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Abstract
In this paper, we present the generalization of Jacobsthal and Jacobsthal-Lucas sequences

by the recurrence relations J =2aJ,_, +(b—a*)J, , & j, =2aj,_,+({-2a%)j _, , n>2withthe
initial conditions J,=0, J,=1and j,=2, jj=2a. We establish some of the interesting

properties of involving them. Also we describe and derive sums, connection formulae and
Generating function. We have used their Binet’s formula to derive the identities.

Keywords: Generalized Jacobsthal sequence, Generalized Jacobsthal-Lucas sequence,
Binet’s formula and Generating function.

1. Introduction

Sequences have been fascinating topic for mathematicians for centuries. The Fibonacci
sequence, Lucas sequence, Pell sequence, Pell-Lucas sequence, Jacobsthal sequence and
Jacobsthal-Lucas sequence are most prominent examples of recursive sequences. The second
order recurrence sequence has been generalized in two ways mainly, first by preserving the
initial conditions and second by preserving the recurrence relation.

Kalman and Mena [10] generalize the Fibonacci sequence by
F =aF ,+bF ,,n>2 with F =0, F=1 (1.2)

Horadam [8] defined generalized Fibonacci sequence { H, } by
H,=H, ,+H, ,, n>3withH,=p, H,=p+q (1.2)
where p and q are arbitrary integers.

The k-Fibonacci numbers defined by Falco’n and Plaza [4], for any positive real
number k, the k-Fibonacci sequence is defined recurrently by
Fen=kKFR ., +F.,,,n>2 with F, =0, F, =1 (1.3)
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The k-Lucas numbers defined by Falco’n [2],
Lo,=kL,.+tL,,,n=2 with L =2, L, =k

(1.4)

Most of the authors introduced Fibonacci pattern based sequences in many ways which are
known as Fibonacci-Like sequences and k-Fibonacci-like sequences [13, 17, 22, 28, 29].

Generalized Fibonacci sequence [7], is defined as
F=pF,+09F ,. k=2 with F =a, F=Db
where p, q, a and b are positive integer.

(p,q) - Fibonacci numbers [19], is defined as
Foqn = PF, . +bF

p.q,n p.a,n’

n>2 with F ,=0 F, =1
(p,q) - Lucas numbers [20], is defined as

Lyqn = PL,qn+0L n>2 with L, ,=2,L,,,=p

o DN ?
Generalized (p,q) -Fibonacci-Like sequence [21], is defined by recurrence relation
Spqn=PS,4n+0AS, 4, N=2 with S =2k, S , =1+kp
Goksal Bilgici [1], defined new generalizations of Fibonacci and Lucas sequences
f =2af_ +(b-a*)f_,,k>2 with f,=0, f,=1
| =2al_,+(®-2a’)l_,,k>2 with I,=2,1,=2a
Tulay Yagmur [30], defined generalizations of Pell and Pell-Lucas sequences
p =2ap,,+(b-a*)p._,, k>2 with p,=0, p,=1

g, =2aq, ,+(b-a*q._, , k>2 with g,=2,q,=2a

(1.5)

(1.6)

.7

(1.8)

(1.9)
(1.10)

(1.11)
(1.12)

In this study, we present the generalization of Jacobsthal and Jacobsthal-Lucas
sequences, in much the same way that Bilgici did for Fibonacci and Lucas sequences in [1] and
Yagmur did for Pell and Pell-Lucas sequences in [30]. We prove the Catalan, Cassini, and
d’Ocagne identities for this sequence. Moreover, we introduce the special sums of the
generalized Jacobsthal and Jacobsthal-Lucas sequences and prove them using Binet’s formula.

2. Generalized Jacobsthal and Jacobsthal-Lucas Sequences

In this section, we review basic definitions and introduce relevant facts.

Forn>2, The generalized Jacobsthal sequence is defined by

J.=2al _ +(-a®)J
with initial conditions J, =0, J, =1.
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First few generalized Jacobsthal numbers are
{3,}= {0,1, 2a,3a’ +b,4a’ +4ab,5a" +1Oa2b+b2,...}

It is well known that the Jacobsthal and Jacobsthal-Lucas sequences are closely related.

Forn > 2, The generalized Jacobsthal-Lucas sequence is defined by
ji=2aj,,+(b-2a%)j, (2.2)

with initial conditions j, =2, j, =2a.
First few generalized Jacobsthal-Lucas numbers are

{J, } ={2.2a,2a% + 2b,2a° + 6ab, 2a* +12a’h + 2b°, 2a° + 20a°h +10ab’, ...}
In (2.1) and (2.2), a&b are any nonzero real numbers.

Ifa =% &b= % , then we obtained classical Jacobsthal and Jacobsthal-Lucas sequences,
Ifa :% &b= E then we obtained classical Fibonacci and Lucas sequences,

Ifa=1& b =3, then we obtained classical Pell sequence and Pell-Lucas sequences,

Ifa =g &b= % then we obtained classical Mersenne and Fermat sequences.

For any positive integer Kk,

2
Ifa :g &b= (4+ K J , then we obtained k-Fibonacci and k-Lucas sequences,
Ifa=1& b=(1+k), then we obtained k-Pell and k-Pell-Lucas sequences,
2
Ifa :g &b= (8+ K ] , then we obtained k- Jacobsthal and k- Jacobsthal-Lucas sequences.

2.1. Explicit sum formulae of generalized Jacobsthal and Jacobsthal-Lucas sequences

Theorem 2.1. Explicit sum Formula for generalized Jacobsthal sequence is given by

[nzl}(nil

anz i ](Za)“”(b—az)i (2.3)

Proof. Applying Binet’s formula of generalized Jacobsthal sequence, the proof is clear.

Theorem 2.2. Explicit sum Formula for new generalized Jacobsthal-Lucas sequence is given
by

Elrn-i Elnni-
jnzzz(” '](Za)“i(b—azr—z(” i' 1](2a)“i(b—a2>i @4

i=0 i i=0
Proof. Applying Binet’s formula of generalized Jacobsthal-Lucas sequence, the proof is clear
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2.2. Binet’s formula of Generalized Jacobsthal and Jacobsthal-Lucas sequences

In the 19th century, the French mathematician Binet devised two remarkable analytical
formulas for the Fibonacci and Lucas numbers. In our case, Binet’s formula allows us to express
the generalized Jacobsthal and Jacobsthal-Lucas sequences in function of the roots of the
following characteristic equation, associated to the recurrence relation (2.1) & (2.2):

x* = 2ax+(b—a’) (2.5)

Theorem 2.3. (Binet’s formula). The nth terms of the generalized Jacobsthal sequence is
given by
-]
" S‘Rl _mz
where R, & R, are the roots of the characteristic equation (2.5), with
ERl:a+\/B, SRzza—\/B.

(2.6)

Proof. We use the Principle of Mathematical Induction (PMI) on n. It is clear the result is
true for n=0 & n=1by hypothesis. Assume that it is true for isuch thatO <i <r+1, then
g R
I iRl _iRz
It follows from definition generalized Jacobsthal sequence (2.1) and equation (2.6)
RI+2 _qpr+2
+(b-aryy =T TN
R, -R,
Thus, the formula is true for any positive integer n.

J,.,=2al

Theorem 2.4. (Binet’s formula). The nth terms of the generalized Jacobsthal-Lucas sequence
is given by
j, =R +NR) (2.7)

Proof. It can be proved same as Theorem 2.3.

Theorem 2.5. For every integern, we have
-J

i J =——"1— 2.8
() -n (az _b)n ( )
. . j
I =——1 2.9
( ) J—n (aZ _b)n ( )
Theorem 2.6. For every integern, we have
J.J, =3, (2.10)

Proof. Applying Binet’s formula of generalized Jacobsthal sequence and generalized
Jacobsthal-Lucas sequence, the proof is clear.
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2.3. Identities of Generalized Jacobsthal and Jacobsthal-Lucas sequences

In this section, we introduce Catalan, Cassini and d’Ocagne identities for the generalized
Jacobsthal and Jacobsthal-Lucas sequences and prove them using Binet’s formula stated in the
previous section.

2.3.1. Catalan's Identity
Catalan's identity for Fibonacci numbers was found in 1879 by Eugene Charles Catalan a

Belgian mathematician who worked for the Belgian Academy of Science in the field of number
theory:

Theorem 2.7. (Catalan’s identity). For every integers nandr, we have

‘]n+r‘]n+r _JnZ:_(aZ_b)n*erZ (211)
and
jn+r jn+r - Jr? = 4b(a2 _b)n*l’ Jr2 (212)

Proof. Applying Binet’s formula of generalized Jacobsthal sequence and generalized
Jacobsthal-Lucas sequence completes the proof of Catalan's identity.

2.3.2. Cassini's ldentity

This is one of the oldest identities involving the Fibonacci numbers. It was discovered in 1680
by Jean-Dominique Cassini a French astronomer:

Theorem 2.8. (Cassini’s identity). For every integers n, we have

‘]n+l‘] n+l ‘]rf = _(a2 - b)m1 (213)
and
Joadoa = Bf =4b(@° -b)"™ (2.14)

Proof. Taking r =1 in Catalan's identity (2.11) & (2.12) the proof is completed.

2.3.3. d'Ocagne’s identity

Theorem 2.9. (d'Ocagne's identity). For every integers n and m, we have

Jm‘]n+l_‘]n‘Jm+1:(az_b)n‘]m—n (215)
and
jm jn+1 - jn jm+l = _4ab(a2 - b)n ‘]m—n (216)

Proof. Applying Binet’s formula of generalized Jacobsthal sequence and generalized
Jacobsthal-Lucas sequence completes the proof of d'Ocagne’s identity.
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3. The Sums of the Generalized Jacobsthal and Jacobsthal-Lucas
Sequences

Binet’s formula allows us to express the sum of generalized Jacobsthal and Jacobsthal-
Lucas sequences.

3.1. Sums of Generailzed Jacobsthal Sequence

Theorem 3.1. For fixed integers p, g with 0 < g < p—1, the following equality holds

Jomiayea = Jp Jpetyeg ~ (@*-b)*J pn+q 3.1)
Proof. From the the Binet’s formula of generalized Jacobsthal and Jacobsthal-Lucas
sequences,

mlp(n+1)+q _ m;(n+1)+q j

jp ‘]p(n+1)+q :(mf +ERS)[ 9{ —SR
1 2

— 1 p(n+2)+q 2 P ¢ Pn+q 2 P ¢ Pn+q p(n+2)+q
—m[‘ﬁl +(a? —b)" R —(a? —b)P R —R! ]
— 1 p(n+2)+q p(n+2)+q 2 p pn+q pn+q
_%l_mz[{ml —REOD 4 (@ ~b)° (RO -2 |
=J p(n+2)+q + (a2 - b) PJ pn+q
then, the equality becomes,
H 2
Jomeyia = Jp Jpaing = (@7 =0)"J 0 g

Theorem 3.2. For fixed integers p, g with 0 < g < p—1, the following equality holds

i‘] - ‘]p(n+l)+q —(3.2 _b)q‘]pfq _‘Jq _(a2 _b)p‘]pn+q (32)
j, —(a’—b)* -1

Proof. From the the Binet’s formula of generalized Jacobsthal sequence,
n n mp”q _ERDiH]
I
pi+q
i=0 i=0 SRl - SRZ

_ 1 . pi+q _ . pi+q
_ml_mz [Zml ZERZ }

i=0 i=0

_ 1 mfn+q+p _QJ{;] _ m§n+q+p _mg
R, -R, R -1 Ry -1
1 2
T (22 P_ i N p‘]pn+q_‘]p(n+l)+q+‘]q+(a2_b)q‘]p7q]
FE I
p
‘Jp(n+1)+q _(a2 _b)q‘Jp,q _Jq —(a2 —b)p.]
j,-(@-b)f-1

pn+q

This completes the proof.

Corollary 3.3. Sum of odd generalized Jacobsthal sequence, If p=2m-+1then Eq. (3.2) is
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J(2m+l)(n+l)+q ( 2 _b)q ‘]2m+17q - ‘]q - (3.2 - b)(2m+1) ‘](2m+l)n+q
Z J(2m+1)|+q J _ (a2 _b)(2m+1) 1 (33)
(2m+1)
For example
_J —(@*-b)J, . —J —(a’-h)J
1) If m=0thenp=1: » J,, =—" —1__4 s 3.4
(1) p= Z b1 (3.4)
. s -1-(a? -b)J,
i) Forq=0: Ji= I
® | ; ' 2a-(a®*-b)-1
n J —-(@*-b)*J, . —J,—(a*-b)*J
(2) |f m :lthen p :3: ZJ3H — 3ns+q+3 (3 ) 3-q q ( y )2 3n+q (35)
o (2—a )+3ab(2-ab)+b(3a* +b*) -1
(l) For q =0: Z‘]3i =— 3n+3 (3a +b) (a _b) ‘J3n
s a’(2—a% +3ab(2—-ab) +b(3a‘ +b*) -1
(ii) For q=1: = g —28(8° +b)-1-(a* =b)’J,
" a’(2—a®)+3ab(2—ab)+b(3a’ +b?*) -1
(iiiy Forq=2: Z‘]3I+2 Jyis —(@°—b)* —2a-(a° —h)*J;,.,
o a’(2—a*)+3ab(2- ab)+b(3a +b?) -1
n J —(@*-b)J.  -J —(a®*-b)*J
3) If m=2thenp=5: ) J,,  =——= L ks 3.6
( ) p T 5i+q _ (az _ b)5 _1 ( )
. . Jo. . —J.—(a*=b)°J
i Forq=0: » J,=—28— =L
( ) q " 5i _ (az _b)5 _1
.. : —b)J, -1-(a®-b)°J
i For q=1: 33, = Jome (a 4 Sl
( ) q ; 5i+1 — _ (az _b)S _1
n J —(az—b)zJ —2a—(a’-h)°J
i Forg=2: J.. . =8n+7 3 5n+2
( ) q ; 5i+2 _(aZ _ )5 —l
(iv) For q=3: Jon= T _b) 2a—(3a’ +b) (@°-b)*Js,.5
i=0 —-(@*-b)° -
n J. .. —(a®>=b)* —4a(a2 +b) - (a2 —-b)®J
V Forg=4: J.  =15m9 5n+4
( ) q ; 5i+4 _ (aZ _ b)S _1
n _ _ 2 _ 5
(Vl) For q — ‘]5i+5 — ‘]5n+10 ‘]5 (a b) ‘]5n+5

i=0

~(@*-b)° -1

Corollary 3.4. Sum of even generalized Jacobsthal sequence, If p=2m then Eq. (3.2) is

For example

(1) If m=1thenp=2:>"J
i=0

z J 2m(n+1)+q ( 2 B b)q ‘]Zm—q B Jq B (8.2 - b)Zm J2mn+q
2m|+q sz . (a2 —b)zm 1
‘]2n+2+q _(a2 _b)q\]z,q _Jq —(az _b)2J2n+q
2i+q — _ (a2 —b)2 1
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. n J —28.—(a2—b)2J
I Forg=0: J. = Zani2 2n
® q ZO A (2a2+2b)—(a2—b)2—
() Forg=1: 33, =Jms @ -D)-1-(a by Jm
£V2 T (Da? 1 2b)— (@l —b): -
n 2 2
(i) Forg=2:33,.,= Jons —28-(a" ) ;lm
i—o (2a +2b)—(a®-b)* -1
n _b q —J _ aZ _b 4J
@1 m=2thenp =4: 2 Juy == - )_(qu_b)f_l( P (39)
- 4 J,—(a%-h)*J
| For g=0: Janis = 4n
(i) q ZO] (az_ 51
o : —(a’ —b)J -1-(a° —b) J
il Forg=1: J.o = Janss 4n+l
( ) q ; 4|+l (a —b)
n —b) 2a—2a—(a’—b)*J
i Forg=2: NP— Jani (a 4n+2
( ) q ; 4iv2 — (a _ ) —]_
(V) Forq=3: 3J,,= Jw—(az—bf—%—(az—b)“m
= —(a?-b) -1
3 J,.—J,—(@*=b)*J
\") Forg=4: J. =48 4 4n+4
N | = —(@*-b)* -1
n J —az—qu —J—az—bGJ
(3) If m=3thenp=6: > oo = 6n6rq — : )_(;;q_b)g_l( ) Joniq (3.10)
: : J J.—(a*—b)®J
| For — J = 6n+6 6 6n
0 | =" j,— (@ —b)°-1
’ 3 —(a®*-b)J. -1-(a*-h)°J
il For g= J. Joni7 5 Bn+l
( ) q " 6|+1 _(a2 —b)6 _1
(ili) Forq=2: 236 _Jeng = (@ D)7, —22- (@7 -0)" Sy,

(iv) For q=3: ZJ6|+3 Jons

(a b)3J3 — J3 — (az

jo—(@>-b)°* -1
— b)6 ‘]Gn+3

i=0

jo—(@°-b)° -1

Theorem 3.5. For fixed integers p, g with 0<q < p-1, the following equality holds

(~1)"J

p(n+l)+q

+(-D)"(@*-b)"J

pn+q_(a2_b)qu .t

Z( 1) ‘]p|+q

j, +(@

S (3.11)

Proof. Applying Binet’s formula of generalized Jacobsthal sequence, the proof is clear.

For different values of p&q:
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(-1)"J,, +(-1)"(@*~b)J, -1
2a+a’—b+1

(i) Z( 'y, =

.. ( 1) ‘J2n+2+( 1) (a _b) ‘]2n
(1) 22(1)3” (2a° +2b)+ (a’ —b)’ +1

( 1) ‘]2n+3+( 1) (a _b) ‘]2n+1 (az_b)+1
(2a* +2b) +(a® —b)* +1

(_1)n ‘]4n+4 + (_1)n(a2 - b)4J4n B
j,+(@-b)*+1

(iii) Z( D' Jy =

(iv) Z(—l)hui =

( 1) ‘]4n+5+( l) (a _b) J4n+1 (az_b)‘]3+1

(V) Z( 1) ‘]4|+1 14+(a b) +1

(Vl) Z( 1) J. , = ( l) ‘]4n+6+( 1) (a _b) ‘J4n+2 (az_b)22a+2a

J4+(a —b)*+1

-D"J,,..+(-D)"@ -b)*J, .. — (@ -b)’+J,

(V“) Z( 1) ‘]4|+3 J4+(a _b)4+l

3.2. Sums of Generailzed Jacobsthal-Lucas Sequence

Theorem 3.6. For fixed integers p, q with 0<q < p—1, the following equality holds

- _ - - 2 p -
Jp(n+l)+q - Jp Jpn+q - (a - b) Jp(n—l)+q

(3.12)

Theorem 3.7. For fixed integers p, q with 0<q < p-1, the following equality holds

Zn: J . (X y) _ jp(n+l)+q + (a2 _b)q jp—q - jq - (a2 _b)p jpn+q
piea % j,—(@*-b)’ -1

(3.13)

Corollary 3.8. Sum of odd generalized Jacobsthal-Lucas sequence, If p=2m+1then Eqg.

(3.13) is

q: .
Z j J(2m+1)(n+1)+q + (a b) J2m+l—q - Jq - (a
(2m+1)i+q — 2 2m+1
J(2m+1) _(a _b)( ™y -1

(2m+l)
) J(2m+l)n+q

For example

Jn+ +1 (az _b)q jl— - J - (a2 _b) jn+
1) If m=0thenp=1: d 1 4
(1) p= ZJ.M 2a—(a’-b)-1
. . jat2a-2—-(a’-h)j,
i For q=0: o=
() q ;L Za_(aZ_b)_l
+(@* =b)? j; = j —(@* =b)* 5.,
2(a®+3ab)—-(a’ -b)* -1
an+q+5 + (a b)q j5—q B jq - (a2 - b)5 j5n+q

jo —(@*=b)* -1

2) If m= Hmnp13§hmq b

(3) If m=2thenp=5: Z Jsinq =
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Corollary 3.9. Sum of even generalized Jacobsthal-Lucas sequence, If p=2mthen Eg. (3.13)
is
_ j2m(n+l)+q + (a2 _b)q j2m—q B jq B (a‘2 _b)zm j2mn+q

i o= 3.18
iZO: sz”q j2m _ (aZ _b)2m _1 ( )

For example
n - a2 _b q - _ - _ a2 _b 2 -

(1) If m=1thenp=2: ) j,,q = Jencasg j ) (J;;“ b;g i ) Janeq (3.19)
i=0 2 - -
n ' a’-b)j, . —j,—(@2—b)"j

(2) |f m= 2then p :4: z j4i+q _ J4n+4+q +( J ) (J;Zq b;g ](- ) J4n+q (320)
i=0 4= - -
n ' a’-b)j, . —j.—(@-b)’j

(3) If m=3thenp=6: .. = Joncorq j )({:zq b;g i ) Jonva (3.21)
i=0 6 - -

Theorem 3.10. For fixed integers p, q with 0<q < p-1, the following equality holds

c _ (_l)n jp(n+1)+q + (_1)ﬂ(a2 _b)P jpn+q + (a2 _b)q jp,q + jq

S (1) e = @bl (3.22)

i=0

Proof. Applying Binet’s formula of generalized Jacobsthal-Lucas sequence, the proof is clear.

For different values of p&q:

: C is (—1)”{jn+1+(a2 _b) jn}+2(a+1)
® ;H) b= 2a+(@° —b)+1

s C s (_1)n{j2n+2 + (a2 _b)2 j2n}+ 2(&2 +b +1)
(1) ;H) b = 2(a® +b) +(a® —b)? +1

Do (DY + (@7 =D)? 3+ 2a(a’ —b+1)
) izzol(_l) b = 2(a? +b) + (a>—b)? +1

H % i (_1)n{j4n+4 + (az _b)4 j4n}+ j4 +2
(IV) ;(_1) J4i - j4 i (az _b)4 1

+(@*-b)" j,.,.}+ (@ -b)j, +2a
j,+(@-b)*+1

V) i(_l)i j4i+1 = (—1)"{j4n+5

(Vi) i(—l)i j4i+2 — (_1)n{j4n+6 +(a _b) j4n+2}+{(a _b) +1}(2a +2b)

j,+(@-b)*+1
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4. Generalized Identities of the Product of Generalized Jacobsthal and
Jacobsthal-Lucas Sequences

Thongmoon [24, 25], defined various identities of Fibonacci and Lucas numbers. Singh,
Bhadouria and Sikhwal [16], present some generalized identities involving common factors of
Fibonacci and Lucas numbers. Gupta and Panwar [6], present identities involving common
factors of generalized Fibonacci, Jacobsthal and jacobsthal-Lucas numbers. Panwar, Singh and
Gupta ([14, 15]), present Generalized Identities Involving Common factors of generalized
Fibonacci, Jacobsthal and jacobsthal-Lucas numbers. Singh, Sisodiya and Ahmed [18],
investigate some products of k-Fibonacci and k-Lucas numbers, also present some generalized
identities on the products of k-Fibonacci and k-Lucas numbers to establish connection formulas
between them with the help of Binet’s formula. Pakapongpun [12], present Jacobsthal-like
sequence ([7]), also provide generalized identities on the products of Jacobsthal-like and
Jacobsthal-Lucas numbers. Thongkam, Butsuwan and Bunya [23], present the investigation of
products of (p, q)-Fibonacci-like and (p, q)-Lucas numbers. In this section, we present identities
involving product of generalized Jacobsthal and Jacobsthal-Lucas sequences and related
identities.

Theorem 4.1. If J, and j, are generalized Jacobsthal and Jacobsthal-Lucas sequences, then
Joep Jak = Jagepn +(@ —0)**J , where k>0 & p<0 (4.1)

Proof. Applying Binet’s formula of generalized Jacobsthal and Jacobsthal-Lucas sequences,

] ERZker _mZk#—p . )
Joip Jokia = (W (%fk ' +5R§k 1) (4.2)

[m4k+ p+l m4k+p+1 j . (EleZ)
(SRl _mz)

4k+p+1 4k+p+1 gpP-1_gpp-1
(ER . jﬂﬂ%)“ (2 —b)[—ﬁl i j
9{1_9%2

2k

(mlpmz _mgml)

=J, +(a —b)MJ

4k+p+l
This completes the proof.

Corollary 4.2. For different values of p, (4.1) can be expressed as:
(i) If p=-3,then: J,, ,jy., = Ju_, —(@°—h)*>(4a’ + 4ab) (4.3)
(i) If p==2,then: J,, ,jp.s = Ju, —(@*—b)*?*(3a° +b) (4.4)
(i) 1f p=-1,then: Jy ., jp = Ju —2a(a® —b)** (4.5)

Following theorems can be solved by Binet's formula of new generalization of Fibonacci and
Lucas numbers.

Theorem 4.3. Jyy,; jociz = Jagspre + (@7 =0)*?J , , where k>0 & p<0 (4.6)

Corollary 4.4. For different values of p, (4.6) can be expressed as:
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(i) If p=-3,then: J, 3l =Jdus _(a2 _b)2k73‘]5
(ll) If p= —2, then: "]Zk—z j2k+2 — ‘]4k _(a2 _b)Zk—z J4

(i) If p=—1,then: J,  j,., =y, —(@°—b)*"J,

Theorem 4.5. J,,,, joc = Ju,p +(@°—b)*J,, where k>0 & p<0

Corollary 4.6. For different values of p, (4.10) can be expressed as:
(i) If p=-3,then: J,, ,jp =, —(@°—0)*"2J,
(i) If p=-2,then: J, ,j, =J,_ ,—2a(@*—h)*?
(iii) If p=-1,then: J,  j, =J,,—(@ —b)*™*

Theorem 4.7. 3, jpcn = dupu+ (@ —0)*"J_, wherek>0& p<0

Corollary 4.8. For different values of p, (4.14) can be expressed as:
(i) If p=-3,then: Iy s incs = Juees —2a(@% —b)**
(i) If p=-2,then: I, ,in. = Ju.s —(@%—0)*
(i) If p=-1,then: J,,.iJors = Jursn

Theorem 4.9. J,_ jpy = Jupy + (@ —0)**J_, where k>0 & p<0

Corollary 4.10. For different values of p, (4.18) can be expressed as:

(i) If p=-3,then: Iy 3Jns = Jun + (a2 —k))21(71(4<’:13 +4ab)
(i) 1f p=—2,then: J ., jny = Ju +(a° —D)**(3a2 +b)

(iii) If p=-1,then: J,  j, . =J, +2a(@®—b)**

Theorem 4.11. J,_, jp = Jy, +(@° —b)*J_,, wherek>0& p<0

Corollary 4.12. For different values of p, (4.22) can be expressed as:
(i) If p=-3,then: J,, .jy = Ju.s+(@°—b)*(3a%+h)
(i) If p=-2,then: J,,,j, = J4., +2a(@® —b)*
(iii) If p=-1,then: J,,j, =y, +(@%—b)*

39

2020, 2(1)

(4.7)
(4.8)
(4.9)

(4.10)

(4.11)
(4.12)

(4.13)

(4.14)

(4.15)
(4.16)
(4.17)

(4.18)

(4.19)
(4.20)
(4.21)

(4.22)

(4.23)
(4.24)
(4.25)
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Theorem 4.13. J,, jy,p = Ju,, —(@°—b)*J, , Where k>0 & p<0 (4.26)
Corollary 4.14. For different values of p, (4.26) can be expressed as:
(i) If p=-3,then: J, jy s =J,,5+ (@ —b)**(3a*+b) (4.27)
(i) If p=-2,then: J, j,_,=J,_, +2a(a®—b)*? (4.28)
(iii) If p=-3,then: J, j,, =, +(@ —h)*" (4.29)
Theorem 4.15. 4bJ,, 3, = ju., —(@°—b)*j, , where k>0 & p<0 (4.30)

Corollary 4.16. For different values of p, (4.30) can be expressed as:

(i) If p=-3,then: 4bJ, J, ;= j, 5 —(2a°+6ab)(@*-h)*°  (4.31)

(i) If p=-2,then: 4bJ,J, , = j,._,—(2a° +2b)(@” —h)*?

(iii) If p=-1, then: 4bJ, J, , = j,, —2a(@* —b)**

Theorem 4.17. jy o p = Jaep + (@2 —0)*j, , where k>0 & p<0

Corollary 4.18. For different values of p, (4.34) can be expressed as:

(i) If p=-3,then: jy jo s = Jus +(28° +6ab)(@” —b)**
(ii) If p= —2, then: jzk j2k—2 = j4k—2 + (28.2 + 2b)(a2 _b)2k_2

(iii) If p=-1,then: j, j, . = ju, +2a(@’ —b)*™*

(4.32)
(4.33)

(4.34)

(4.35)

(4.36)
(4.37)

5. Generating function of the Generalized Jacobsthal and Jacobsthal-Lucas

Sequences

Generating functions provide a powerful technique for solving linear homogeneous
recurrence relations. Even though generating functions are typically used in conjunction with
linear recurrence relations with constant coefficients, we will systematically make use of them
for linear recurrence relations with non constant coefficients. In this paragraph, the generating
function for generalized Jacobsthal and Jacobsthal-Lucas Sequences are given. As a result,
generalized Jacobsthal and Jacobsthal-Lucas Sequences are seen as the coefficients of the
corresponding generating function. Function defined in such a way is called the generating

function of the generalized Jacobsthal and Jacobsthal-Lucas Sequences. So,

Theorem 5.1. The generating functions of the generalized Jacobsthal and Jacobsthal-Lucas

sequences are given, respectively, by

0  IK=3Jx=

X
1-2ax—(b-a*)x’
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() §0=3 =

= 5.2
~ 1-2ax—(b—a®)x? (5:2)

Proof. Applying the generating functions J(x)and j(x) can be written as J(x) = ZJnx”

n=0

and j(x)= i j,x" . Then, we write
- J(X) =3, + X, + X2, + X T, + .+ X"+
and then 2axJ (X) = 2axJ, + 2ax*d, +2ax*d, + 2ax* I, +...+ 2ax"J | +...
(b—a®)x*J(x) = (b—a®)x*J, +(b—a*)x*J, +(b—a*)x*J, +...+ (b —a*)x"?J_+...

-  {I-2ax—(b—-a*)x*}(x) =x

= X
- J(x)=) JXx"=
) nZ::j " 1-2ax—(b-a*)x?

Similarly, we have
JOO = Jo + X, + X, + X3+ X"+

n+l ;

and then 2axj(x) = 2axj, +2ax? j, + 2ax’ j, + 2ax* j, +...+2ax""j +...
(b—a®)x*J(x) = (b—a®)x*j, +(b—a®)x’j,+(b—a*)x*j, +..+ (b —a*)x"?j, +...

—  {1-2ax—(b—a®)x*}j(x) =2—2ax

. . g 2 —2ax
1) ;s hn 1-2ax—(b-a’)x?

This completes the proof.

6. Conclusion

In this paper generalized Jacobsthal and Jacobsthal-Lucas sequences have been studied.
Many of the properties of these sequences like Catalan’s identity, Cassini’s identity or
Simpson’s identity, d’ocagnes’s identity are proved by simple algebra and Binet’s formula. We
describe sums of generalized Jacobsthal and Jacobsthal-Lucas sequences. This enables us to
give in a straightforward way several formulas for the sums of such generalized numbers. These
identities can be used to develop new identities of numbers and polynomials. Also we present
some generalized identities involving product of Jacobsthal and Jacobsthal-Lucas sequences.
Finally we present the generating function of Jacobsthal and Jacobsthal-Lucas sequences.
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