x) |2dmK(k)dm
K̂

(ω)dm
K̂

(ξ)dmK(x)

=
∫
K

∫
K̂

|ψ (ξ, x) |2dm
K̂

(ξ)dmK(x)
∫
K

∫
K̂

|Dh−1
0
φ (xk, ωξ) |2dmK(k)dm

K̂
(ω)

= ‖ψ‖2
2‖φ‖2

2.

So φ = 0 and M⊥ = {0}. �

Theorem 3.2. Let G℘ := H o℘ (K × K̂ × K̂ ×K) be the generalized wave packet group
then the representation

(
Λ, L2

(
K × K̂

))
has an admissible vector (and so all vectors are

admissible) if and only if H is compact.

Proof. Suppose ψ ∈ L2
(
K × K̂

)
. Applying (1.2) we obtain

Cψ =
∫
G℘

|〈ψ,Λ(h, k, ω, ξ, x)ψ〉|2 dmH(h)dmK(k)dm
K̂

(ξ)dm
K̂

(ω)dmK(x)

=
∫
G℘

∣∣∣〈T(k−h,ωh)ψ,M(ξh,xh)Dhψ
〉∣∣∣2 dmH(h)dmK(k)dm

K̂
(ξ)dm

K̂
(ω)dmK(x)

=
∫
G℘

∣∣∣∣∫
K

∫
K̂
T(ξh,x−h)D̂hψ̂.ψ̂(γ, y)ωh(y)γ(k−h)dm

K̂
(γ)dmK(y)

∣∣∣∣2
dmH(h)dmK(k)dm

K̂
(ξ)dm

K̂
(ω)dmK(x)

=
∫
G℘

∣∣∣∣F(T(ξh,τh−1 (x))D̂hψ̂.ψ̂

)(
kh

−1
, ωh

)∣∣∣∣2 dmH(h)dmK(k)dm
K̂

(ξ)dm
K̂

(ω)dmK(x)
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=
∫
H

∫
K̂

∫
K

∫
K

∫
K̂

∣∣∣∣F(T(ξh,τh−1 (x))D̂hψ̂.ψ̂

)(
k−1, ω

)∣∣∣∣2 dmK(kh−1)dm
K̂

(ωh−1)dmH(h)

dm
K̂

(ξ)dmK(x)

=
∫
H

∫
K̂

∫
K

∫
K̂

∫
K

∣∣∣∣T(ξh,τ−1
h

(x))D̂hψ̂ (γ, y)
∣∣∣∣2 ∣∣∣ψ̂ (γ, y)

∣∣∣2 dmH(h)dmK(y)dm
K̂

(ξ)dm
K̂

(γ)dmK(x)

=
∫
H

∫
K̂

∫
K

∫
K̂

∫
K

∣∣∣D̂hψ̂(γξh, yτh(x))
∣∣∣2 ∣∣∣ψ̂ (γ, y)

∣∣∣2 dm
K̂

(γ)dmK(y)dmH(h)dm
K̂

(ξ)dmK(x)

=
∫
H

∫
K̂

∫
K

∫
K̂

∫
K

∣∣∣D̂hψ̂(ξ, x)
∣∣∣2 dm

K̂
(ξ)dmK(x)

∣∣∣ψ̂ (γ, y)
∣∣∣2 dmK(y)dm

K̂
(γ)dmH(h)

=
∫
K̂

∫
K

∫
H

∣∣∣D̂hψ̂(ξ, x)
∣∣∣2 dmH(h)dmK(x)dm

K̂
(ξ)
∫
K̂×K

∣∣∣ψ̂ (γ, y)
∣∣∣2 dmK(y)dm

K̂
(γ)

= ‖ψ‖4
2mH(H).

Since mH(H) < ∞ follows that H is compact, this immediately follows the result. �

Corollary 3.3. Let G℘ be the generalized wave packet group and ψ ∈ L2(K × K̂) an
admissible vector for

(
Λ, L2(K × K̂)

)
. Then

(1) The generalized wave packet system T(ψ) := {DhT(k,ω)M(ξ,x)ψ; (h, k, ω, ξ, x) ∈
G℘} is a tight representation frame, in particular,

φ = ‖ψ‖−2
2

∫
G℘

〈
φ,DhT(k,ω)M(ξ,x)ψ

〉
DhT(k,ω)M(ξ,x)ψdmG℘(h, k, ω, ξ, x)

(2) The following orthogonality relation for all φ1, φ2 ∈ L2
(
K × K̂

)
holds.∫

G℘
〈φ1,Λ (h, k, ω, ξ, x)ψ〉 〈Λ (h, k, ω, ξ, x)ψ,φ2〉 dmG℘(h, k, ω, ξ, x) = C

1/2
ψ 〈φ1, φ2〉 .

Proof. Using Theorem 3.2 follows that∫
G℘

|〈φ,Λ(h, k, ω, ξ, x)ψ〉|2 dmH(h)dmK(k)dm
K̂

(ξ)dm
K̂

(ω)dmK(x) = ‖ψ‖2
2‖φ‖2

2,

for all φ ∈ L2
(
K × K̂

)
. In other words, the family T(ψ) is a tight representation frame

with the bound ‖ψ‖2
2. This proves (1), and (2) follows immediately by (1). �

4. Characterizations of dual representation frames
In this section, we intend to discuss on the duality of representation frames. Several

authors proposed necessary conditions for dual frames [6,11,12]. In [8], Chui and Shi give
necessary conditions for dual frames on L2(R). The construction of dual on bandlimited
framelets with desired time localization can be found in [32].

Let (X, ν) be a measure space. For two Bessel families F,G : X → H we define the
operator SF,G on H weakly via

SF,Gf =
∫
X

〈f, F (x)〉G(x)dν(x).

Bessel families F and G are called dual if and only if SF,G = I. Further, suppose SF,G
is invertible, then it is easy to see that S−1

F F + SFS
−1
F,GG − F is a dual frame for F . We

collect in the next proposition some characterizations of continuous dual frames.
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Proposition 4.1. Let F,G : X → H be Bessel families. The following are equivalent:

(1) F and G are continuous dual frames.
(2) F and S−1

F F + SFG− F are continuous dual frames.
(3) There exists a Bessel family L : X → H such that G(x) = S−1F (x) + L(x) and

∫
X
L(x) 〈f, F (x)〉 dν(x) = 0.

The characterization of our dual frames, which introduced in the previous section, are
given in the next subsections.

4.1. Dual of wave packet frames
In general, the canonical dual frame of a wavelet system has not the wavelet structure

[10]. In the sequel, we introduce many duals which have the same structure of the original
frames, and therefore, they are suitable for applications.

Theorem 4.2. Let ψ, ψ̃ ∈ L2(K × K̂). The following are equivalent:

(1) F (ψ) and F
(
ψ̃
)

are dual representation frames.

(2) α
ψ,ψ̃

(ξ, y) :=
∫
H D̂h

̂̃
ψ(ξ, y)D̂hψ̂(ξ, y)dmH(h) = 1, a.e. (ξ, y) ∈ K̂ ×K.

(3) There exists φ ∈ L2(K × K̂) such that ψ̃ := S−1
ψ ψ + φ and ImWφ ⊥ ImWψ.

(4) There exists φ ∈ L2(K × K̂) such that ψ̃ := S−1
ψ ψ + φ and αψ,φ = 0.

Proof. Define the operator S
ψ,ψ̃

on L2
(
K × K̂

)
weakly by

S
ψ,ψ̃

φ =
∫
GΘ

〈
φ, T(k,ω)Dhψ

〉
T(k,ω)Dhψ̃dmH(h)dmK(k)dm

K̂
(ω).

Obviously, ψ and ψ̃ generate wave packet dual representation frames if and only if S
ψ,ψ̃

is
the identity operator.

(2) ⇒ (1). Using Lemma 2.3 yields

ZcSψ,ψ̃φ(ξ, y) =
∫
GΘ

〈φ, T(k,ω)Dhψ〉ZcT(k,ω)Dhψ̃(ξ, y)dmH(h)dmK(k)dm
K̂

(ω)

=
∫
H

(ZcDhψ̃)(ξ, y)
∫
K×K̂

∫
K̂×K

(ZcφZcDhψ)(γ, s)γ(k)

ω(s)ξ(k)ω(y)dmH(h)dm
K̂

(γ)dmK(s)dm
K̂

(ω)dmK(k)

=
∫
H

(ZcDhψ̃)(ξ, y)Zcφ(ξ, y)(ZcDhψ)(ξ, y)dmH(h)

= Zcφ(ξ, y)α
ψ,ψ̃

(ξ, y).

Therefore, Ŝ
ψ,ψ̃

φ = α
ψ,ψ̃

φ̂, and hence S
ψ,ψ̃

= I. Thus, ψ and ψ̃ generate wave packet dual

representation frames. Conversely, let F (ψ) and F
(
ψ̃
)

be dual frames. Then α
ψ,ψ̃

f̂ = f̂ ,
for every f ∈ L2(K × K̂). Applying Lemma 4.19 of [14] we have α

ψ,ψ̃
= 1, a.e..
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(1) ⇔ (3) Combining (2.2) and (2.5) we obtain

D̂h

(
Ŝ−1
ψ ψ

)
(ω, x) =

(
1
γψ
ψ̂

)(
τ̂−1
h (ω) , τ−1

h (x)
)

=

 1

γψ

(
τ̂−1
h (ω) , τ−1

h (x)
)
 ψ̂ (τ̂−1

h (ω) , τ−1
h (x)

)

= 1
γψ (ω, x)

ψ̂

(
τ̂−1
h (ω) , τ−1

h (x)
)

= Ŝ−1
ψ D̂hψ (ω, x) .

Hence,

̂T(k,ω)DhŜ
−1
ψ ψ = Ŝ−1

ψ
̂T(k,ω)Dhψ.

So S−1
ψ commutes with the translation and modulation operators. Putting φ = ψ̃−S−1

ψ ψ,
we have

T(k,ω)Dhψ̃ = S−1
ψ T(k,ω)Dhψ + T(k,ω)Dhφ.

Due to Proposition 4.1 (3) the families F (ψ) and F
(
ψ̃
)

are dual frames if and only if

〈Wφη,Wψη̃〉 =
∫
GΘ

〈
η, T(k,ω)Dhφ

〉〈
η̃, T(k,ω)Dhψ

〉
dmH(h)dmK(k)dm

K̂
(ω) = 0,

for all η and η̃ in L2
(
K × K̂

)
.

(1) ⇔ (4) If F (ψ) and F
(
ψ̃
)

are dual representation frames, then

α
ψ,ψ̃

=
∫
H D̂h

̂̃
ψ(ξ, y)D̂hψ̂(ξ, y)dmH(h) = 1, by (2). Putting φ := ψ̃ − S−1

ψ ψ then ψ̃ =
S−1
ψ ψ + φ. Similarly, F (ψ) and F

(
S−1ψ

)
are dual representation frames, it follows that∫

H
D̂hŜ−1ψ(ξ, y)D̂hψ̂(ξ, y)dmH(h) = 1.

Hence,

αψ,φ =
∫
H
D̂h
̂̃
ψ(ξ, y)D̂hψ̂(ξ, y)dmH(h) −

∫
H
D̂hŜ−1ψ(ξ, y)D̂hψ̂(ξ, y)dmH(h) = 0.

Conversely, if there exists φ ∈ L2(K × K̂) such that ψ̃ := S−1
ψ ψ + φ and αψ,φ = 0, then

α
ψ,ψ̃

=
∫
H
D̂hŜ−1ψ(ξ, y)D̂hψ̂(ξ, y)dmH(h) + αψ,φ = 1.

Thus, F (ψ) and F
(
ψ̃
)

are dual representation frames by (2). �

Corollary 4.3. Let GΘ = H nΘ
(
K × K̂

)
and ψ, ψ̃ ∈ L2

(
K × K̂

)
generate continuous

wave packet representation frames. The following are equivalent:
(1) F (ψ) and F

(
ψ̃
)

are dual frames.

(2) F (ψ) and F
(
2ψ̃ − S−1

ψ ψ
)

are dual frames.

(3) F (ψ) and F
(

2S−1
ψ ψ − 1

α
ψ,ψ̃

ψ̃

)
are dual frames.

(4) F (ψ) and F
(
S−1
ψ ψ + Sψψ̃ − ψ

)
are dual frames.

(5) F (ψ) and F
(
S−1
ψ ψ − 1

γψ
ψ + ψ̃

)
are dual frames.
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Corollary 4.4. Let ψ, ψ̃ ∈ L2(K × K̂) and α
ψ,ψ̃

6= 0, a.e.. Then F (F(ψ)) and 1
α
ψ,ψ̃

F
(
F(ψ̃)

)
are dual frames. In particular,

φ̂ = 1
α
ψ,ψ̃

∫
GΘ

〈
φ, T(k,ω)Dhψ

〉
F
(
T(k,ω)Dhψ̃

)
dmH(h)dmK(k)dm

K̂
(ω).

4.2. Dual of generalized wave packet frames
In this subsection suppose G℘ := H n℘ (K × K̂ × K̂ ×K), and

T(ψ) := {DhT(k,ω)M(ξ,x)ψ; (h, k, ω, ξ, x) ∈ G℘}

is a generalized wave packet representation frame for some ψ ∈ L2
(
K × K̂

)
. In the sequel,

we characterize dual of such continuous frames.

Theorem 4.5. Let ψ, ψ̃ ∈ L2(K × K̂) and H be a compact group. The following are
equivalent:

(1) T (ψ) and T
(
ψ̃
)

are dual represetation frames.
(2) 〈ψ, ψ̃〉 = 1.
(3) ψ̃ := S−1

ψ ψ + φ for some φ ∈ L2(K × K̂) such that ImWφ ⊥ ImWψ.
(4) There exists φ ∈ L2(K × K̂) such that ψ̃ := S−1

ψ ψ + φ and 〈ψ,φ〉 = 0.

Proof. The operator S
ψ,ψ̃

on L2
(
K × K̂

)
is defined weakly by

S
ψ,ψ̃

φ =
∫
G℘

〈
φ,DhT(k,ω)M(k,ω)ψ

〉
DhT(k,ω)M(k,ω)ψdmH(h)dmK(k)dm

K̂
(ω)dm

K̂
(ξ)dmK(x).

(2) ⇔ (1) A straightforward computation shows that
ZcSψ,ψ̃φ(γ, s) = Zcφ(γ, s)σ(γ, s)

where

σ(γ, s) =
∫
H

∫
K̂

∫
K
ZcDhM(ξ,x)ψ(γ, s)ZcDhM(ξ,x)ψ̃(γ, s)dmH(h)dm

K̂
(ξ)dmK(x)

=
∫
H

∫
K̂

∫
K
ψ̂ (γh−1ξ, τh−1 (s)x) ̂̃ψ (γh−1ξ, τh−1 (s)x)dmH(h)dm

K̂
(ξ)dmK(x)

= mH (H) 〈ψ, ψ̃〉
= 〈ψ, ψ̃〉.

This follows that
S
ψ,ψ̃

= 〈ψ, ψ̃〉I.

Therefore T (ψ) and T
(
ψ̃
)

are dual representation frames if and only if 〈ψ, ψ̃〉 = 1.
By analysis the argument in the proof of Theorem 4.2 we can prove the rest. �
The following conclusions can be derived directly from the above theorem.

Corollary 4.6. Let H be a compact group. Then
(1) T(ψ) and 1

‖ψ‖2T(ψ) are dual representation frame.
(2) If ‖ψ‖2‖ψ̃‖2 < 1 then T(ψ) and T(ψ̃) can not be dual representation frames.

Corollary 4.7. Let ψ, ψ̃ ∈ L2(K × K̂) and H be a compact group. The following are
equivalent:

(1) T(ψ) and T(ψ̃) are dual representation frames.
(2) T(ψ) and T

(
2ψ̃ − 1

‖ψ‖2ψ
)

are dual representation frames.
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(3) T(ψ) and T
(
2ψ̃ − S−1

ψ ψ
)

are dual representation frames.

(4) T(ψ) and T
(
2‖ψ̃‖2S−1

ψ ψ̃ − S−1
ψ ψ

)
are dual representation frames.

(5) T(ψ) and T
(
S−1
ψ ψ + S−1

ψ ψ̃ − ψ
)

are dual representation frames.

(6) T(ψ) and T
(
ψ̃ + φ

)
, for some φ with 〈φ,ψ〉 = 0 are dual representation frames.

Proof. (1) ⇔ (2) If T(ψ) and T(ψ̃) are dual representation frames, then 〈ψ, ψ̃〉 = 1 by
Theorem 4.5, so 〈

ψ, 2ψ̃ − 1
‖ψ‖2ψ

〉
=

〈
ψ, 2ψ̃

〉
−
〈
ψ,

1
‖ψ‖2ψ

〉
= 2

〈
ψ, ψ̃

〉
− 1

‖ψ‖2 〈ψ,ψ〉 = 1.

Hence, T(ψ) and T
(
2ψ̃ − 1

‖ψ‖2ψ
)

are dual representation frames by Theorem 4.5. Con-

versely, if T(ψ) and T
(
2ψ̃ − 1

‖ψ‖2ψ
)

are dual representation frames then 〈ψ, 2ψ̃− 1
‖ψ‖2ψ〉 =

1 and so 〈ψ, ψ̃〉 = 1, by using Theorem 4.5 it follows that T(ψ) and T(ψ̃) are dual repre-
sentation frames. The rest follow by a similar argument. �

We end this section with a perturbation result on duals.

Theorem 4.8. Let H be a compact group and ψ, ψ̃, φ ∈ L2(K × K̂) such that
‖ψ − φ‖2‖ψ̃‖2 < 1, also let T(ψ) and T(ψ̃) be dual representation frames. Then T(ψ̃)
and S−1

φ,ψ̃
(T (φ)) are also dual representation frames.

Proof. For any η ∈ L2(K × K̂) we obtain∥∥∥(T ∗
T(ψ) − T ∗

T(φ)

)
η
∥∥∥2

2
=

∫
GΘ

|〈η,T(ψ) − T(φ)〉|2 dmGΘ

= ‖Wψ−φη‖2
2

= ‖ψ − φ‖2
2‖η‖2

2.

Therefore,

‖I − S
φ,ψ̃

‖ =
∥∥∥T

T(ψ̃)

(
T ∗
T(ψ) − T ∗

T(φ)

)∥∥∥
≤ ‖ψ̃‖2‖ψ − φ‖2 < 1.

So S
φ,ψ̃

is invertible. This easily follows that T(ψ̃) and S−1
φ,ψ̃

(T (φ)) are dual pairs. �

5. Examples and conclusions
Throughout this section, we present some examples to illustrate our results. More

precisely, we discuss on the existence of admissible vectors of wave packet and generalized
wave packet groups. See the basic properties of the following examples in [19,20].

Example 5.1. Consider the wave packet group GΘ = R+ nΘ (R × R) where Θ : R+ →
Aut(R×R) is given on L2

(
K × K̂

)
by a 7→ Θa(x, ω) = (ax, a−1ω). The dilation operator

is defined by Daφ(k, ω) = φ(a−1k, aω) and

U(a, k, ω)φ(x, ξ) = φ(a−1xk−1, aξω)
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is denoted the quasi regular representation on GΘ. Using Theorem 2.4 follows that
{T(ka,ωa)ψ}(a,k,ω)∈GΘ is a wave packet representation frame if and only if

A ≤
∫
R+

∣∣∣ψ̂ (aξ, a−1x
)∣∣∣2 da|a|

≤ B, a.e. (ξ, x) ∈ R2.

For example, suppose ψ1 ∈ L2 (R) is an admissible vector for the affine group R+ nτ R,
then Ψ ∈ L2 (R2) defined by ∣∣∣Ψ̂∣∣∣ =

∣∣∣ψ̂1
∣∣∣1/2

⊗
∣∣∣ψ̂1
∣∣∣1/2

is an admissible vector for
(
U,L2 (R2)). In particular, if ψ1 ∈ L2 (R) whose Fourier

transform satisfies
ψ̂1 = χ[π,2π]

and Ψ is defined by Ψ̂ = ψ̂
1/2
1 ⊗ ψ̂

1/2
1 , then∫

R+

∣∣∣Ψ̂ (aξ, a−1x
)∣∣∣2 da|a|

≤
(∫

R+

∣∣∣ψ̂1 (aξ)
∣∣∣2 da|a|

)1/2 (∫
R+

∣∣∣ψ̂1
(
a−1x

)∣∣∣2 da|a|

)1/2

=
∫
R+

∣∣∣ψ̂1 (a)
∣∣∣2 da|a|

=
∫ 2π

π

da

|a|
= Ln2.

Also for vectors φ and ψ in L2 (R2) such that∫
R+
ψ̂ (aξ, a−1x)φ̂

(
aξ, a−1x

) da
|a|

= 1, a.e. (ξ, x) ∈ R2,

The families {T(ka,ωa)φ}(a,k,ω)∈GΘ and {T(ka,ωa)ψ}(a,k,ω)∈GΘ are dual representation frames.

Example 5.2. The generalized wave packet groupG℘ = {1, 2, ..., p−1}n℘Zp×Zp×Zp×Zp,
where mp(s) = ps and ℘m(s, ω, ξ, x) = (ms,mpω,mpξ,mx), is a finite non-abelian group.
The dilation operator is given by Dmφ(s, ś) = φ (mps,mś) for φ ∈ Cp×p. Using Theorem
3.2 follows that every ψ ∈ Cp×p is an admissible vector and {DmT(k,ω)M(ξ,x)ψ} is a tight
representation frame. Also we achieve the following reconstruction

φ = 1
‖φ‖2

2

p−1∑
m=1

p−1∑
k=0

p−1∑
ω=0

p−1∑
ξ=0

p−1∑
x=0

〈
φ,DmT(k,ω)M(ξ,x)ψ

〉
DmT(k,ω)M(ξ,x)ψ,

(
φ ∈ Cp×p) .

Example 5.3. Let n > 1 be an integer, H = SO(n) and K = Rn. We can define the
continuous homomorphism Θ by A 7→ ΘA (x, ω) =

(
Ax,A−1ω

)
for all A ∈ SO(n) and

(x, ω) ∈ Rn×Rn. The quasi regular representation U on GΘ = SO(n)nΘRn×Rn is given
by U (A, x, ω) = T(x,ω)DA that DAf(x, ω) = f

(
A−1x,Aω

)
. Using Theorem 2.4 the family

{T(Ak,A−1ω)ψ; (A, x, ω) ∈ GΘ} is a wave packet representation frame with bounds A and
B if and only if

A ≤ γψ (ω, x) =
∫
SO(n)

∣∣∣ψ̂ (Aω,A−1x
)∣∣∣2 dA ≤ B, a.e. (ω, x) ∈ Rn × Rn.

So, if ψ̂ is bounded and compact support, then ψ is an admissible vector for L2 (Rn × Rn).
It guarantees the following reconstruction formula in L2 (Rn × Rn),

f =
∫
GΘ

〈
f̂ , γ−1

ψ M(k,ω)D̂Aψ̂
〉
T(Ak,A−1ω)ψdAdωdx.

Example 5.4. Consider the shearlet group, denoted by S, as the semidirect product(
R+ nτ R

)
nΘ R4

equipped with the group multiplication given by

(a, s, x, ξ) .
(
á, ś, x́, ξ́

)
=
(
aá, s+ ś

√
a, (x, ξ) +

(
SsAax́, A

−1
a S−1

s ξ́
))



Existence of representation frames based on wave packet groups 1841

that the shearing matrix Ss and the parabolic scaling matrix Aa are given by

Ss =
[

1 s
0 1

]
, Aa =

[
a 0

0 a1/2

]
.

The left Haar measure of S is da
a3 dsdt. Let Mas = SsAa, the dilation operator can be writen

as
D(a,s)ψ (x, ξ) = ψ

(
M 1

a
(−s)x,Masξ

)
x, ξ ∈ R2.

For ψ ∈ L2(R4) the unitary representation Γ : S → U
(
L2 (R4)) can be defined by

Γ (a, s, x, ξ)ψ = T(x,ξ)DMasψ.

Using Theorem 2.4, the shearlet system SH (ψ) = {T(t,ξ)DMasψ; (a, s, t, ξ) ∈ S} is a
wave packet representation frame if and only if

A ≤
∫
R+

∫
R

∣∣∣ψ̂ (Masx,M 1
a

(−s)ξ
)∣∣∣2 da

a3/2ds ≤ B,
(
(x, ξ) ∈ R4

)
.

Also {T(t,ξ)DMasψ}(a,s,t,ξ)∈S and {T(t,ξ)DMasψ̃}(a,s,t,ξ)∈S are dual frames if and only if

α
ψ,ψ̃

=
∫
R+

∫
R
D̂Mas

̂̃
ψ (ξ, y) D̂Masψ̂ (ξ, y) da

a3/2ds = 1.

Notice that the generalized shearlet representation Λ (a, s, k, ω, ξ, x) = DMasT(t,ξ)M(ξ,x)ψ

on generalized shearlet group G = R+ ×RnR8 has not any admissible vector by Theorem
3.2.
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