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Abstract

In this article, numerical solutions of nonlinear boundary-value problems are obtained us-
ing fractal quintic spline. Convergence analysis of the proposed method is also established.
Proposed method has fourth-order convergence. Numerical examples are provided to show
practical usefulness of the method and numerical results are compared with the existing
numerical methods.
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1. Introduction

In this article, we consider the nonlinear boundary-value problems (BVPs) of the form
Uze(2) + F(z,u(z)) =0, x€(0,1),
(1.1)
w(0) =no, u(l) =,
where 79 and 7; are constants. We assume that for (z,u(z)) e D ={0<z <1, —00 <
u(z) < oo}, the functions F' and 0F/0u are continuous. It is known that problem (1.1)
admits a unique solution, provided sup OF/0u < 72 [20]. Here, we assume that ‘?3—5 <0
(z,u)eD
on D and %—5 <0on D°={0<z <1, —o00 <u(r) < oo}. The notation ug, is used
instead of u” mainly for the sake of convenience in the future.

To obtain the numerical approximate solutions of nonlinear BVPs, various authors have
used different methods. For example, Chawla [14] developed a fourth-order numerical
method using cubic spline to get the numerical solutions of nonlinear BVPs. Ravikanth
[23] used the cubic spline and Rashidinia [22] used non-polynomial cubic spline to obtain
the numerical solutions of nonlinear BVPs. Also, one can see various numerical techniques
to obtain the numerical solution of nonlinear BVPs in [1,2,7,8,11-13,15-17,19,21,24-26].

In this paper, first, we apply the quasilinearization technique [5,19,22] to linearize the
given nonlinear BVP (1.1) and obtain a sequence of linear BVPs. Each of these linear
BVPs is then solved by the numerical scheme obtained from the fractal quintic spline.
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The fractal quintic spline contains a parameter called the scaling factor and the scaling
factor is suitably restricted to get the numerical solution of the linearized BVPs.

The rest of the paper is organized as follows: In Section 2, the numerical scheme using
the fractal quintic spline has been developed. Convergence analysis of the numerical
method is carried out in Section 3. In Section 4, numerical examples are provided to
validate the theoretical results.

2. Numerical scheme

Here, at the beginning, a brief introduction about the fractal quintic spline is given.
Then, we have obtained the relation from the continuity conditions of the fractal quintic
spline. This relation is used to derive the numerical scheme of the BVP. Further, we have
provided the concept of quasilinearization technique. Finally, we have constructed the
numerical scheme to solve the BVP.

2.1. Fractal quintic spline

Let 0 = 29 < 1 < -+ < xy = 1 be the partition of the interval I = [0,1]. Let u(x)
be the solution of the nonlinear BVP given in (1.1) and U; be the numerical approxi-
mate solution of u(x;). Let M; and S; be the approximations of ., (z;) and Uygz. (i)
respectively.

Barnsley [3] introduced the concept of fractal interpolation function (FIF) with the help
of iterated function system (IFS). For more details about IFS and FIFs, one can see the
references [3,4,9,10].

Consider the IFS {I x Rywi(z,y) = (Li(x), Fi(z,y)) : i = 1,2,...,N}, where L; :
I — I; = [x;—1,x;] defined by Li(x) = hx + z;—1, € I, F; : I x R — R defined by
Fi(z,y) = ay +ri(z), (z,y) € I xR, with r;(z) = A;(z — 20)° + Bi(x — z0)* + Ci(x —
20)3 +D;(x—20)% +E;(x—20) +F; and « is the scaling factor such that |a| < h*. For each
fixed i = 1,2,..., N, the function L; satisfy the conditions L;(z¢) = x;—1, Li(zn) = z;.
We assume the following conditions on IFS:

Fi(xo,Uy) = Ui—1, Fi(zn,Un)=U;, i=1,2,...,N,

Fz’l(SCN,UNl) = Fit1,1(20,U01), i =1,2,...,N — 1,
(:EO,MO) M;_q, Fi,Q(l’N»MN) =M;, +=1,2,...,N,
Fis3(xn,Ung) = Fiv13(z0,Ubg), i =1,2,...,N — 1,
(:CQ,S()) Si_1, FZ'A(J:N,SN):SZ', 1=1,2,..., N,

where
Fualy) = 000 () = i),
F,3(z,y) = oy + (:S)xaca:(fﬁ) Fiaz,y) = ay + (r]ilmm(:n)’

here (r;), represents the derivative of ;. Clearly, the IF'S {IXR; wi(z,y) = (Li(z), Fi(z,y)) :
1=1,2,...,N } satisfies the conditions for G*-differentiable FIFs [4,9,10].

Let 7 = {¢p € eXI,R)| p(z0) = Uo,p(xn) = Un,¢az(w0) = Mo, pru(en) = My,
‘pmaz:m’(a:[)) = S()v Qoxxxx(xN) = SN}
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Then (.7, d) is a complete metric space where the metric d is induced by the €*-norm
on .#. Define the Read-Bajraktarevi¢ operator T' on (.#, d) as

To(Li(x)) = ap(z) + Ai(z — 20)° + Bi(x — 20)* + Ci(x — 20)°+
Di(x —x0)? + &i(x — z0) + Fi,  z € [0, 2N],

1=1,2,...,N. The map T is a contraction operator, hence it has a unique fixed-point &
(say). The fixed-point @ satisfies the following functional equation:

B(Li(z)) = a®(x) + Ai(x — 20)° + Bi(w — x0)* + Ci(w — o)+
Di(x — 20)> + &i(x — 20) + Fi, x € [wo, 2N, (2.1)
i = 1,2,...,N. The conditions F;(zo,Up) = U;—1, Fi(zn,Un) = Ui, Fia(x0, Mo) =

Mi_l, FLQ(.%N, MN) = Mi, Fi,4($0,50) = Si—ly FZ‘A(.CCN,SN) = Sz are equivalent to the
following conditions:

D(xi—1) = U1, P(x;) = Us, Pop(wiz1) = Mi—1, Puo(w5) = M;
@mxmm(xi—l) = Si—la émzxx(xz) = Sz

respectively. For fractal quintic spline @, the constants A;, B;, C;, D;, &;, and F; are
evaluated by using the conditions given in (2.2) and hence we get

(2.2)

= o l(5 = fos) = (5 - fos)
= = (s = ) + 2 (01— o)
(S = ) — (5= L) = (511 - 0],
D, = g (Moo~ 3 0),
a5 ) = ot~ o) o o),

fﬂ = Uifl — OéUQ.

The conditions Fj1(zn,Unj) = Fiy1,1(20,Up 1), i =1,2,..., N — 1 can be reformulated
as @z (Li(xn)) = Pz(Lit1(w0)), i =1,2,..., N — 1. For the continuity of &, at the interior
nodes z;, i = 1,2,...,N — 1, we require that ®,(z;) = ®,(z]), ie., ®(Li(zn)) =
@, (Liy1(x0)), i =1,2,..., N — 1 and this leads to the following:

Oé@m<l‘]v) +5A; +4B; +3C; +2D; + &; = a@z(l'o) + 8i+1,
substituting the values of A;, B;, C;, Dy, &;, and &; 41, we get

15a 15a 360
- ﬁso + 7521 +16S; + 7S;41 — FSN — —74593(330)
360 180« 60 180
+ Pu(oN) — — Mo+ 5 (Miy1 +4M; + M;—1) — — My
h h h 3
360
- ﬁ(UH—l - 2UZ’ + Ui—1)~ (23)

The conditions F;3(zn,Un3) = Fiy1,3(20,Up3), i =1,2,..., N — 1 can be reformulated
as @xm(LZ(xN)) = @xm;(Li_;,_l(:L’o)), 1= 1,2, .. .,N — 1.
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For the continuity of @,,, at the interior nodes z;, ¢ = 1,2,..., N — 1, we need that
B (77) = Puga(x]), 1€y Paga(Li(7N)) = Paza(Lit1(w0)), i = 1,2,..., N — 1 and this
leads to the following;:

3a 3a 6 6
—HSO +S;_1+4S; + Sit1 — ﬁSN :ﬁ(pxmx(‘rO) - ﬁ@xxx(xN)

6
h?
Multiplying (2.4) by 7 and subtract the resulting equation from (2.3), we get

+ (Mi—l —2M; + Mi+1). (2.4)

. a 30« Tov

ohA (SO + SN) + F(@I(I‘O) - éx(SUN)) + ﬁ(@x:px(ﬂfO) - @III(:’UN))

3 30
- ThQ(Mifl + 18M; + Mi+1) + ﬁ(UiJrl —2U; + Uifl).

Substitute S; in (2.4), we obtain

Si

Ui—o +2U;—1 — 6U; + 2Ui+1 + U’i+2 = _%[mex (l'O) - @x:r:p(l‘N)]

2
%[Mi_g + 26M;_1 + 66M; + 26 M1 + Mi+2]
— 6Py (0) — Pu(xN)]. (2.5)

h
—3a(Mo + Mn) +

Clearly, the equation (2.5) gives the relation between U;’s and M;’s.

2.2. Quasilinearization technique

We use the quasilinearization technique to convert the nonlinear BVP (1.1) into a
sequence of linear BVPs. We choose reasonable initial approximation for the function u(x)
in F(x,u(x)), denote it by u(9(z), and expand F(z,u(z)) around the function u(9(z) to
obtain

OF

(1) _ (0) 1) _ 1,00 il
Pl u® (@) = P, @) + @) — @) (G0) o
+...,
and in general, we can write for r = 0,1,2,... (r is the iteration index)
OF
(r+) (3)) — (r) () () — @ (20 (2F
Fla,u V(@) = Flau®(@) + @ @) —a@) (50)
+....
The nonlinear BVP (1.1) can be written as
u;(grl)(x) + F(z,u(z)) =0, z€(0,1), (2.6)
uD(0) = no,  ul (1) = 1. |
By substituting
OF
(1) (1)) = (r) (1) () — @ (2 (2F
P, ul (@) = Fa,u (@) + @ @) = @) (F0)
in (2.6), we get
W (@) + ¢ (@)D (2) = fO(2), z€(0,1), r=0,1,..., .
urt(0) =no,  ul (1) =y, |

where

@ = (% FO) = @) (5 — Fla,u"(@)).

L%m”@»’ xmm”u»



Fractal quintic spline method for nonlinear boundary-value problems 1889

Thus, we have reduced the nonlinear BVP (1.1) into a sequence of linear BVPs (2.7).
Now, our aim is to solve these linear BVPs numerically.

2.3. Numerical scheme

Let |a| < h®. Let Ui(r) be the approximation of u(")(z;) and Mi(r) be the approximation
(r)

of ugz (z;). Now, at © = x;, the differential equation (2.7) can be discretized as

Mi(r-‘rl) + qi(r)Ui(T—i-l) _ f(r)

(]

where 5F OF
(r) (r) () (r)
r) — (2 SRR N (el — f(x;, UM,
4 ( ou ) (@:,U") fi g ( ou )(ImUi(T)) f@ i)
Also, the boundary conditions can be discretized as Uéﬂrl) =ny, U ](\; = M.

Equation (2.5) gives the relation between U; and M; and hence it can be used to derive
the numerical scheme for the BVP given in (2.7). Substituting

U1(7"+1) . UéTJrl) . ( B U](\;“‘H) _ U](\;“j‘ll)
h ; x l'N) - h )
—UgtY 43Ut —3ugtY 4 pi Y
h3 ’
U](\;‘-‘rl) 3U(r-i—l) + 3U(7”+1) U(r-i—l)

h3 ’

dj$(x0) =

Draa (IO) =

Draa (IN) =

7’+1 f(r r (r—l—l)

7/ Y

n (2.5), we get the followmg system of linear algebraic equations:

[_ 5%’ B f} Ul(rﬂ) + 2h3 U2(r+1) 2R3 U?ETH) + [ 1- ;L(Q)qz(r)z}U(T;I)

N {_ 5 1?8 (r )}U(r-&-l) [6 _ %ngr)}[]i(rﬂ)

(-2 D + [ -1 BahJulEY - s

+%U(r+1) [_ 23; 6;[/1}[](7"4-1) 20 for _hjfi(r 13h fz

_ 3:13152]%(7«) B 1?’5 £ - —f +3af{) [th + 3aq) + Gﬂm
2h3+3aq§\,)+%}m, 1=2,3,...,N —2. (2.8)

In the system of equations given in (2.8) we have (N — 3) equations with (N — 1)
unknowns U; (r+1) U (TH), LU ](\;fll ). Tn order to determine a unique solution, we require
two more equatlons For that we use the following procedure.

Firstly, we determine the truncation error

() =[5
3o

6 3 6
(r) (r+1) 0% PR (r41)
+ 3aq" (zo) + - }u (wo) + [ 53 " T }u (1)

o o 3a
o= el (7“+1) = (T+1) O
RbTES opat(@8) = g (@ —s) + 55

3aa 6oy 6at (,
+{_ﬁ_T}U( D (zy 1) + [ + 3aq" (z )—i-f}u( ()

2h3

(r+1)(x2) N (T+1)(

TN_2)

2h3

3
= 3af (20) = 3af " (@) + 3 (™ (@) + dip*ul (2) ) (2.9)
1=0
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Substituting f)(z;) = ug(;rl)(:cl) + ¢ (z)ut) (z;) in (2.9), we get

_ ., (r+1) (r+1) _ (r+1) (r+1)
")y ar—u" (@) + 3ul"TH (1) = 3ulT (@2) + ul"T (23)
1) (h) = -5 = ]
0 Do) = 3 o) 30 r3) - )
2 h3
_u(r+1) (xo) + u(r"_l) (gjl) u(r"’_l) (:L'N) — U(T+1)($N_1)
- 6a[ - } + 6a[ . }
3
— 30wl (20) — 3aulTH) (zy) + Z ( ) () + dih?u (T+1)(CL',L)>
=0
It can be seen that
_ g (r+1) (r+1) _ 3, (r+1) (r+1)
U To) + 3u T 3 To) + u T
(z0) ) ) ) — ot o)+ O(0),

4 ) (r+1)
u (960)h+ W) 6D () + O(),

r+1 r+1 r+1 r+1
W) = 3 ) S D ea) S TIENS) 0 ) 4 0(h),

(r+1) _ o (r+1)
U («TN) hU («TN—l) _ ugcr-i-l)(xN) + O(h)

Hence, we have
r a T T
T (h) = ~ 2 [ul5) o) + O()] + & [t (an) + O(0)]
— Gaul M (z0) + O(h)] + 6 [uf TV (@n) + O(h)]
3
— 30w (20) — 3aulTH) (zy) + Z (ciu(rﬂ)(xi) + dih?ulTHY (wl)>
=0
Our aim is to get Tl(r)(h) = O(h%). We write
T{" (h) = T (h) + 1.7 (h),

where
I (h) = =5 [ulit D (@o) + (W) + 5 [ul) (@n) + O(h)]
— 6 {U(H_I)(ZEQ) + O(h)} + 6a [U;ET—H)(J'N) + O(h)}
— 30wl (20) — 3aulTH) (zy),
and

Mw

(el D (@) + dip*ully D () ).

[e=]

i=
Since |a| < kS, we have Ty (h) O(h%). Next, our aim is to choose cg, 1, ¢z, 3, do, di,
da, and d3 such that Ty r )( h) = O(h%). By usmg the Taylor series expansions for u(" 1) (z),
w1 (29), w1 (23), u () (xo), {rrh) ( , and u{ )(:(:3) about the point z = 1, we
get
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Ty)(h) - [Co+61+62+c3}u(r+1)($1)+[_CO+CQ+203]hu§”T+l)(m>
et B vdordi+d + ds|h? ull; ) (1)
510+ g2+ Grea+do+di+da+d 1

-1 1 23
+| - 3'co+3|62+ 3'03—d0+d2+2d3}h3 ull ) (21)

1 1 24
+ o + e + ks + do + d2 + *d3}h4 ull ) (1)

o1 1 25 5 (r+1)
—|—_—§CO+ 51 co+ — 51 3—§d0+ 3'd2+§d3}h x:r:pxx(xl)

1 1 2° 1 6, (r+1)

—+ aCQ + 6'02 + 6! —Cc3 + dO + d2 + *d3}h ;m:a:a:xx(xl)
+0(h").

Hence to get T*(T)(h) = O(h%), we need

co+c1+ca+ce3=0, —cog+co+2c3=0,

1 1 22
oot g2t 3 03+do+d1+d2+d3 =0,
1 1 23
3,60+ 3,C2+ 3,03*d0+d2+2d3—0
1 1 24 1 1 22
$60+4'02+4'63+ —dy + d2+2‘d =0,
1 1 25 1 1 23
5'0+5‘2+5'3—§d0+ d2+3ld =0.
Here, we have 6 equations with 8 unknowns cg, c1, co, c3, do, d1, do, and dsz. Let us fix two
unknowns ¢; and ¢y as ¢; = 7 and ¢y = —2. Hence we can solve the system of equations
and obtain ¢y = —4, c3 = —1, dy = %, di = 12, do = , and d3 = 12 The constants
c1 = 7 and cp = —2 are carefully chosen so that the matrix B (given below) would be a
monotone matrix.

It can be seen that, by substituting co=-40c =7 ¢ = -2, ¢ =—1,dy = 3,
d, = 12, doy = , and d3 = 12, we get Tﬁgr)(h) = hgu%&w(m) + O(h7). Hence we have
T*(r)(h) = O(hﬁ) Thus by the assumption la] < hS co=—4,¢1="T,co=-2,c3 =—1,
dozl,dlz 12,d2 ,and d3 = 12,We get

7 (") bay 1) _3a_6ay e
(h) = {2h3+3aq (o) + h}u (wo)—i-[ 57,3 h}u (21)
3 (r41 @ (r+1 @ (r+1 3Q (r41
+ ﬁuﬁ“ ) () — ﬁu(r ) (z3) — ﬁu“ Nxn_3) + ﬁuﬁ" ) (zn_2)
3a 6o (%"
22 22, 1) (r) G
+ |: 2h3 h]u (xn-1) + |:2h3+304q (xn) + h} ()

—3af" (o) — 3afT) (zy) — 4 (20) + 7u(r+1)($1)
B 2u(r+1)(x2) _ u(r+1)(l,3) + %h2ugzv+1) (JZ ) h2 (r+1)(l,1)
+ gh%;g“)(@) + %h2u§$‘l)(:p3). (2.10)

When h — 0, we have |T1(T)(h)| < Klr)h6, where KY) is a constant. Thus Tl(T)(h) = O(h").
(r)

Hence from (2.10), replacing the original values u(") (z;) and usy (z;) by the approximate
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values UZ-(T) and Ml-(r), respectively, we get the difference equation (associated with the

truncation error Tl(r)(h)) as

[7 _ % ry 3« 6a:|Ul(r+1) n {_ 9 _ Lhz (r) | 3o }U(TH)

12 0 Ty T 6q2 2h3
h? ) 141 (r+1) (r+1)
=157 - 5] %WN32mU
3« (r+1) (r) (r) 41h (r) Th?
*Pﬁﬁ“ﬂU =gy Ay 121—‘%
h2 h? 6a
[th +3aq() + f}m (2.11)
Similarly, we can define the truncation error
() (r) 6ay (1) _ 3a 6ay 4y
TN 1 () = [55 + 30 (o) + == |ul D (o) + [ = 2 — = u (@)
3a ¢, a o
T gt (@) = g (@) - g ey )
3a 3o b6a «
O (r+1) 0= PR (r+1) e
+ g @na) + [ = g5 — 5 W an-1) + [
6a
+3aqM (xn) + f}u(”l)(m\;) —3af " (x0) — 3af ") (xx)
+ Z ( 7"+1 +dh2 (r+1)( ))
i=N-3
By the assumption |oz\ < hb eny =4, en1 =T, ey = =2, ey_3 = —1, dy = %,

dy1 =4 dy =7, and dN 5 = 1, we get TV (h) = O(hS), that is, when h — 0, we
have \T]\Ql( h)| < K](\th(i, where K}Vll is a constant.

Hence, we get the difference equation (associated with T]%Tzl(h)) as follows:

3o (r+1) (r+1) (r+1) h )
[éﬁ‘fW1‘wm% —oli Y+ [ -1 -
(r+1) | [ _ E (04 30750+ 4n? ()
2h3}UN P +[-2- o~ +2h3}UN )+ [7- 5N
3a (r+1) (r) 41h? (r) 7h? (r)
727377}U = 3oy’ 7*fN 12 NSL g N2
h? r (7") 6a
hZ « 6o
4= g +3qu](\,) h}m. (2.12)
The system given in (2.11), (2.8), and (2.12) gives the approximations UI(TH) U(TH), ce
Uity

Remark 2.1. The system corresponding to the quintic spline can be obtained by taking
a=0in (2.11), (2.8), and (2.12).
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3. Convergence analysis

In this section, first, we derive the truncation error corresponding to the system of
equations given in (2.11), (2.8), and (2.12). Then, we obtain the error bound of the
proposed numerical method.

3.1. Truncation error

We define the truncation error Ti(T) (h),i=2,3, ..., N—2, associated with the equations
given in (2.8) as

T (h) = [% + 3aq™ (x0) + %}u(”l)(xo) + {— % - %}u(”l)(m’l)
+ ;—;u(rﬂ)(m) — Q&h?)u(r“)(xg) + [— 1-— ;Q)qm (xi,g)}u<r+1)(:vi,2)
N {_ - 1?82 q(r)(xi_l)}u(vdrl)(mi_l) N [6 B 3?82 q(T)(a;i)]u(rJrl)(xi)
+ [— 2- hi(f]ﬂq(r) (!Ei+1)}u(r+1)($i+1) + [— ;L;(J(T) (zit2)
- 1}“(”1)(%%) - 2%3“(7,“)(331\1—3) + %“(Hl)(ﬂﬁNﬂ)
{_ 23% _ %}u(r+1)(x]v_l) + {% + 3aq (zx) + %}U(T+l)(xN>
= 3af ") (z0) + ;L;f(r) (Ti—2) + 1?32 FON(io1) + 3?32 £ ()
+ B 0 @11 + O 112) — 305 o). .1

Substituting f)(z;) = ug(c7;;+1)(a:i) + ¢ (z)ut) (z;) in (3.1), we get

T(r)(h) _ _«a [—U(T—H)(Jjo) + Su(r—i-l) (ml) — 3u(7"+1)(x2) + w1 (xg)}
! 2

h3
a {u(r—&-l)(xN) _ 3u(r+1)(xN,1) + 3u(r+1)(xN72) _ u(r+1)(xN3)]
2 h3
—q(r1) (r+1) (r+1) — (rt+D)
—604{ U (wo)h+u (1’1)} +6a[u (37N) hu (fol)}

- 3aug(g;j'1)(xo) - 3au§&+1)(3§]\7) - u(TH)(asi,g) — 2u(T+1)(:UZ-,1)

2
+6u T (2) — 20T (241) — uTY (240) + h—u(”l)(xi_g)

20 T
13h2 33h2 13h2
Tugﬂﬂ) (zi-1) + ﬁuggﬂ)(ﬂﬁi) T 0 ul, (@)
h? 1
+ %ug;_ )($i+2)~

After further simplification, we obtain that

T (h) = =5 [uli) (o) + O(0)] + 5 [ulitD (@n) + O(R)]

7 2 rxrxr 2 rxrxr

— 6aul D (z0) + O(h)] + 6 [ul ™V (@n) + O(h)]

xrx

6
~ B0uli ™ (a0) — Boul; ) () — 1ol () + O,
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1=2,3,...,N—2. When h — 0, we have ]Ti(r)(h)\ < K,L»(T)h6 where K,L»(T) is a constant. It
can be seen that Tl-(r)(h) =0(h%),i=2,3,...,N —2.

Remark 3.1. The system given in (2.11), (2.8), and (2.12) can be written in the form
ANy r+1) —

ccocoocoo
o oo oo
coococooeo

B
oo

0
0
0
0
0
0
0

oo oo o o

oo oo o oo A
co oo oo o

=)

Al(r) is the coefficient of UJ(TH) U(’”H) = (Ul(TH), UQ(TH), ey U](\ﬁrll))T
, d%)_l)T, d'") is the right-hand side of the system.

)

Let B be the matrix corresponding to the quintic spline system given in Remark 2.1.

N-1
Note that, ||A™) — BT, = max Z \AYJ) - Bl(?\ Thus, we get
j=1

3o 6a o
" _ M =9l - 2= =
1A% = Bl 2h3 2‘2h3‘ ’ 2h? ’
Theorem 3.2 ([6]). Let Q1 and Q2 be any two n X n matrices, and let ||.|| be any matrix

norm. Then the eigenvalues of Q1 and Q2 can be enumerated as A1, Aa,..., An and j1,
U2, ., Un in such a way that

2n-1 1 n—1 1
max [\ — gl < 255 0% (2P) T Q1 - Qa7 (32)
where P = max{[| @1, 1@z}

In our case, we take the matrices A" = Q, B(") = Qy, n = N — 1, ||.||oc norm in the
previous theorem, then from (3.2), we get

s 1
max |\ — p7] < 2WT (W - )77 (2PO) N A0 - BOTT, (33)

where P(") = max{||A")||w, ||B™]|s}, )\ ) and ugr), i=1,2,..., N—1 are the eigenvalues
of A and B(") respectively.
Note that, when A is sufficiently small, B(") becomes irreducible, Bi(;) > 0, Bi(’? <0,

1#£4,1,5=1,2,...,N — 1, and the row sums give

", AR oy TR ) hE
R == 62 Bt >0
13h2 33h2 13h2 h?
R — 1 ) " " m
10 & 10 & 0 B T4 >0
h?2 1312 33h2 1312 h?2
R _ (r) o ) _ (r) (r)
STt T g e T g 4 T qp e gt > O
i=34,... N—3,
() 1302 oy 3307 ) 1387 ) B

RN—2:1_ 10 dN-1— 10 dN—2 O qN—3_27OQN_4>07
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Hence B(") is a monotone matrix [18]. Thus, B(") ! exist and the eigenvalues ,ul(»T)

1,2,...,N — 1 of B™ are non-zero when h is sufficiently small. Thus, once we take
sufficiently small A (which makes B(") is a monotone matrix), then o can vary in the
region (—h%, h8). Now we can choose a to satisfy the following conditions:

o A is invertible because |A") — B, = 2‘ - 23% - %"‘ —1—2‘23% —|—2‘ — 503

from (3.3), it can been seen that, the eigenvalues of A" are non-zero when « is
sufficiently small.
o Since R > 0,i=1,2,...,N —1, the row sums of A",

()

’Z:

and

() _qm _ 120 o -
Si _:R’L —T—ﬁ>0,7l—1,2,...,N—1,
when « is sufficiently small.

For sufficiently small A (which makes B(") is monotone) and for sufficiently small a €
(—hS, k%) (which makes A(") is invertible and row sums of A(") is positive), we obtain the
following error bound.

3.2. Error bound
The system (2.11), (2.8), and (2.12) with exact solutions can be written as
AW+ = g) o 70 ()

where
ﬂ(r+1) _ (u(rJrl)(ml)’ u(r+1)(x2)7 o ,u(rJrl)(xN_l))T
and
T (h) = (1 (), T (h), .., T ()T
Since
AW r+1) — d(’”),
we get
A(T)(E(T‘H) _ U(TH)) _ T(r)(h),
that is,

A plr+1) — T(’")(h),
where E(+1) — (EYH),ES"H), e E%i)), Efrﬂ) = u(”ﬂ)(xi) — UZ-(TH). Consequently,
we obtain that .

B — A0 ) ().

From the definition of multiplication of a matrix by its inverse, we have
N-1 1
SAD 8 =1, j=1,2,...,N -1,
=1

where AM) ] is the (7,1)-th element of the matrix AT Hence, we have

j?z
N—1
i=1 minlSiSN,l S,L Cio h2
where CZ-(;) is a constant. We can write

N—-1
r 2 : )L (r .
=1

1 (r)p6 .
and hence \E](H )] < g m;;, where K () is a constant. Therefore, we have
i0

1B oo = O(RY),
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which shows that the proposed numerical scheme is of fourth-order convergent for linear
BVPs.

4. Numerical experiments

For sufficiently small h (such that B(") is invertible), and by taking a (which makes
A) invertible and row sums of A(") positive) that satisfies |a| < h%, we can compute the
numerical solutions of BVPs.

The numerical solutions of the nonlinear boundary-value pr(ol))lengs) are coin)puted as
U 70 0

follows: For each fixed N, by taking the initial approximation U, ", U, ", ..., Uy’ , we can
compute the numerical solutions U+ = (Ul(TH), UQ(TH), ey ](\;fll)), r=20,1,... of
the discretized systems (2.11), (2.8), and (2.12).

We take sufficient number of iterations so that the maximum error between the two

successive iterations satisfy the following tolerance bound:

max |U" Y — "] < TOL. (4.1)

Once the criterion is satisfied, we consider UV is the numerical solution U of the
nonlinear BVP. To compute the numerical solutions for each of the following nonlinear
BVPs, we take TOL = 107!, For any fixed-value of N, the maximum point-wise error
EN will be calculated by

EN = max |u(zi) — Uil,

where u(x;) and U; are respectively, the exact and numerical solutions of the continuous
and discrete problems at x = x;. Further, the order of convergence will be calculated by

EN

N

p" =log, <EQN> .

From the differential equation given in (1.1), we get the approximation for u,;(z;) as

M; = f(x,U;). Differentiating (1.1), we get
() 0 u()

Uz () = Ox? drdu Uz ()
O f (x, u(x)) of (x,u(x))
T ae @) T tel®)
and hence we get approximation of .. (2;) as
P f(aiUs) P f (iU, 0 f(ai, V) 0f (@i, Us)
Si:— 1y Y1 _2 1y Y U/_ 1y Y1 U/Q_ 1y Y Mz
Ox? Ox0u ! ou? () ou
here U] is the approximation for uz(z;) and U/, i = 0,1,..., N are computed as follows:
Ul = —25U; + 48U41 — 3?5;’;2 + 16U, 43 — 3Ui+47 i=0.1,
Ui_o—8U;_1 +8U;y1 — Uiro .
= =2,3,...,N—-2
UZ 12h ) ? 737 ) b
. - 5 — 1 . -
U = 25U; — 48U; 1+36§J2Zh2 6U;_3 + 3U; 4’ i=N_1.N.

We define £ and EY as

Eév = Hl;‘_),X |tgs (i) — M), Eiv = m?x | Ugzzs (i) — Sil,

EN EN
N _ 2 N _ 4
py = logy <E§]V> , Py =logy (EEN> .

and
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Once we get the values U;, M;, and S;, we can compute the coefficients given in (2.1).
Thus, we get the fractal quintic spline that passes through the solutions of the BVP given
in (1.1). From (2.1), we can get the solution of the BVP (1.1) at any point in the interval.

4.1. Numerical schemes for comparison

We compare the numerical results of the proposed method with the finite difference
method (FDM) and the Numerov’s method (NM). We give brief detail about the finite
difference method and the Numerov’s method in the following subsections.

4.1.1. Finite difference method. Let us consider the BVP given in (2.7). Let U+
be the approximate solution for u("+) (). Substituting

iy Ui(ii—l) - 2Uz‘<r+1) + Uz'(J:;Ll)

~ 2

ul; (@)

in (2.7) and after simplification, we get

Ui(ffl) + [_ 2+ h2q§r)}Ui(r+1) + Ui(rlrl) _ h2fi(r),

(r+1)

fori=1,2,...,N — 1, where q(r) and fi(r) are as given in Section 2.3. Here, U =0

and U](\}”H) =n.

Now, we can obtain the numerical solution using the condition (4.1).

4.1.2. Numerov’s method. The Numerov’s method for BVP (1.1) can be written as

h2
—Ui—1+2U; — Ui = B [fiq +10f; + fz’+1]

where f; = f(z;,U;), i1 =0,1,...,N, Uy = no and Uy = n;. For more details about the
Numerov’s method, one can see the references [13,18]. We can use Newton’s method to
get the numerical solutions.

Example 4.1. Consider the nonlinear two-point BVP:

{ Uge(x) +exp(—2*u(z)) =0, z€(0,1),
u(0) =0, wu(l)=1log(2).

The exact solution is u(x) = log(l + x). We calculate the numerical solutions for
N = 8,16,32,64,128. The scaling factors a = 0.9999h5 are used to calculate the numeri-
cal solutions. The maximum point-wise error E, and the order of convergence p', Eév ,
pév , Eiv , and pflv are given in Table 1. We have compared the numerical results of the
proposed method with the numerical results of finite difference method and Numerov’s
numerical method. Their results are given in Table 1.

Table 2 represents the solution corresponding to the quintic spline (o« = 0). Here, we
take Uéo) =0, Ui(o) =1,4i=12,...,N — 1, U](\?) = log(2) to compute the numerical
solutions.

Figure 1 represents the numerical solution, the corresponding error, and the loglog plot
of the error for Example 4.1. From the loglog plot (Figure 1(c)), it can be seen that the
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developed method has fourth-order convergence.

07
06
05
04
) 03
02

01

0

— Numerical solution

0 02 04

06 08 1

I

(a) Numerical solution.

x10°

|

0 02

(b)

0.4

06 08 1

&I

Error.

—loglog plot for B ;
—0(NY ]

(¢) Loglog plot.

Figure 1. Numerical results of Example 4.1 for N = 128.

Table 1. Maximum point-wise error EY order of convergence p~, EY plY, EY,
and p} corresponding to Example 4.1.

N 8 16 32 64 128
EN 3.7039e-06 | 1.3093e-07 | 4.6024e-09 | 1.6823e-10 | 6.9676e-12
pv 4.8222 4.8303 4.7739 4.5936
EY 3.6039e-06 | 1.3560e-07 | 5.1526e-09 | 2.0841e-10 | 9.3744e-12
Y 4.7321 4.7179 4.6278 4.4746
EY 3.8032¢-03 | 3.5970e-04 | 2.8433¢-05 | 2.0142¢-06 | 1.3430e-07
Y 3.4024 3.6611 3.8193 3.9066

(FDM) EV | 2.2281e-04 | 5.6130e-05 | 1.4060e-05 | 3.5166e-06 | 8.7940e-07
pN 1.9890 1.9972 1.9993 1.9996

(NM)EN [ 2.0165e-06 | 1.2867e-07 | 8.0669¢-09 | 5.0513¢-10 | 3.1574e-11
pV 3.9701 3.9955 3.9973 3.9999

Table 2. Maximum point-wise error EV order of convergence pVV, EY pl¥ EY,
and p} corresponding to Example 4.1 with quintic spline (o = 0).

N 8 16 32 64 128
EN [ 6.0415e-07 | 2.9388e-08 | 2.4273e-09 | 1.6374e-10 | 1.0446e-11
p 4.3616 3.9978 3.8898 3.9704
EYN 19.5470e-07 | 3.2934e-08 | 2.9499e-09 | 2.0374e-10 | 1.3077e-11
py 4.8574 3.4809 3.8559 3.9616
EY | 3.6735¢-03 | 3.5614e-04 | 2.8356e-05 | 2.0140e-06 | 1.3444e-07
pY 3.3666 3.6507 3.8155 3.9051
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Example 4.2. Consider the BVP

(2 — @) exp(2u(z)) + (1/(1 + 7))
3
u(1l) = log(1/2).

The exact solution is u(x) = log(1/(1 + x)). We calculate the numerical solutions for
N = 8,16, 32,64, 128. The scaling factors o = 0.9999h5 are used to calculate the numeri-
cal solutions. The maximum point-wise error EV, and the order of convergence p, EY,
pY, EY, and p} are given in Table 3. We have compared the numerical results of de-
veloped method with the numerical results of finite difference method and the Numerov’s
method. Their results are given in Table 3. Table 4 represents the solution corresponding
U =0, 0 =1,
i=1,2,...,N —1, U](\?) = log(1/2) to compute the numerical solutions. Figure 2 repre-
sents the numerical solution, the corresponding error and the loglog plot of the error for
Example 4.2. Figure 2(c) reveals that the developed method has fouth-order convergence.

Uge () — =0, z€(0,1),

u(0) =0,

to a = 0, i.e., for the classical quintic spline case. Here, we take

412
0 ‘ ‘ ‘ ‘ ‘ 8\10 i

— Numerical solution

=—Error

-0.1
-0.2
-0.3

D ~4 &
04 ! g

05 | 5

-06

07 0 : 0 ]
0 02 04 06 08 1 0 0.2 04 06 08 1 10 10

T T N

(a) Numerical solution. (b) Error. (c¢) Loglog plot.

Figure 2. Numerical results of Example 4.2 with N = 128.

Table 3. Maximum point-wise error EV, order of convergence p~, EY, pi¥, EN,
and p}’ corresponding to Example 4.2.

N 8 16 32 64 128
EN 3.8662¢-06 | 1.3680e-07 | 4.8082e-09 | 1.7524e-10 | 7.2015¢-12
pV 4.8207 4.8304 4.7781 4.6048
EY 2.1004e-06 | 8.0168¢-08 | 3.1240e-09 | 1.2878¢-10 | 5.8584e-12
Y 4.7115 4.6816 4.6004 4.4583
EY 3.1728e-03 | 2.9988e-04 | 2.3700e-05 | 1.6787e-06 | 1.1193e-07
N 3.4033 3.6615 3.8195 3.9067

(FDM) EV | 2.3261e-04 | 5.8573e-05 | 1.4670e-05 | 3.6702e-06 | 9.1777e-07
pv 1.9896 1.9974 1.9989 1.9997

(NM)EYN | 2.1034e-06 | 1.3382¢-07 | 8.4017¢-09 | 5.2577¢-10 | 3.2865¢-11
p 3.9743 3.9935 3.9982 3.9998
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Table 4. Maximum point-wise error EV | order of convergence p, EY, p5', EN,
and p} corresponding to Example 4.2 with quintic spline (o = 0).

N 8 16 32 64 128
EN [ 6.0740e-07 | 3.0589¢-08 | 2.5274e-09 | 1.7045¢-10 | 1.0880e-11
pV 4.3116 3.5973 3.8903 3.9696

EY [ 5.9990e-07 | 1.9926e-08 | 1.8133e-09 | 1.2596e-10 | 8.1067¢-12
pY 4.9120 3.4579 3.8477 3.9576
EJV | 3.0610e-03 | 2.9681e-04 | 2.3633¢-05 | 1.6785¢-06 | 1.1204e-07
pY 3.3664 3.6506 3.8155 3.9051

Example 4.3. Consider the following nonlinear two-point BVP:

B 2528 exp(u(x)) — 2023

Ugr () R =0, z€(0,1),
u(0) = —log(4), u(1) = —log(5).
The exact solution is u(x) = —log(4 + 2%). We calculate the numerical solutions for

N = 8,16,32,64,128. The scaling factors o = 0.85h5 are used to calculate the numerical
solutions. The maximum point-wise error E%V, order of convergence p*, Eév , pév , Eiv , and
pflv are given in Table 5. We have compared the numerical results of developed method
with the numerical results of finite difference method and the Numerov’s method. Their
results are given in Table 5. Table 6 represents the solution corresponding to a = 0.
We take U(go) = —log(4), UZ-(O) =1,4+=12,...,N -1, U](\?) = —log(5) to compute the
numerical solutions. Figure 3 represents the numerical solution, the corresponding error,
and the loglog plot of the error for Example 4.3. Figure 3(c) reveals that the developed
method has fourth-order convergence.

— loglog plot for B
—0

— Numerical solution

165 - - ‘ ‘ )
0 02 04 08 08 0 02 04 06 08 0" 0! 102 10°
T T N

(a) Numerical solution. (b) Error. (¢) Loglog plot.

Figure 3. Numerical results of Example 4.3 with N = 128.
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Table 5. Maximum point-wise error EV, order of convergence p”, Eév , pév , Eiv ,
and p} corresponding to Example 4.3.

N 8 16 32 64 128
EN 3.9439¢-6 | 3.3929e-07 | 1.4653e-08 | 6.6424e-10 | 3.4105e-11
pv 3.5391 4.5332 4.4633 4.2837
EY 4.8434e-07 | 1.0201e-07 | 2.2710e-09 | 8.3241e-11 | 4.8099¢-12
Y 2.2473 5.4893 4.7699 4.1132
EY 6.8887¢-02 | 4.8907e-03 | 2.5980e-04 | 1.4220e-05 | 7.8036e-07
py 3.8161 4.2346 4.1914 4.1876

(FDM) EV | 1.1795¢-03 | 2.9324e-04 | 7.3024e-05 | 1.8265¢-05 | 4.5652¢-06
pv 2.0080 2.0056 1.9992 2.0004

(NM)EYN | 3.0070e-05 | 1.8480e-06 | 1.1585e-07 | 7.2337¢-09 | 4.5198¢-10
pv 4.0242 3.9956 4.0014 4.0004

Table 6. Maximum point-wise error EV, order of convergence p~, EY, pi¥, EY,
and p} corresponding to Example 4.3 with quintic spline (o = 0).

N 8 16 32 64 128
EN 11.0857¢-05 | 7.0970e-07 | 4.0662¢-08 | 2.4478¢-09 | 1.5124e-10
pv 3.9352 4.1255 4.0541 4.0165

EYN | 1.7413¢-06 | 1.6518¢-07 | 7.0721e-09 | 3.9525¢-10 | 2.3900e-11
pY | 3.3981 4.5458 4.1613 4.0477
EY | 6.9280e-02 | 4.9109¢-03 | 2.6117e-04 | 1.4299¢-05 | 7.8595¢-07
pY | 3.8184 4.2329 4.1910 4.1854

5. Conclusion

In this article, with the help of fractal quintic spline a new numerical scheme is pro-
posed for solving nonlinear two-point BVPs. By using the quasilinearization technique, we
convert the nonlinear BVP into a sequence of linear BVPs. Then, we obtain the numer-
ical solutions of these linear BVPs using the proposed numerical method. Convergence
analysis of the numerical method is derived. The proposed numerical scheme has fourth-
order convergence. Numerical examples are presented in supporting the theoretical error
estimates.
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