4-Dimensional Euler-Totient Matrix Operator and Some Double Sequence Spaces

Sezer Erdem and Serkan Demiriz*

Abstract

Our main purpose in this study is to investigate the matrix domains of the 4-dimensional Euler-totient matrix operator on the classical double sequence spaces \mathcal{M}_u , \mathcal{C}_p , \mathcal{C}_{bp} and \mathcal{C}_r . Besides these, we examine their topological and algebraic properties and give inclusion relations about the new spaces. Also, the α -, $\beta(\vartheta)$ - and γ -duals of these spaces are determined and finally, some matrix classes are characterized.

Keywords: Euler function, Möbius function, 4-dimensional Euler-totient matrix operator, matrix domain, double sequence space, α -, $\beta(\vartheta)$ - and γ -duals, matrix transformations.

AMS Subject Classification (2020): Primary: 40C05; Secondary: 46A45; 47B37.

*Corresponding author

1. Preliminaries, Background and Notations

The function f described by $f : \mathbb{N} \times \mathbb{N} \to \wp$, $(t, u) \mapsto f(t, u) = x_{tu}$ is entitled as *double sequence*, where \wp denotes any nonempty set and $\mathbb{N} = \{1, 2, ...\}$. Ω stands for the set of all complex valued double sequences. It is well known that this set is a vector space with coordinatewise addition and scalar multiplication. Any linear subspace of Ω is called as *double sequence space*. The set of all bounded complex valued double sequences is symbolized with \mathcal{M}_u , that is,

$$\mathcal{M}_u = \bigg\{ x = (x_{tu}) \in \Omega : \|x\|_{\infty} = \sup_{t, u \in \mathbb{N}} |x_{tu}| < \infty \bigg\}.$$

It should be noted that \mathcal{M}_u is a Banach space with the norm $||x||_{\infty}$. We say that the double sequence $x = (x_{tu})$ is *convergent* in the *Pringsheim's sense* provided that for every $\varepsilon > 0$ there exists $n_{\varepsilon} \in \mathbb{N}$ such that $|x_{tu} - L| < \varepsilon$ whenever $t, u > n_{\varepsilon}$. In that case, $L \in \mathbb{C}$ is called the *Pringsheim limit* of x and stated by $p - \lim_{t,u\to\infty} x_{tu} = L$; where \mathbb{C} denotes the complex field. C_p represents the space of all such x which are called shortly as *p*-convergent. Of particular interest is unlike single sequences, *p*-convergent double sequences need not be bounded. For example, if we consider the sequence $x = (x_{tu})$ identified by

$$x_{tu} = \begin{pmatrix} 1 & 2 & 3 & \cdots & u & \cdots \\ 2 & 0 & 0 & \cdots & 0 & \cdots \\ 3 & 0 & 0 & \cdots & 0 & \cdots \\ \vdots & \vdots & \vdots & \cdots & \vdots & \cdots \\ t & 0 & 0 & \cdots & 0 & \cdots \\ \vdots & \vdots & \vdots & \cdots & \vdots & \cdots \end{pmatrix}$$

it can easily seen that $p - \lim x_{tu} = 0$ but $||x||_{\infty} = \infty$. As a conclusion $x \in C_p - \mathcal{M}_u$. The bounded sequences which are also *p*-convergent are indicated by C_{bp} , that is, $C_{bp} = C_p \cap \mathcal{M}_u$. A double sequence $x = (x_{tu}) \in C_p$ is called as *regularly convergent* if the limits $x_t := \lim_u x_{tu}$, $(t \in \mathbb{N})$ and $x_u := \lim_t x_{tu}$, $(u \in \mathbb{N})$ exist, and the limits $\lim_t \lim_u x_{tu}$

Received : 06-05-2020, Accepted : 12-07-2020

and $\lim_{u} \lim_{t} x_{tu}$ exist and are equivalent to the $p-\lim$ of x. The space of all regularly convergent double sequences is denoted by C_r . Obviously, the regular convergence of a double sequence x implies the convergence in Pringsheim's sense as well as the boundedness of the terms of x, but the converse implication fails. A sequence $x = (x_{tu})$ is called *double null sequence* if it converges to zero. Additionally, all double null sequences in the spaces C_{bp} and C_r are denoted by C_{bp0} and C_{r0} , respectively. Móricz [25] showed that the spaces C_{bp0} , C_r and C_{r0} are Banach spaces endowed with the norm $\|.\|_{\infty}$.

Let us take any $x \in \Omega$ and describe the sequence $K = (k_{rs})$ defined by

$$k_{rs} := \sum_{t=1}^{r} \sum_{u=1}^{s} x_{tu}, \quad (r, s \in \mathbb{N}).$$

In that case, the pair $((x_{rs}), (k_{rs}))$ is entitled as *double series*. Here, the sequence $K = (k_{rs})$ is the sequence of partial sums of the double series.

Consider the double sequence space Ψ converging with respect to some linear convergence rule $\vartheta - \lim : \Psi \to \mathbb{C}$. The sum of a double series $\sum_{t,u} x_{tu}$ relating to this rule is defined by $\vartheta - \sum_{t,u} x_{tu} = \vartheta - \lim_{r,s\to\infty} s_{rs}$. Here and thereafter, when needed we will use the summation $\sum_{t,u}$ instead of $\sum_{t=1}^{\infty} \sum_{u=1}^{\infty}$, assume that $\vartheta \in \{p, bp, r\}$ and p' denotes the conjugate of p, that is, p' = p/(p-1) for $1 . With the notation of Zeltser [42], we describe the double sequences <math>e^{rs} = (e_{tu}^{rs})$ and e by $e_{tu}^{rs} = 1$ if (r,s) = (t,u) and $e_{t,u}^{r,s} = 0$ otherwise, and $e = \sum_{r,s} e^{r,s}$ (coordinatewise convergence) for every $r, s, t, u \in \mathbb{N}$.

The α -dual Ψ^{α} , $\beta(\vartheta)$ -dual $\Psi^{\beta(\vartheta)}$ with respect to the ϑ -convergence and the γ -dual Ψ^{γ} of a double sequence space Ψ are described as

$$\begin{split} \Psi^{\alpha} &:= \left\{ c = (c_{tu}) \in \Omega : \sum_{t,u} |c_{tu}x_{tu}| < \infty \quad \text{for all} \quad (x_{tu}) \in \Psi \right\}, \\ \Psi^{\beta(\vartheta)} &:= \left\{ c = (c_{tu}) \in \Omega : \vartheta - \sum_{t,u} c_{tu}x_{tu} \quad \text{exists for all} \quad (x_{tu}) \in \Psi \right\}, \\ \Psi^{\gamma} &:= \left\{ c = (c_{tu}) \in \Omega : \sup_{r,s \in \mathbb{N}} \left| \sum_{t,u=1}^{r,s} c_{tu}x_{tu} \right| < \infty \quad \text{for all} \quad (x_{tu}) \in \Psi \right\}, \end{split}$$

respectively. It is well known that $\Psi^{\alpha} \subset \Psi^{\gamma}$ and if $\Psi \subset \Lambda$, then $\Lambda^{\alpha} \subset \Psi^{\alpha}$ for the double sequence spaces Ψ and Λ .

Let us remember the definition of triangle matrix. If $b_{rstu} = 0$ for t > r or u > s or both for every $r, s, t, u \in \mathbb{N}$, it is said that $B = (b_{rstu})$ is a *triangular matrix* and also if $b_{rsrs} \neq 0$ for every $r, s \in \mathbb{N}$, then the 4-dimensional matrix Bis called *triangle*. It should be noted by [11] that, every triangle has a unique inverse which is also a triangle.

Now, we shall deal with matrix mapping. Let us consider double sequence spaces Ψ and Λ and the 4-dimensional complex infinite matrix $B = (b_{rstu})$. In that case, we say that B defines a *matrix mapping* from Ψ into Λ and it is written as $B : \Psi \to \Lambda$, if for every sequence $x = (x_{tu}) \in \Psi$, the B-transform $Bx = \{(Bx)_{rs}\}_{r,s\in\mathbb{N}}$ of x exists and is in Λ ; where

$$(Bx)_{rs} = \vartheta - \sum_{t,u} b_{rstu} x_{tu}, \tag{1.1}$$

for each $r, s \in \mathbb{N}$. $(\Psi : \Lambda)$ stands for the class of all 4-dimensional complex infinite matrices from a double sequence space Ψ into a double sequence space Λ . In that case, $B \in (\Psi : \Lambda)$ if and only if $B_{rs} \in \Psi^{\beta(\vartheta)}$, where $B_{rs} = (b_{rstu})_{t,u \in \mathbb{N}}$ for all $r, s \in \mathbb{N}$.

The ϑ -summability domain $\Psi_B^{(\vartheta)}$ of a 4-dimensional complex infinite matrix B in a double sequence space Ψ consists of whose B-transforms are in Ψ ; that is,

$$\Psi_B^{(\vartheta)} := \left\{ x = (x_{tu}) \in \Omega : Bx := \left(\vartheta - \sum_{tu} b_{rstu} x_{tu} \right)_{r,s \in \mathbb{N}} \text{ exists and is in } \Psi \right\}.$$

In the past, many authors were interested in double sequence spaces. Now, let us give some information about these studies. Zeltser [41] has fundamentally examined both the topological structure and the theory of summability of double sequences in her doctoral dissertation. Recently, Altay and Başar [3] defined the double sequence spaces $\mathcal{BS}, \mathcal{BS}(t), \mathcal{CS}_p, \mathcal{CS}_{bp}, \mathcal{CS}_r$ and \mathcal{BV} of double series whose sequences of partial sums are in the spaces $\mathcal{M}_u, \mathcal{M}_u(t), \mathcal{C}_p, \mathcal{C}_{bp}, \mathcal{C}_r$ and \mathcal{L}_u , respectively, and also examined some properties of those spaces. Later, in [5], Başar and Sever

have defined the set \mathcal{L}_p of all absolutely *p*-summable double sequences which is a Banach space with the norm $\|.\|_{\mathcal{L}_p}$ defined in the following way:

$$\|.\|_{\mathcal{L}_p} = \left(\sum_{t,u} |x_{tu}|^p\right)^{\frac{1}{p}}.$$

It is also significant that the double sequence space \mathcal{L}_u which was defined by Zeltser [42] is the special case of the space \mathcal{L}_p for p = 1. For more details about the double sequences and related topics, the reader may refer to [1, 3–5, 13, 25–28, 31, 35–40, 43] and references therein.

In the rest of the study, φ and μ represent Euler function and the Möbius function, respectively. For every $r \in \mathbb{N}$ with r > 1, $\varphi(r)$ is the number of positive integers less than r which are coprime with r and $\varphi(1) = 1$. If $a_1^{b_1}a_2^{b_2}a_3^{b_3}...a_m^{b_m}$ is the prime factorization of a natural number r > 1, then

$$\varphi(r) = r(1 - \frac{1}{a_1})(1 - \frac{1}{a_2})(1 - \frac{1}{a_3})\dots(1 - \frac{1}{a_m}).$$

Also, the equality

$$r = \sum_{t \mid r} \varphi(t)$$

holds for every $r \in \mathbb{N}$ and $\varphi(r_1r_2) = \varphi(r_1)\varphi(r_2)$, where $r_1, r_2 \in \mathbb{N}$ are coprime. Given any $r \in \mathbb{N}$ with r > 1, μ is defined as

$$\mu(r) := \begin{cases} (-1)^m &, & \text{if } r = a_1 a_2 \dots a_m, \text{ where } a_1 a_2 \dots a_m \text{ are} \\ & & \text{non-equivalent prime numbers} \\ 0 &, & \text{if } a^2 \mid r \text{ for some prime number} \quad a, \end{cases}$$

and $\mu(1) = 1$. If $a_1^{b_1} a_2^{b_2} a_3^{b_3} \dots a_m^{b_m}$ is the prime factorization of a naturel number r > 1, in this fact,

$$\sum_{t|r} t\mu(t) = (1-a_1)(1-a_2)(1-a_3)\dots(1-a_m).$$

If $r \neq 1$, then the equality

$$\sum_{t|r} \mu(t) = 0$$

holds and $\mu(r_1r_2) = \mu(r_1)\mu(r_2)$, where $r_1, r_2 \in \mathbb{N}$ are coprime.

By using the regular 2-dimensional Euler-totient matrix Φ , the Euler-totient sequence spaces $\ell_p(\Phi)$ and $\ell_{\infty}(\Phi)$ which consist of all sequences whose Φ -transforms are in the spaces ℓ_p of absolutely *p*-summable and ℓ_{∞} of bounded single sequences are introduced and examined by İlkhan and Kara [18].

The target of the existing study is to acquaint the matrix domains of the 4-dimensional Euler-totient matrix on some classical double sequence spaces.

2. Domain of Euler-Totient Matrix in Some Spaces of Double Sequences

In this section, we introduce the double sequence spaces $\Phi^*(\mathcal{M}_u)$, $\Phi^*(\mathcal{C}_p)$, $\Phi^*(\mathcal{C}_{bp})$ and $\Phi^*(\mathcal{C}_r)$ by using the 4-dimensional Euler-totient matrix Φ^* and give some properties and results on these spaces.

In [14], we have defined the 4-dimensional matrix $\Phi^* = (\phi^*_{rstu})$ which is called Euler-totient matrix operator as follows:

$$\phi_{rstu}^{\star} := \begin{cases} \frac{\varphi(t)\varphi(u)}{rs} & , \quad t \mid r , u \mid s, \\ 0 & , \quad \text{otherwise,} \end{cases}$$
(2.1)

for every $r, s, t, u \in \mathbb{N}$. Thus, it is clear that Φ^* is a triangle and the Φ^* -transform of a double sequence $x = (x_{rs})$ is given by

$$y_{rs} := (\Phi^* x)_{rs} = \frac{1}{rs} \sum_{t|r,u|s} \varphi(t)\varphi(u)x_{tu},$$
(2.2)

for every $r, s \in \mathbb{N}$. Throughout the article, we suppose that the terms of the double sequences $x = (x_{rs})$ and $y = (y_{rs})$ are connected with the relation (2.2).

The inverse $(\Phi^{\star})^{-1} = (\phi^{\star})^{-1}_{rstu}$ of the triangle matrix Φ^{\star} is calculated as

$$\phi^{\star -1}_{\ rstu} := \begin{cases} \frac{\mu(\frac{r}{t})\mu(\frac{s}{u})}{\varphi(r)\varphi(s)}tu &, \quad t \mid r, \ u \mid s, \\ 0 &, \quad \text{otherwise}, \end{cases}$$

for every $r, s, t, u \in \mathbb{N}$. We introduce the sequence spaces $\Phi^*(\mathcal{M}_u), \Phi^*(\mathcal{C}_p), \Phi^*(\mathcal{C}_{bp})$ and $\Phi^*(\mathcal{C}_r)$ as the sets of all double sequences such that Φ^* -transforms of them are in the spaces \mathcal{M}_u , \mathcal{C}_p , \mathcal{C}_{bp} and \mathcal{C}_r , that is,

$$\Phi^{\star}(\mathcal{M}_{u}) = \left\{ x = (x_{rs}) \in \Omega : \sup_{r,s \in \mathbb{N}} \left| \frac{1}{rs} \sum_{t|r,u|s} \varphi(t)\varphi(u)x_{tu} \right| < \infty \right\},$$

$$\Phi^{\star}(\mathcal{C}_{p}) = \left\{ x = (x_{rs}) \in \Omega : \exists L \in \mathbb{C} \ni p - \lim_{r,s \to \infty} \left| \frac{1}{rs} \sum_{t|r,u|s} \varphi(t)\varphi(u)x_{tu} - L \right| = 0 \right\},$$

$$\Phi^{\star}(\mathcal{C}_{bp}) = \left\{ x = (x_{rs}) \in \Omega : \left(\frac{1}{rs} \sum_{t|r,u|s} \varphi(t)\varphi(u)x_{tu} \right) \in \mathcal{C}_{bp} \right\},$$

$$\Phi^{\star}(\mathcal{C}_{r}) = \left\{ x = (x_{rs}) \in \Omega : \left(\frac{1}{rs} \sum_{t|r,u|s} \varphi(t)\varphi(u)x_{tu} \right) \in \mathcal{C}_{r} \right\}.$$

It is immediately seen that $\Phi^*(\mathcal{M}_u)$, $\Phi^*(\mathcal{C}_p)$, $\Phi^*(\mathcal{C}_{bp})$ and $\Phi^*(\mathcal{C}_r)$ are the domains of the 4-dimensional Eulertotient matrix Φ^* in the spaces $\mathcal{M}_u, \mathcal{C}_p, \mathcal{C}_{bp}$ and \mathcal{C}_r , respectively.

If Ψ is any normed double sequence space, then we call the matrix domain $\Phi^*(\Psi)$ as the double Euler-totient sequence space.

Definition 2.1 (See [16],[31]). A 4-dimensional matrix B is said to be RH-regular if it maps every bounded pconvergent sequence into a *p*-convergent sequence with the same *p*-limit.

Lemma 2.1 (See [16],[31]). A 4-dimensional triangle matrix $B = (b_{rstu})$ is RH-regular iff

$$\begin{array}{rcl} RH_{1} & : & p - \lim_{r,s \to \infty} b_{rstu} = 0 & \textit{for each} & t, u \in \mathbb{N}, \\ RH_{2} & : & p - \lim_{r,s \to \infty} \sum_{t,u} b_{rstu} = 1, \\ RH_{3} & : & p - \lim_{r,s \to \infty} \sum_{t} |b_{rstu}| = 0 & \textit{for each} & u \in \mathbb{N}, \\ RH_{4} & : & p - \lim_{r,s \to \infty} \sum_{u} |b_{rstu}| = 0 & \textit{for each} & t \in \mathbb{N}, \\ RH_{5} & : & \textit{There exists finite positive integers} & M_{1} & \textit{and} & M_{2} & \textit{such that} \\ & \sum_{t} |b_{rstu}| < M_{2}. \end{array}$$

It should be noted that the 4-dimensional Euler-totient matrix Φ^* described by (2.1) is RH-regular [14]. Now, we may continue with the following two theorems which are the essential in the study.

 $t, \overline{u > M_1}$

Theorem 2.1. The sets $\Phi^*(\mathcal{M}_u)$, $\Phi^*(\mathcal{C}_{bp})$ and $\Phi^*(\mathcal{C}_r)$ are the linear spaces which are linearly norm isomorphic to the spaces \mathcal{M}_{u} , \mathcal{C}_{bp} and \mathcal{C}_{r} , respectively, and are the Banach spaces with the norm

ī

$$\|x\|_{\Phi^{\star}(\mathcal{M}_{u})} = \|\Phi^{\star}x\|_{\infty} = \sup_{r,s\in\mathbb{N}} \left|\frac{1}{rs} \sum_{t|r,u|s} \varphi(t)\varphi(u)x_{tu}\right|.$$
(2.3)

Proof. To avoid the repetition of the similar statements, we give the proof only for the space $\Phi^*(\mathcal{M}_u)$. Since the initial assertion is routine verification and is easy to prove, we ignore its proof in here. To confirm the fact that $\Phi^*(\mathcal{M}_u)$ is linearly norm isomorphic to the space \mathcal{M}_u , we need to be sure the existence of a linear and norm preserving bijection between the spaces $\Phi^*(\mathcal{M}_u)$ and \mathcal{M}_u . For this purpose, let us take the transformation *B* defined from $\Phi^*(\mathcal{M}_u)$ into \mathcal{M}_u by $x \mapsto y = Bx$, where $y = (y_{rs})$ is the Φ^* -transform of the sequence $x = (x_{tu})$. The linearity of *B* is clear. Consider the equality $Bx = \theta$ which yields us that $x_{tu} = 0$ for every $t, u \in \mathbb{N}$. So, $x = \theta$. Therefore, *B* is injective. Let us consider $y \in \mathcal{M}_u$ and describe the double sequence $x = (x_{rs})$ by

$$x_{rs} = \sum_{t|r,u|s} \frac{\mu(\frac{r}{t})\mu(\frac{s}{u})}{\varphi(r)\varphi(s)} tuy_{tu}$$
(2.4)

for every $r, s \in \mathbb{N}$. By taking supremum over $r, s \in \mathbb{N}$ on the following equality

$$|(\Phi^{\star}x)_{rs}| = \left|\frac{1}{rs}\sum_{t|r,s|u}\varphi(t)\varphi(u)x_{tu}\right| = |y_{rs}|,$$

it can be derived that *B* is surjective and norm preserving.

Now, we may prove that $\Phi^*(\mathcal{M}_u)$ is a Banach space with the norm $\|.\|_{\Phi^*(\mathcal{M}_u)}$ described by (2.3). Since \mathcal{M}_u is a Banach space from [25], we obtain the desired result from Section (b) of Corollary 6.3.41 in [6].

Theorem 2.2. The set $\Phi^*(\mathcal{C}_p)$ is linearly isomorphic to the space \mathcal{C}_p and is a complete semi-normed space with the semi-norm

$$\|x\|_{\Phi^{\star}(\mathcal{C}_p)} = \lim_{i \to \infty} \left(\sup_{r,s \ge i} |(\Phi^{\star}x)_{rs}| \right).$$

Proof. Since the proof of the theorem is similar to the proof of Theorem 2.1, we ignore it.

Now, let us give our results about inclusion relations.

Theorem 2.3. The inclusion $\mathcal{M}_u \subset \Phi^*(\mathcal{M}_u)$ holds.

Proof. Let us take a sequence $x = (x_{tu}) \in \mathcal{M}_u$. In that case, there exists a positive real number M_3 such that $\sup_{t,u \in \mathbb{N}} |x_{tu}| \leq M_3$. Therefore, one can immediately see that

$$\begin{aligned} \|x\|_{\Phi^{\star}(\mathcal{M}_{u})} &= \sup_{r,s\in\mathbb{N}} \left| \frac{1}{rs} \sum_{t|r,u|s} \varphi(t)\varphi(u)x_{tu} \right| \\ &\leq \sup_{r,s\in\mathbb{N}} \left| \frac{1}{rs} \sum_{t|r,u|s} \varphi(t)\varphi(u) \right| |x_{tu}| \\ &\leq M_{3} \sup_{r,s\in\mathbb{N}} \left| \frac{1}{rs} \sum_{t|r,u|s} \varphi(t)\varphi(u) \right| = M_{3} \end{aligned}$$

Thus, the inclusion is valid.

Theorem 2.4. The inclusion $C_{bp} \subset \Phi^*(C_p)$ holds.

Proof. Let us take the sequence $x = (x_{tu}) \in C_{bp}$ with $p \lim_{t,u\to\infty} x_{tu} = L$. Since 4-dimensional Euler-totient matrix is RH-regular, $p \lim_{t,u\to\infty} y_{tu} = L$, where $(y_{tu}) = (\Phi^* x)_{tu}$. Hence, we see that $C_{bp} \subset \Phi^*(C_p)$.

3. Dual Spaces

In the current section, we tend to compute the α -, $\beta(\vartheta)$ - and γ -duals of the new double Euler-totient sequence spaces.

Theorem 3.1. The α -dual of the space $\Phi^*(\mathcal{M}_u)$ is \mathcal{L}_u .

Proof. Suppose that $c = (c_{rs}) \in {\Phi^*(\mathcal{M}_u)}^{\alpha}$ but $c \notin \mathcal{L}_u$. Then, $\sum_{r,s} |c_{rs}x_{rs}| < \infty$ for all $x = (x_{rs}) \in \Phi^*(\mathcal{M}_u)$. If we consider $e \in \Phi^*(\mathcal{M}_u)$, in that case $ce = c \notin \mathcal{L}_u$, that is $c \notin {\Phi^*(\mathcal{M}_u)}^{\alpha}$ and it is seen that this is a contradiction. Thus, c must be in \mathcal{L}_u .

Conversely, let us take sequences $c = (c_{rs}) \in \mathcal{L}_u$ and $x = (x_{rs}) \in \Phi^*(\mathcal{M}_u)$. In that case, there exists a double sequence $y = (y_{rs}) \in \mathcal{M}_u$ such that $y = \Phi^* x$ and $\sup_{r,s} |y_{rs}| < M_4$, where $M_4 \in \mathbb{R}^+$. Then, we have from the following inequality

$$\sum_{r,s} |c_{rs} x_{rs}| = \sum_{r,s} |c_{rs}| \left| \sum_{t \mid r,u \mid s} \frac{\mu(\frac{r}{t})\mu(\frac{s}{u})}{\varphi(r)\varphi(s)} tuy_{tu} \right|$$

$$\leq M_4 \sum_{r,s} |c_{rs}| \left| \sum_{t \mid r,u \mid s} \frac{\mu(\frac{r}{t})\mu(\frac{s}{u})}{\varphi(r)\varphi(s)} tu \right|$$

$$= M_4 \sum_{r,s} |c_{rs}| < \infty,$$

that $c \in (\Phi^{\star}(\mathcal{M}_u))^{\alpha}$ and this completes the proof.

Now, we give some lemmas which characterize the classes of 4-dimensional matrix mappings(see [16], [42] and [43]). With the help of these lemmas, we will calculate the $\beta(\vartheta)$, $\beta(bp)$, $\beta(p)$ and γ -duals of our new double sequence spaces.

Lemma 3.1. Suppose that $B = (b_{rstu})$ is a 4-dimensional infinite matrix. Then, $B \in (C_{bp} : C_{\vartheta})$ iff following conditions hold:

$$\sup_{r,s\in\mathbb{N}}\sum_{t,u}|b_{rstu}|<\infty,\tag{3.1}$$

$$\exists b_{tu} \in \mathbb{C} \ni \vartheta - \lim_{r,s \to \infty} b_{rstu} = b_{tu} \text{ for all } t, u \in \mathbb{N},$$
(3.2)

$$\exists L \in \mathbb{C} \ni \vartheta - \lim_{r,s \to \infty} \sum_{t,u} b_{rstu} = L \quad exists,$$
(3.3)

$$\exists t_0 \in \mathbb{N} \ni \vartheta - \lim_{r, s \to \infty} \sum_u |b_{rst_0u} - b_{t_0u}| = 0, \tag{3.4}$$

$$\exists u_0 \in \mathbb{N} \ni \vartheta - \lim_{r,s \to \infty} \sum_t |b_{rstu_0} - b_{tu_0}| = 0.$$
(3.5)

In the case of (3.5), $b = (b_{tu}) \in \mathcal{L}_u$ and

$$\vartheta - \lim_{r,s \to \infty} [Bx]_{rs} = \sum_{t,u} b_{tu} x_{tu} + \left(L - \sum_{t,u} b_{tu}\right) bp - \lim_{r,s \to \infty} x_{rs}$$

satisfies for $x \in C_{bp}$.

Lemma 3.2. Suppose that $B = (b_{rstu})$ is a 4-dimensional infinite matrix. Then, $B \in (C_p : C_\vartheta)$ iff (3.1)-(3.3) hold and the following conditions hold, too:

$$\forall t \in \mathbb{N}, \quad \exists u_0 \in \mathbb{N} \ni b_{rstu} = 0 \quad \text{for every} \quad u > u_0 \quad \text{and} \quad r, s \in \mathbb{N},$$
(3.6)

$$\forall u \in \mathbb{N}, \quad \exists t_0 \in \mathbb{N} \ni b_{rstu} = 0 \quad \text{for every} \quad t > t_0 \quad \text{and} \quad r, s \in \mathbb{N}.$$
(3.7)

In the case of (3.7), $\exists t_0, u_0 \in \mathbb{N}$ such that $b = (b_{tu}) \in \mathcal{L}_u$ and $(b_{tu_0})_{t \in \mathbb{N}}$, $(b_{t_0u})_{u \in \mathbb{N}} \in \zeta$, where ζ represents the space of every finitely sequences which are non-equivalent zero and

$$\vartheta - \lim_{r,s \to \infty} [Bx]_{rs} = \sum_{t,u} b_{tu} x_{tu} + \sum_{t} \left(L - \sum_{t,u} b_{tu} \right) p - \lim_{r,s \to \infty} x_{rs}$$

satisfies for $x \in C_p$.

Lemma 3.3. Suppose that $B = (b_{rstu})$ is a 4-dimensional infinite matrix. Then, $B \in (C_r : C_\vartheta)$ iff (3.1)-(3.3) hold and the following conditions hold, too:

$$\exists u_0 \in \mathbb{N} \ni \vartheta - \lim_{r,s \to \infty} \sum_t b_{rstu_0} = \rho_{u_0}, \tag{3.8}$$

$$\exists t_0 \in \mathbb{N} \ni \vartheta - \lim_{r,s \to \infty} \sum_u b_{rst_0u} = \varrho_{t_0}.$$
(3.9)

In the case of (3.9), $b = (b_{tu}) \in \mathcal{L}_u$ and $\rho_u, \varrho_t \in \ell_1$ and

$$\vartheta - \lim_{r,s\to\infty} [Bx]_{rs} = \sum_{t,u} b_{tu} x_{tu} + \sum_t \left(\varrho_t - \sum_u b_{tu} \right) x_t + \sum_u \left(\rho_u - \sum_t b_{tu} \right) x_u$$
$$+ \left(L + \sum_{t,u} b_{tu} - \sum_t \varrho_t - \sum_u \rho_u \right) r - \lim_{r,s\to\infty} x_{rs}$$

satisfies for $x \in C_r$.

Lemma 3.4. [36] Suppose that $B = (b_{rstu})$ is a 4-dimensional infinite matrix. Then, $B \in (C_{bp} : \mathcal{M}_u)$ iff the condition (3.1) hold.

Lemma 3.5. [12] Suppose that $B = (b_{rstu})$ is a 4-dimensional infinite matrix. Then, $B \in (\mathcal{M}_u : \mathcal{C}_{bp})$ iff the conditions (3.1), (3.2) hold and the following conditions hold, too:

$$\exists b_{tu} \in \mathbb{C} \ni bp - \lim_{r,s \to \infty} \sum_{tu} |b_{rstu} - b_{tu}| = 0,$$
(3.10)

$$bp - \lim_{r,s \to \infty} \sum_{u=0}^{s} b_{rstu}$$
 exists for each $t \in \mathbb{N}$, (3.11)

$$bp - \lim_{r,s\to\infty} \sum_{t=0}^{r} b_{rstu}$$
 exists for each $u \in \mathbb{N}$, (3.12)

$$\sum_{t,u} |b_{rstu}| \quad converges. \tag{3.13}$$

Lemma 3.6. [38] Suppose that $B = (b_{rstu})$ is a 4-dimensional infinite matrix. Then, $B \in (\mathcal{M}_u : \mathcal{M}_u)$ iff the condition (3.1) holds.

Lemma 3.7. [39] Suppose that $B = (b_{rstu})$ is a 4-dimensional infinite matrix. Then, $B \in (\mathcal{M}_u : \mathcal{C}_p)$ iff the conditions (3.2), (3.6) and (3.7) hold.

Lemma 3.8. [40] Suppose that $B = (b_{rstu})$ is a 4-dimensional infinite matrix. In that case:

(i) If $0 , then <math>B \in (\mathcal{L}_p : \mathcal{M}_u)$ iff

$$\sup_{r,s,t,u\in\mathbb{N}}|b_{rstu}|<\infty,\tag{3.14}$$

(ii) If $1 , then <math>B \in (\mathcal{L}_p : \mathcal{M}_u)$ iff

$$\sup_{r,s\in\mathbb{N}}\sum_{t,u}\left|b_{rstu}\right|^{p'}<\infty.$$
(3.15)

Lemma 3.9. [40] Suppose that $B = (b_{rstu})$ is a 4-dimensional infinite matrix. In that case:

- (i) If $0 , then <math>B \in (\mathcal{L}_p : \mathcal{C}_{bp})$ iff the conditions (3.2) and (3.14) hold with $\vartheta = bp$,
- (ii) If $1 , then <math>B \in (\mathcal{L}_p : \mathcal{C}_{bp})$ iff the conditions (3.2) and (3.15) hold.

Theorem 3.2. Consider the set w_1 defined by

$$w_1 = \left\{ c = (c_{rs}) \in \Omega : \sup_{r,s} \sum_{t,u} |\sigma(r,s,t,u,m,n)| < \infty \right\},\$$

where

$$\sigma(r,s,t,u,m,n) = \sum_{m=t,t|m}^{r} \sum_{n=u,u|n}^{s} \frac{\mu(\frac{m}{t})\mu(\frac{n}{u})}{\varphi(m)\varphi(n)} tuc_{mn}.$$

Then, $(\Phi^{\star}(\mathcal{C}_{bp}))^{\gamma} = w_1 = (\Phi^{\star}(\mathcal{M}_u))^{\gamma}.$

Proof. Suppose that $c = (c_{rs}) \in \Omega$ and $x = (x_{rs}) \in \Phi^*(\mathcal{C}_{bp})$. Then, we can conclude from (2.2) that $y = (y_{rs}) \in \mathcal{C}_{bp}$. Now, let us define the 4-dimensional matrix $O = (o_{rstu})$ by

$$o_{rstu} := \begin{cases} \sigma(r, s, t, u, m, n) &, t \mid m , u \mid n, \\ 0 &, \text{ otherwise,} \end{cases}$$

for every $r, s, t, u \in \mathbb{N}$. Therefore, we obtain by using the relation (2.4) that

$$z_{rs} = \sum_{t,u=1}^{r,s} c_{tu} x_{tu}$$

$$= \sum_{t,u=1}^{r,s} c_{tu} \left[\sum_{m|t,n|u} \frac{\mu(\frac{t}{m})\mu(\frac{u}{n})}{\varphi(t)\varphi(u)} mny_{mn} \right]$$

$$= \sum_{t,u=1}^{r,s} \left[\sum_{m=t,t|m}^{r} \sum_{n=u,u|n}^{s} \frac{\mu(\frac{m}{t})\mu(\frac{n}{u})}{\varphi(m)\varphi(n)} tuc_{mn} \right] y_{tu}$$

$$= (Oy)_{rs}$$
(3.16)

for every $r, s \in \mathbb{N}$. Then, by considering the equality (3.16), we deduce that $cx = (c_{rs}x_{rs}) \in \mathcal{BS}$ whenever $x \in \Phi^*(\mathcal{C}_{bp})$ iff $z = (z_{rs}) \in \mathcal{M}_u$ whenever $y \in \mathcal{C}_{bp}$. This leads us to the fact that $c = (c_{rs}) \in (\Phi^*(\mathcal{C}_{bp}))^{\gamma}$ iff $O \in (\mathcal{C}_{bp} : \mathcal{M}_u)$. Hence, we achieve that $(\Phi^*(\mathcal{C}_{bp}))^{\gamma} = w_1$. The other part of the theorem can be proven by using similar technique. So, we omit it. **Theorem 3.3.** Consider the sets $w_2 - w_{13}$ defined by

$$\begin{split} w_2 &= \left\{ c = (c_{rs}) \in \Omega : \exists b_{tu} \in \mathbb{C} \ni \vartheta - \lim_{r,s \to \infty} \sigma(r,s,t,u,m,n) = b_{tu} \right\}, \\ w_3 &= \left\{ c = (c_{rs}) \in \Omega : \exists L \in \mathbb{C} \ni \vartheta - \lim_{r,s \to \infty} \sum_{t,u} \sigma(r,s,t,u,m,n) = L \quad exists \right\}, \\ w_4 &= \left\{ c = (c_{rs}) \in \Omega : \exists u_0 \in \mathbb{N} \ni \vartheta - \lim_{r,s \to \infty} \sum_{t} |\sigma(r,s,t,u_0,m,n) - b_{tu_0}| = 0 \right\}, \\ w_5 &= \left\{ c = (c_{rs}) \in \Omega : \exists t_0 \in \mathbb{N} \ni \vartheta - \lim_{r,s \to \infty} \sum_{u} |\sigma(r,s,t_0,u,m,n) - b_{t_0u}| = 0 \right\}, \\ w_6 &= \left\{ c = (c_{rs}) \in \Omega : \forall t \in \mathbb{N}, \exists u_0 \in \mathbb{N} \ni \sigma(r,s,t,u,m,n) = 0, \forall u > u_0, \forall r, s \in \mathbb{N} \right\} \\ w_7 &= \left\{ c = (c_{rs}) \in \Omega : \forall u \in \mathbb{N}, \exists t_0 \in \mathbb{N} \ni \sigma(r,s,t,u,m,n) = 0, \forall t > t_0, \forall r, s \in \mathbb{N} \right\}, \\ w_8 &= \left\{ c = (c_{rs}) \in \Omega : \exists u_0 \in \mathbb{N} \ni \vartheta - \lim_{r,s \to \infty} \sum_{t} \sigma(r,s,t,u_0,m,n) = b_{u_0} \right\}, \\ w_9 &= \left\{ c = (c_{rs}) \in \Omega : \exists t_0 \in \mathbb{N} \ni \vartheta - \lim_{r,s \to \infty} \sum_{u} \sigma(r,s,t_0,u,m,n) = b_{t_0} \right\}, \\ w_{10} &= \left\{ c = (c_{rs}) \in \Omega : \exists b_{tu} \in \mathbb{C} \ni bp - \lim_{r,s \to \infty} \sum_{t,u} |\sigma(r,s,t,u,m,n) - b_{tu}| = 0 \right\}, \\ w_{11} &= \left\{ c = (c_{rs}) \in \Omega : \forall t \in \mathbb{N} \ni bp - \lim_{r,s \to \infty} \sum_{u=1}^s \sigma(r,s,t,u,m,n) - b_{tu} \right\}, \\ w_{12} &= \left\{ c = (c_{rs}) \in \Omega : \forall u \in \mathbb{N} \ni bp - \lim_{r,s \to \infty} \sum_{u=1}^r \sigma(r,s,t,u,m,n) - exists \right\}, \\ w_{13} &= \left\{ c = (c_{rs}) \in \Omega : \sum_{t,u} |\sigma(r,s,t,u,m,n)| - converges \right\}. \end{split}$$

In that case, following statements are satisfied:

- (i) $(\Phi^{\star}(\mathcal{C}_{bp}))^{\beta(\vartheta)} = \bigcap_{k=1}^{5} w_k,$ (ii) $(\Phi^{\star}(\mathcal{C}_p))^{\beta(\vartheta)} = \bigcap_{k=1}^{3} w_k \cap w_6 \cap w_7,$ (iii) $(\Phi^{\star}(\mathcal{C}_r))^{\beta(\vartheta)} = \bigcap_{k=1}^{3} w_k \cap w_8 \cap w_9,$
- $(iV) \ (\Phi^{\star}(\mathcal{M}_u))^{\beta(bp)} = w_1 \cap w_2 \bigcap_{k=10}^{13} w_k,$
- (V) $(\Phi^{\star}(\mathcal{M}_u))^{\beta(p)} = w_2 \cap w_6 \cap w_7.$

Proof.

(i) Suppose that $c = (c_{rs}) \in \Omega$ and $x = (x_{rs}) \in \Phi^*(\mathcal{C}_{bp})$. In that case, there exists a double sequence $y = (y_{rs}) \in \mathcal{C}_{bp}$ with $\Phi^*x = y$. Since (3.16) holds, we deduce that $cx \in \mathcal{CS}_\vartheta$ whenever $x \in \Phi^*(\mathcal{C}_{bp})$ iff $z \in \mathcal{C}_\vartheta$ whenever $y \in \mathcal{C}_{bp}$. This leads us to the fact that $c = (c_{rs}) \in (\Phi^*(\mathcal{C}_{bp}))^{\beta(\vartheta)}$ iff $O \in (\mathcal{C}_{bp} : \mathcal{C}_\vartheta)$. Therefore, the conditions of Lemma 3.1 are satisfied with $O = (o_{rstu})$ defined as in Theorem 3.2. Hence, we achieve that the $\beta(\vartheta)$ -dual of the space $\Phi^*(\mathcal{C}_{bp})$ is $\bigcap_{k=1}^5 w_k$.

The other parts of the Theorem can be done analogously by using the Lemmas 3.2, 3.3, 3.5 and 3.7, respectively. So, we pass the details. \Box

4. Charactarization of Some Classes of 4-Dimensional Matrices

In the current section, we deal with some 4-dimensional matrix mapping classes related to the double sequence spaces $\Phi^*(\mathcal{M}_u)$, $\Phi^*(\mathcal{C}_p)$, $\Phi^*(\mathcal{C}_{bp})$ and $\Phi^*(\mathcal{C}_r)$ by using dual summability methods for double sequences which have been presented and examined by Başar [4] and Yeşilkayagil and Başar [37] and which have been applied by Tu \bar{g} [36].

Theorem 4.1. Assume that the elements of 4-dimensional infinite matrices $B = (b_{rstu})$ and $H = (h_{rstu})$ are connected with the relation

$$h_{rstu} = \sum_{m=t,t|m}^{\infty} \sum_{n=u,u|n}^{\infty} \frac{\mu(\frac{m}{t})\mu(\frac{n}{u})}{\varphi(m)\varphi(n)} tub_{rsmn}.$$
(4.1)

 $Then, B \in (\Phi^{\star}(\Psi) : \Lambda) \text{ iff } B_{rs} \in [\Phi^{\star}(\Psi)]^{\beta(\vartheta)} \text{ for every } r, s \in \mathbb{N} \text{ and } H \in (\Psi : \Lambda), \text{ where } \Psi \text{ and } \Lambda \in \{\mathcal{M}_u, \mathcal{C}_p, \mathcal{C}_{bp}, \mathcal{C}_r\}.$

Proof. Assume that $B \in (\Phi^*(\Psi) : \Lambda)$. In that case, Bx exists and is in Λ for every $x \in \Phi^*(\Psi)$ and it also implies that $B_{rs} \in [\Phi^*(\Psi)]^{\beta(\vartheta)}$ for every $r, s \in \mathbb{N}$. Thus, we have the following equality derived from partial sums of the series $\sum_{t,u} b_{rstu} x_{tu}$ with relation (2.4)

$$\sum_{t,u=1}^{i,j} b_{rstu} x_{tu} = \sum_{t,u=1}^{i,j} b_{rstu} \left[\sum_{m|t,n|u} \frac{\mu(\frac{t}{m})\mu(\frac{u}{n})}{\varphi(t)\varphi(u)} mny_{mn} \right]$$
$$= \sum_{t,u=1}^{i,j} \left[\sum_{m=t,t|m}^{i} \sum_{n=u,u|n}^{j} \frac{\mu(\frac{m}{t})\mu(\frac{n}{u})}{\varphi(m)\varphi(n)} tub_{rsmn} \right] y_{tu}$$

for every $i, j \in \mathbb{N}$. In that case, if we take ϑ -limit on equality above as $i, j \to \infty$, we have Bx = Hy. Therefore, we obtain that $Hy \in \Lambda$ whenever $y \in \Psi$, that is $H \in (\Psi : \Lambda)$.

Conversely, suppose that $B_{rs} \in [\Phi^*(\Psi)]^{\beta(\vartheta)}$ for every $r, s \in \mathbb{N}$, $H \in (\Psi : \Lambda)$ and $x \in \Phi^*(\Psi)$ such that $y = \Phi^* x$. In that case, Bx exists and therefore, the (k, l)th rectangular partial sums of the series $\sum_{t,u} b_{rstu} x_{tu}$ obtained as

$$(Bx)_{rs}^{[k,l]} = \sum_{t,u=1}^{k,l} b_{rstu} x_{tu}$$

$$= \sum_{t,u=1}^{k,l} b_{rstu} \left[\sum_{m|t,n|u} \frac{\mu(\frac{t}{m})\mu(\frac{u}{n})}{\varphi(t)\varphi(u)} mny_{mn} \right]$$

$$= \sum_{t,u=1}^{k,l} \left[\sum_{m=t,t|m}^{k} \sum_{n=u,u|n}^{l} \frac{\mu(\frac{m}{t})\mu(\frac{n}{u})}{\varphi(m)\varphi(n)} tub_{rsmn} \right] y_{tu}$$
(4.2)

for every $r, s, k, l \in \mathbb{N}$. By taking ϑ -limit on (4.2) while $k, l \to \infty$, it can be easily obtain from the following equality

$$\sum_{t,u} b_{rstu} x_{tu} = \sum_{t,u} h_{rstu} y_{tu}$$

for every $r, s \in \mathbb{N}$ that Bx = Hy which leads us to the fact that $B \in (\Phi^*(\Psi) : \Lambda)$.

Corollary 4.1. Suppose that $B = (b_{rstu})$ is a 4-dimensional matrix. In that case the following statements are satisfied: (i) $B \in (\Phi^*(\mathcal{C}_p) : \mathcal{C}_\vartheta)$ iff the conditions (3.1)-(3.3), (3.6) and (3.7) are satisfied with h_{rstu} in place of b_{rstu} ,

(ii) $B \in (\Phi^*(\mathcal{C}_{bp}) : \mathcal{C}_{\vartheta})$ iff the conditions (3.1)-(3.5) are satisfied with h_{rstu} in place of b_{rstu} ,

(iii) $B \in (\Phi^*(\mathcal{C}_{bp}) : \mathcal{M}_u)$ iff the condition (3.1) is satisfied with h_{rstu} in place of b_{rstu} ,

(iv) $B \in (\Phi^*(\mathcal{C}_r) : \mathcal{C}_\vartheta)$ iff the conditions (3.1)-(3.3), (3.8) and (3.9) are satisfied with h_{rstu} in place of b_{rstu} ,

(v) $B \in (\Phi^*(\mathcal{M}_u) : \mathcal{C}_{bp})$ iff the conditions (3.1), (3.2), (3.10)-(3.13) are satisfied with h_{rstu} in place of b_{rstu} ,

(vi) $B \in (\Phi^*(\mathcal{M}_u) : \mathcal{C}_p)$ iff the conditions (3.2), (3.6) and (3.7) are satisfied with h_{rstu} in place of b_{rstu} .

Lemma 4.1. [40] Let Ψ and Λ be two double sequence spaces, $B = (b_{rstu})$ be any 4-dimensional matrix and $F = (f_{rstu})$ also be a 4-dimensional triangle matrix such that $f_{rstu} = 0$ if t > r and u > s for every $r, s, t, u \in \mathbb{N}$. In that case, $B \in (\Psi : \Lambda_F)$ iff $FB \in (\Psi : \Lambda)$.

Now, let us define the 4-dimensional matrix $G = (g_{rstu})$ by

$$g_{rstu} = \sum_{m|r,n|s} \phi_{rsmn}^{\star} b_{mntu}$$

for every $r, s, t, u \in \mathbb{N}$ and give following corollary.

Corollary 4.2. Suppose that $B = (b_{rstu})$ is a 4-dimensional matrix. In that case the following statements are satisfied: (i) $B \in (C_p : \Phi^*(C_{\vartheta}))$ iff the conditions (3.1)-(3.3), (3.6) and (3.7) are satisfied with g_{rstu} in place of b_{rstu} , (ii) $B \in (C_{bp} : \Phi^*(C_{\vartheta}))$ iff the conditions (3.1)-(3.5) are satisfied with g_{rstu} in place of b_{rstu} , (iii) $B \in (C_r : \Phi^*(C_{\vartheta}))$ iff the conditions (3.1)-(3.3), (3.8) and (3.9) are satisfied with g_{rstu} in place of b_{rstu} , (iv) $B \in (\mathcal{L}_p : \Phi^*(\mathcal{C}_{\vartheta}))$ iff the conditions (3.1)-(3.3), (3.8) and (3.9) are satisfied for $0 and <math>\vartheta = bp$ with g_{rstu} in place of b_{rstu} , (v) $B \in (\mathcal{L}_p : \Phi^*(\mathcal{C}_{bp}))$ iff the conditions (3.2) and (3.14) are satisfied for $1 and <math>\vartheta = bp$ with g_{rstu} in place of b_{rstu} , (vi) $B \in (\mathcal{L}_p : \Phi^*(\mathcal{M}_u))$ iff the condition (3.14) is satisfied for $0 with <math>g_{rstu}$ in place of b_{rstu} , (vii) $B \in (\mathcal{L}_p : \Phi^*(\mathcal{M}_u))$ iff the condition (3.15) is satisfied for $1 with <math>g_{rstu}$ in place of b_{rstu} , (viii) $B \in (\mathcal{M}_u : \Phi^*(\mathcal{C}_p))$ iff the conditions (3.1),(3.2), (3.10)-(3.13) are satisfied with g_{rstu} in place of b_{rstu} , (viii) $B \in (\mathcal{M}_u : \Phi^*(\mathcal{C}_p))$ iff the conditions (3.2), (3.6) and (3.7) are satisfied with g_{rstu} in place of b_{rstu} , (ix) $B \in (\mathcal{M}_u : \Phi^*(\mathcal{C}_p))$ iff the conditions (3.2), (3.6) and (3.7) are satisfied with g_{rstu} in place of b_{rstu} , (x) $B \in (\mathcal{C}_{bp} : \Phi^*(\mathcal{M}_u))$ iff the condition (3.1) is satisfied with g_{rstu} in place of b_{rstu} .

References

- Adams, C.R.: On non-factorable transformations of double sequences. Proc. Natl. Acad. Sci. USA. 19 (5), 564-567 (1933).
- [2] Alp, P.Z., İlkhan, M.: On the difference sequence space $\ell_p(\hat{T}^p)$. Math. Sci. Appl. E-Notes. 7 (2), 161-173 (2019).
- [3] Altay, B., Başar, F.: Some new spaces of double sequences. J. Math. Anal. Appl. 309 (1), 70-90 (2005).
- [4] Baṣar, F.: Summability Theory and Its Applications. Bentham Science Publishers. e-book. Monographs. Istanbul (2012).
- [5] Başar, F., Sever, Y.: The space \mathcal{L}_a of double sequences. Math. J. Okayama Univ. 51, 149-157 (2009).
- [6] Boss, J.: Classical and Modern Methods in Summability. Oxford University Press. Newyork, (2000).
- [7] Candan, M.: A New Approarch on the Spaces of Generalized Fibonacci Difference Null and Convergent Sequences. Math. Aeterna. 5 (1), 191-210 (2015).
- [8] Candan, M., Güneş, A.: Paranormed sequence space of non-absolute type founded using generalized difference matrix. Proceedings of the National Academy of Sciences. India Section A. 85 (2), 269-276 (2015).
- [9] Candan, M.: Some new sequence spaces derived from the spaces of bounded, convergent and null sequences. Int. J. Mod. Math. Sci. 12 (2), 74-87 (2014).
- [10] Candan, M.: A new perspective on paranormed Riesz sequence space of non-absolute type. Global J. Math. Anal. 3 (4), 150-163 (2015).
- [11] Cooke, R.C.: Infinite Matrices and Sequence Spaces. Macmillan and Co. Limited. London (1950).
- [12] Çakan, C., Altay, B., Mursaleen, M.: *The* σ *-convergence and* σ *-core of double sequences*. Appl. Math. Lett. 19, 387-399 (2006).

- [13] Demiriz, S., Duyar, O.: *Domain of the Cesàro mean matrix in some paranormed spaces of double sequences.* Contemp. Anal. Appl. Math. **3** (2), 247-262 (2015).
- [14] Demiriz, S., Erdem, S.: Domain of Euler-Totient Matrix Operator in the Space \mathcal{L}_p . Korean J. Math. 28 (2), 361-378 (2020).
- [15] Güleç, G.C.H., İlkhan, M.: A New Paranormed Series Space Using Euler Totient Means and Some Matrix Transformations. Korean J. Math. 28 (2), 205-221 (2020).
- [16] Hamilton, H.J.: Transformations of multiple sequences. Duke Math. J. 2, 29-60 (1936).
- [17] İlkhan, M.: *Matrix domain of a regular matrix derived by Euler totient function in the spaces* c_0 *and c.* Mediterr. J. Math. 17, Article No: 27 (2020).
- [18] İlkhan, M., Kara, E. E.: A New Banach Space Defined by Euler Totient Matrix Operator. Operators and Matrices. 13 (2), 527-544 (2019).
- [19] İlkhan, M., Demiriz, S., Kara, E. E.: *A new paranormed sequence space defined by Euler totient matrix*. Karaelmas Science and Engineering Journal. 9 (2), 277-282 (2019).
- [20] Kara, E. E.: Some topological and geometrical properties of new Banach sequence spaces. J. Inequal. Appl. 38, 15 pages (2013).
- [21] Kara, E.E., İlkhan, M.: *On some Banach sequence spaces derived by a new band matrix*. British Journal of Mathematics and Computer Science. 9 (2), 141-159 (2015).
- [22] Kara, E.E., İlkhan, M.: Some properties of generalized Fibonacci sequence spaces. Linear and Multilinear Algebra. 64 (11), 2208-2223 (2016).
- [23] Kılınç, G., Candan, M.: Some generalized Fibonacci difference spaces defined by a sequence of modulus functions. Facta Universitatis. Series: Mathematics and Informatics. **32** (1), 95-116 (2017).
- [24] Kovac, E.: On φ convergence and φ density. Mathematica Slovaca. 55, 329-351 (2005).
- [25] Moricz, F.: Extensions of the spaces c and c₀ from single to double sequences. Acta Math. Hungar. 57, 129-136 (1991).
- [26] Mursaleen, M.: Almost strongly regular matrices and a core theorem for double sequences. J. Math. Anal. Appl. 293 (2), 523-531 (2004).
- [27] Mursaleen, M., Basar, F.: Domain of Cesàro mean of order one in some spaces of double sequences. Stud. Sci. Math. Hungar. 51 (3), 335-356 (2014).
- [28] Mursaleen, M., Mohiuddine, S. A.: Convergence Methods for Double Sequences and Applications. Springer. New Delhi. Heidelberg. New York. Dordrecht. London (2014).
- [29] Niven, I., Zuckerman, H.S., Montgomery, H.L.: An introduction to the theory of numbers. (5. Edition). Wiley, New York (1991).
- [30] Pringsheim, A.: Zur Theorie der zweifach unendlichen Zahlenfolgen. Math. Ann. 53, 289-321 (1900).
- [31] Robison, G. M.: Divergent double sequences and series. Amer. Math. Soc. Trans. 28, 50-73 (1926).
- [32] Schaefer, H.H.: Topological Vector Spaces. Graduate Texts in Matematics. 3. 5th printing (1986).
- [33] Schoenberg, I.: *The integrability of certain functions and related summability methods*. The American Monthly. **66**, 361-375 (1959).
- [34] Stieglitz, M., Tietz, H.: Matrix transformationen von folgenraumen eine ergebnisbersicht. Mathematische Zeitschrift. 154, 1-16 (1977).
- [35] Talebi, G.: *Operator norms of four-dimensional Hausdorff matrices on the double Euler sequence spaces.* Linear and Multilinear Algebra. **65** (11), 2257-2267 (2017).

- [36] Tuĝ, O.: *Four-dimensional generalized difference matrix and some double sequence spaces.* J. Inequal. Appl. 2017, 149 (2017).https://doi.org/10.1186/s13660-017-1423-y
- [37] Yeşilkayagil, M., Başar, F.: *Four dimensional dual and dual of some new sort summability methods.* Contemp. Anal. Appl. Math. **3** (1), 13-29 (2015).
- [38] Yeşilkayagil, M., Başar, F.: Mercerian theorem for four dimensional matrices. Commun. Fac. Sci. Univ. Ank. Ser. A1. 65 (1), 147-155 (2016).
- [39] Yeşilkayagil, M., Başar, F.: On the characterization of a class of four dimensional matrices and Steinhaus type theorems. Kragujev. J. Math. 40 (1), 35-45 (2016).
- [40] Yeşilkayagil, M., Başar, F.: Domain of Riesz Mean in the Space \mathcal{L}_s . Filomat. 31 (4), 925-940 (2017).
- [41] Zeltser, M.: Investigation of double sequence spaces by soft and hard analitic methods. Dissertationes Mathematicae Universitaties Tartuensis. Tartu University Press. Univ. of Tartu. Faculty of Mathematics and Computer Science. 25, Tartu, (2001).
- [42] Zeltser, M.: On conservative matrix methods for double sequence spaces. Acta Math. Hung. 95 (3), 225-242 (2002).
- [43] Zeltser, M., Mursaleen, M., Mohiuddine, S. A.: *On almost conservative matrix mathods for double sequence spaces*. Publ. Math. Debrecen. **75**, 387-399 (2009).

Affiliations

SEZER ERDEM **ADDRESS:** Farabi Anatolian Imam Hatip High School, 44400, Malatya-Turkey. **E-MAIL:** sezererdem8344@gmail.com **ORCID ID:0000-0001-9420-8264**

SERKAN DEMIRIZ **ADDRESS:** Tokat Gaziosmanpaşa University, Department of Mathematics, 60250, Tokat-Turkey. **E-MAIL:** serkandemiriz@gmail.com **ORCID ID:0000-0002-4662-6020**