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Abstract

Our main purpose in this study is to investigate the matrix domains of the 4-dimensional Euler-totient
matrix operator on the classical double sequence spaces M, Cp, Cy, and C,.. Besides these, we examine
their topological and algebraic properties and give inclusion relations about the new spaces. Also, the a—,
B(¥)— and y—duals of these spaces are determined and finally, some matrix classes are characterized.
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1. Preliminaries, Background and Notations

The function f described by f : N x N — @, (¢,u) — f(t, u) = zy, is entitled as double sequence, where p denotes
any nonempty set and N = {1, 2, ...}. Q2 stands for the set of all complex valued double sequences. It is well known
that this set is a vector space with coordinatewise addition and scalar multiplication. Any linear subspace of () is
called as double sequence space. The set of all bounded complex valued double sequences is symbolized with M,,,
that is,

My = {i = 01) € 2 il = sup o] < o0},
t,ueN

It should be noted that M, is a Banach space with the norm ||z|«.. We say that the double sequence = = (z;,)
is convergent in the Pringsheim’s sense provided that for every ¢ > 0 there exists n. € N such that |z, — L| < ¢
whenever ¢, u > n.. In that case, L € C is called the Pringsheim limit of x and stated by p — limy 4,00 T4y = L; where
C denotes the complex field. C, represents the space of all such « which are called shortly as p-convergent. Of
particular interest is unlike single sequences, p-convergent double sequences need not be bounded. For example, if
we consider the sequence © = (zy,,) identified by

1 2 3 U
2 00 0
3 0 0 0
Tty = S
t 0 0 0

it can easily seen that p — lim z;,, = 0 but ||zl = 0. As a conclusion = € C, — M,,. The bounded sequences which
are also p-convergent are indicated by Cy,, that is, C,, = C, N M,,. A double sequence = = (z,) € C, is called as
reqularly convergent if the limits z; := lim,, x,, (t € N) and z,, := lim; 4, (u € N) exist, and the limits lim; lim,, x4,
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and lim,, lim; x4, exist and are equivalent to the p—lim of z. The space of all regularly convergent double sequences is
denoted by C,. Obviously, the regular convergence of a double sequence « implies the convergence in Pringsheim’s
sense as well as the boundedness of the terms of z, but the converse implication fails. A sequence z = (z4,) is
called double null sequence if it converges to zero. Additionally, all double null sequences in the spaces Cy, and C, are
denoted by Cy,0 and C,, respectively. Moricz [25] showed that the spaces Cyp, Cppo, Cr and C,g are Banach spaces
endowed with the norm ||. || 0.

Let us take any = € Q and describe the sequence K = (k) defined by

rs :*sztua T.SEN)'

t=1 u=1

In that case, the pair ((z,s), (k,s)) is entitled as double series. Here, the sequence K = (k) is the sequence of partial
sums of the double series.

Consider the double sequence space ¥ converging with respect to some linear convergence rule ¥ — lim : ¥ — C.
The sum of a double series ", u Ttu relating to this rule is defined by ¥ — >, Tty = ¥ — limy 5,0 Srs. Here and
thereafter, when needed we will use the summation >, instead of 3777, Zu 1, assume that ¥ € {p,bp,r} and
p’ denotes the conjugate of p, thatis, p’ = p/(p — 1) for 1 < p < co. With the notatlon of Zeltser [42], we describe
the double sequences e¢"* = (e}5) and e by €] = 1if (r,s) = (¢t,u) and ¢;’; = 0 otherwise, and e = ) e"*
(coordinatewise convergence) for every r, s, t,u € N. ' 7

The a—dual ¥, 3(9)—dual YY) with respect to the /—convergence and the y—dual ¥” of a double sequence
space ¥ are described as

U = {c = (ctu) € Q: Z |ctuZin| < 00 forall (a4,) € \I/},
t,u
(IO {c = (Cty) €Q: 0 — Zcmxm exists for all (xy,) € \I!},
t,u
vr o= {c = (cty) € Q: sup Z CtuTry| < 0o forall (z4,) € \11}7
r,s€N tu=1

respectively. It is well known that ¥* C W7 and if ¥ C A, then A% C ¥* for the double sequence spaces ¥ and A.

Let us remember the definition of triangle matrix. If b,5, = 0 for ¢ > 7 or v > s or both for every r, s,t,u € N, it
is said that B = (byst.,) is a triangular matrix and also if b,.,.s # 0 for every r, s € N, then the 4-dimensional matrix B
is called triangle. It should be noted by [11] that, every triangle has a unique inverse which is also a triangle.

Now, we shall deal with matrix mapping. Let us consider double sequence spaces ¥ and A and the 4-dimensional
complex infinite matrix B = (b,s1,,). In that case, we say that B defines a matrix mapping from ¥ into A and it is
written as B : ¥ — A, if for every sequence x = (zy,) € ¥, the B-transform Bz = {(Bzx),s}, sen of x exists and is in
A; where

Bm)TS = - Z brstuTiu, (11)

foreach r,s € N. (¥ : A) stands for the class of all 4-dimensional complex infinite matrices from a double sequence
space V¥ into a double sequence space A. Inthat case, B € (¥ : A) ifand onlyif B, s € U8 where B, = (brstu)tueN
forallr,s € N.

The ¥-summability domain \I/ ) of a 4-dimensional complex infinite matrix B in a double sequence space ¥
consists of whose B-transforms are in ¥; that is,

\Ilg) = x=(ry) €Q: Bx:= (19 - Z bTStuactu) exists and is in ¥
r,s€EN

tu

In the past, many authors were interested in double sequence spaces. Now, let us give some information about
these studies. Zeltser [41] has fundamentally examined both the topological structure and the theory of summability
of double sequences in her doctoral dissertation. Recently, Altay and Basar [3] defined the double sequence spaces
BS, BS(t), CS,, CSyp, CS, and BY of double series whose sequences of partial sums are in the spaces M,,, M, (t),
Cp, Cop, Cr and L, respectively, and also examined some properties of those spaces. Later, in [5], Basar and Sever
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have defined the set £, of all absolutely p-summable double sequences which is a Banach space with the norm
|.lz, defined in the following way:
H'”ﬁp = (Z |$tu|p> .

t,u

It is also significant that the double sequence space £, which was defined by Zeltser [42] is the special case of
the space £, for p = 1. For more details about the double sequences and related topics, the reader may refer to
[1,3-5,13,25-28, 31, 35-40, 43] and references therein.

In the rest of the study, ¢ and u represent Euler function and the Mobius function, respectively. For every
r € Nwith r > 1, ¢(r) is the number of positive integers less than » which are coprime with r and ¢(1) = 1. If

a1” as®2a3...a,," is the prime factorization of a natural number r > 1, then
1 1 1 1
=r(l——)(1——)(1——)...(1——).
o)== D)1 - )1 - D)0 - )
Also, the equality
r=> ot
tlr

holds for every r € N and ¢(r17m2) = ¢(r1)p(r2), where ri,r2 € N are coprime. Given any r € Nwithr > 1, pis
defined as

(=)™ , ifr =ajas...an,, where ajas...a,, are
p(r) = non-equivalent prime numbers
0 ., if a® | r for some prime number a,

and u(1) = 1. If a1*1azxb2azb...a,, " is the prime factorization of a naturel number r > 1, in this fact,

> tu(t) = (1—a)(1 - az)(1 — az)..(1 — ap).

t|r

If r # 1, then the equality

> ) =0

tlr

holds and p(r1re) = u(r1)u(re), where r1, 72 € N are coprime.

By using the regular 2-dimensional Euler-totient matrix ®, the Euler-totient sequence spaces ¢,,(®) and ¢ (®)
which consist of all sequences whose ®-transforms are in the spaces ¢,, of absolutely p-summable and /., of bounded
single sequences are introduced and examined by Ilkhan and Kara [18].

The target of the existing study is to acquaint the matrix domains of the 4-dimensional Euler-totient matrix on
some classical double sequence spaces.

2. Domain of Euler-Totient Matrix in Some Spaces of Double Sequences

In this section, we introduce the double sequence spaces ®*(M,,), ®*(C,), ®*(Cyp) and ®*(C,) by using the
4-dimensional Euler-totient matrix ®* and give some properties and results on theese spaces.

In [14], we have defined the 4-dimensional matrix ®* = (¢7,, ) which is called Euler-totient matrix operator as
follows:

t
p(t)p(u) e uls
¢:stu = s (21)
0 , otherwise,

for every r, s,t,u € N. Thus, it is clear that ®* is a triangle and the ®*-transform of a double sequence = = () is
given by

hro = @), = = 3 o), 22)

tlruls
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for every r,s € N. Throughout the article, we suppose that the terms of the double sequences x = (z,s) and
y = (yrs) are connected with the relation (2.2).
The inverse (®*) ' = (¢*7.1,,) of the triangle matrix ®* is calculated as

rstu
r s
wtu , t | r,u ‘ s,
(23**1 — @(7’)@(5)
rstu *
0 , otherwise,

for every r,s,t,u € N. We introduce the sequence spaces ®*(M,,), ®*(C,), *(Cyp,) and ®*(C,) as the sets of all
double sequences such that ®*-transforms of them are in the spaces M, C,, Cyp and C,, that is,

1
" u = = (Trs Q: — t Ttq ,
(M) 7= (o) €Q: sup | t|Z|-S0( )p ()4 | < 00
d*(C = = Q:dLeC li ! t Li=0
C) = {ax=(x,5)€Q:3L € 5p— lim mtlzl p(t)p(u)ziw — L =0,
. 1
O (Cpp) = x=(Trs) €EQ: | — et)p(w)zp | € Cop ¢,
tlr,uls
* 1
2C) = {e=(@)en: (L3 elpwr | e,
tlr,uls

It is immediately seen that ®*(M,,), ®*(C,), ®*(Cy,) and ®*(C,.) are the domains of the 4-dimensional Euler-
totient matrix ®* in the spaces M,,, C,, Cpp, and C,, respectively.

If ¥ is any normed double sequence space, then we call the matrix domain ®*(¥) as the double Euler-totient
sequence space.

Definition 2.1 (See [16],[31]). A 4-dimensional matrix B is said to be RH-regular if it maps every bounded p-
convergent sequence into a p-convergent sequence with the same p-limit.

Lemma 2.1 (See [16],[31]). A 4-dimensional triangle matrix B = (byst,,) is RH-regular iff
RHy : p— lm bys, =0 foreach t,ueN,

r,8—00

RHy : p-— r,}elgloo tz: brstu = 1,
RH; : p-— Téigoo Zt: |brstw| =0 foreach w €N,
RH, : p-— Téigéo Z |brsiu| =0 foreach teN,

RHs :  There exists finite positive integers M, and My such that
Z |brstu|<M2~

t,u>My

It should be noted that the 4-dimensional Euler-totient matrix ®* described by (2.1) is RH-regular [14].
Now, we may continue with the following two theorems which are the essential in the study.

Theorem 2.1. The sets *(M,,), ®*(Cyp) and *(C,.) are the linear spaces which are linearly norm isomorphic to the spaces
My, Cyp and C,., respectively, and are the Banach spaces with the norm

N 1
2l () = 19"l = sup [— > @)p(u)aw|. (2.3)
r,seN | T8 tlr,uls
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Proof. To avoid the repetition of the similar statements, we give the proof only for the space ®*(M,,). Since the
initial assertion is routine verification and is easy to prove, we ignore its proof in here. To confirm the fact that
®*(M,) is linearly norm isomorphic to the space M,, we need to be sure the existence of a linear and norm
preserving bijection between the spaces ®*(M,,) and M,,. For this purpose, let us take the transformation B defined
from ®*(M,,) into M, by = — y = Bx, where y = (y,5) is the ®*-transform of the sequence x = (2, ). The linearity
of B is clear. Consider the equality Bz = 6 which yields us that z;, = 0 for every ¢, u € N. So, = 0. Therefore, B is
injective. Let us consider y € M,, and describe the double sequence z = () by

S

o ),

tlr,uls

for every r, s € N. By taking supremum over r, s € N on the following equality

|((I)*x)rs| = é Z Qp(t)@(u)xtu = |yrs|7

tr,slu

it can be derived that B is surjective and norm preserving.
Now, we may prove that ®*(M,,) is a Banach space with the norm ||.|| ¢+ (4, ) described by (2.3). Since M, is a
Banach space from [25], we obtain the desired result from Section (b) of Corollary 6.3.41 in [6]. O

Theorem 2.2. The set *(C,) is linearly isomorphic to the space C,, and is a complete semi-normed space with the semi-norm

fello-cep = i (sup [(8°2),.]).

r,8>1

Proof. Since the proof of the theorem is similar to the proof of Theorem 2.1, we ignore it.

Now, let us give our results about inclusion relations.
Theorem 2.3. The inclusion M,, C ®*(M,,) holds.

Proof. Let us take a sequence x = (z4,) € M,. In that case, there exists a positive real number M3 such that
Sup; yen |Ztu| < M. Therefore, one can immediately see that

1
2l e p,y = Sub 1S Z p(t)p(u) ey
’ tlr,uls

1
< - " L
- rs,;lepN rs Z et)p(u)| |1l

tlr,uls

1
Ms:;JEPN P Z p(t)p(u)| = Ms.

IN

tlruls

Thus, the inclusion is valid. O

Theorem 2.4. The inclusion Cy, C ®*(C,) holds.

Proof. Let us take the sequence x = (xt,,) € Cpp With plimy y_,cc T4, = L. Since 4-dimensional Euler-totient matrix is
RH-regular, plimy 400 Y1, = L, where (y1,,) = (2*2),. Hence, we see that Cp,, C 2*(C,). O
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3. Dual Spaces

In the current section, we tend to compute the a—, 5(¢)— and y—duals of the new double Euler-totient sequence
spaces.

Theorem 3.1. The a-dual of the space ®*(M.,,) is L.

Proof. Suppose that ¢ = (¢,5) € {®P*(M,)}* butc ¢ L,. Then, )" _|crs2rs| < oo for all z = (z,5) € P*(M,,). If we
consider e € ®*(M,,), in that case ce = ¢ ¢ L, thatis ¢ ¢ {®*(M,)}* and it is seen that this is a contradiction.
Thus, ¢ must be in £,,.

Conversely, let us take sequences ¢ = (¢,5) € £, and = = (z,5) € ®*(M,,). In that case, there exists a double
sequence y = (y,5) € M, such that y = ®*x and sup,. , |y,s| < My, where M, € R*. Then, we have from the
following inequality

Sl = | T HLD,

21| 2 or)els)
pE)
< M lel] 2 SR

= M4Z|Crs| < 00,

that ¢ € (9*(M,,))” and this completes the proof. O

Now, we give some lemmas which characterize the classes of 4-dimensional matrix mappings(see [16], [42]
and [43]). With the help of these lemmas, we will calculate the 3(9), 5(bp), 8(p) and y-duals of our new double
sequence spaces.

Lemma 3.1. Suppose that B = (b, g,,) is a 4-dimensional infinite matrix. Then, B € (Cyp, : Cy) iff following conditions hold:

sup Z |brstu| < 00, (3.1)
r,se€N tu
by, € C3 09— lim bpgpy = by forall t,u €N, (3.2)
,8—00
JLEeC50— lm Y by =L exists, (3.3)
7,8—>00 P
o €NSY - lim > Ibrstou — bioul =0, (3.4)
u
Jug NSV~ lim > Ibrstug — brug| = 0. (3.5)
t

In the case of (3.5), b = (by,) € L, and

o= i (8] = e+ (£ St
u

tu
satisfies for x € Cpp.

Lemma 3.2. Suppose that B = (bys1,,) is a 4-dimensional infinite matrix. Then, B € (C, : Cy) iff (3.1)-(3.3) hold and the
following conditions hold, too:

VieN, Jug € NSbgy, =0 forevery w>wug and r,s €N, (3.6)
VueN, FtogeNDbuy, =0 forevery t>ty and r,s€N. (3.7)

In the case of (3.7), 3to, uo € N such that b = (by,) € Ly, and (biy, )ren, (bigu)uen € ¢, where ¢ represents the space of every
finitely sequences which are non-equivalent zero and

AT AR ol (55 ol FRN e
U

t,u t
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satisfies for x € C,.

Lemma 3.3. Suppose that B = (bysty,) is a 4-dimensional infinite matrix. Then, B € (C, : Cy) iff (3.1)-(3.3) hold and the

following conditions hold, too:
Jup € N> ¥ — r,£i£>noo Z brstuo = Pug>
t

dtg e N3 9 — T,ELHOO Z brstou = Ot;y-
u

In the case of (3.9), b = (byy,) € Ly, and py,, 01 € £, and

- r£iglm[3x]rs = Z buTty + Z (Qt - Z btu) Tt + Z (Pu - thu> Ly,
’ t,u t u U t

+ <L+thuzgtzpu>rrhgl Trs
tau t u ST

satisfies for x € C,.

(3.8)

(3.9)

Lemma 3.4. [36] Suppose that B = (bysy,) is a 4-dimensional infinite matrix. Then, B € (Cyp : M) iff the condition (3.1)

hold.

Lemma 3.5. [12] Suppose that B = (b,s,,) is a 4-dimensional infinite matrix. Then, B € (M., : Cyp) iff the conditions (3.1),

(3.2) hold and the following conditions hold, too:

E'btu eC»> bp — r,}q@ooz |brstu - btu| = Oa
tu

S
bp — r,?gloo Z brsty exists foreach t €N,

u=0
T
bp — nlsigaoo Z brstw exists foreach u € N,
t=0

Z |brsin|  converges.

t,u

(3.10)

(3.11)

(3.12)

(3.13)

Lemma 3.6. [38] Suppose that B = (bys1y,) is a 4-dimensional infinite matrix. Then, B € (M,, : M,,) iff the condition (3.1)

holds.

Lemma 3.7. [39] Suppose that B = (b,s1,) is a 4-dimensional infinite matrix. Then, B € (M, : Cp) iff the conditions (3.2),

(3.6) and (3.7) hold.

Lemma 3.8. [40] Suppose that B = (bysyy,) is a 4-dimensional infinite matrix. In that case:

(i) If0 < p <1, then B € (L, : M,,) iff

sup ‘brstu| < 00,
r,s,t,ueEN

(ii) If1 < p < oo, then B € (L, : M,,) iff
sup Z |brsta]” < o0.

r,s€N tu

Lemma 3.9. [40] Suppose that B = (bysy,) is a 4-dimensional infinite matrix. In that case:
(i) If 0 < p <1, then B € (L, : Cyp) iff the conditions (3.2) and (3.14) hold with ¥ = bp,
(i) If 1 <p < oo, then B € (L, : Cyp) iff the conditions (3.2) and (3.15) hold.

(3.14)

(3.15)
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Theorem 3.2. Consider the set w defined by

wy = {CZ (crs) €Q: supz lo(r,s,t,u,m,n)| < oo} ,

.8
’ t,u

where

m
o(r,s, t,u,m,n) = E E (5 M“)tucmn.
p(m)

m=t,tlm n=u u\n
Then, (8*(Cyy))" = w1 = (3*(M,))".

Proof. Suppose that ¢ = (¢,5) € Q and z = (x,5) € ®*(Cpp). Then, we can conclude from (2.2) that y = (y,s) € Cpp.
Now, let us define the 4-dimensional matrix O = (0;51,,) by

o(r,s,t,u,m,m) , t|lm , ul|n,
Orstu

0 , otherwise,

for every r, s,t,u € N. Therefore, we obtain by using the relation (2.4) that

r,s
Zrs = § Ctu, Tty

t,u=1
r,s t ”
p(oy (e
- Z Ctu Z (7;)) (<US> mnYmn
t,au=1 m|t,n|u Py

= Z [ Z Z ;t;; 90 }: tucmn] Ytu

t,u=1 [ m=t,tjmn= uu\n

= (Oy)rs (3.16)

forevery r, s € N. Then, by considering the equality (3.16), we deduce that cx = (¢,s2,5) € BS whenever x € ®*(Cy,,)
iff = (2,5) € M, whenever y € Cy,. This leads us to the fact that c = (¢,s) € (2*(Cyp))" iff O € (Cpp : M,,). Hence,
we achieve that ($*(Cp))” = wy. The other part of the theorem can be proven by using similar technique. So, we
omit it. O
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Theorem 3.3. Consider the sets wy — w13 defined by

Wo =

c=(¢rs) €Q:y, €eC39— lim o(r,s,t,u,m,n) —btu},

T,8—00

w3 = qc=(¢s)€Q:ILECY— T7151Ln0020(r7s7t,u,m, n)=1L exzsts} ,

tau

Wy =
T,8—00

c=(crs) €Q:Fug eNDY— lim Z\a(r,s,t,uo,m,n)—btuo\ :O},
t

T,8—00

c=(crs) €Q:3HpeN>Y— lim Z|U(r7s,t0,u,m7n) — begul :0},

)
\

= (¢rs) €Q:Vt €N, Jug € N3 o(r,s,t,u,m,n) =0,Yu > ug, Vr,s € N},

o
\

= (¢rs) € Q:Vu e N, Ity € N3 o(r,s,t,u,m,n) O,Vt>to,Vr,s€N},

c=(¢rs) € Q: Fug ENSﬂ—réiglooZa(r,s,t,uo,m,n) :buu},

t

c=(crs) € Q: Tty ENBﬂ—réii}nOOZU(r,s,to,u,m,n) zbto},

u
7,8—00

c=(¢rs) €Q:Tby, eC5bp— lim Z|a(r,s,t,u,m,n)—btu\ :O},
t,u

S
c=(crs) EQ:VtENDbp — lirﬁn Za(r,s,t,u,m,n) exists} ,
r,5—00

u=1

o
|

K
= (crs) €EQ:VueNDbp — réignoo Zla(r, s,t,u,m,n) exlsts} ,
t—=

w13

S
05
Il
— —— —— —— —— "

c=(crs) €0 Z lo(r, s,t,u,m,n)| converges} .

tu
In that case, following statements are satisfied:

(i) (2(Cop))™” = My w,

(ii) (2*(C,))" ™ = My wy Nwe Ny,

(iii) (9%(C,))"" = M, wi Nws Nawy,

(1V) (84 (M)™ = wn Do (5w,

(V) (&*(My)" " = wy N wg Ny,

Proof.

(i) Suppose that c = (¢;5) € Qand = = (z,5) € *(Cpp). In that case, there exists a double sequence y = (y,s) € Cyp
with ®*z = y. Since (3.16) holds, we deduce that cz € CSy whenever x € &*(Cy,,) iff z € Cy whenever y € Cy,. This
leads us to the fact that ¢ = (¢,5) € ((ID*(Cbp))B W iff O € (Cop : Cy). Therefore, the conditions of Lemma 3.1 are
satisfied with O = (0,1, ) defined as in Theorem 3.2. Hence, we achieve that the 5(¥) -dual of the space ®*(Cp,,) is
ﬂ2:1 Wk

The other parts of the Theorem can be done analogously by using the Lemmas 3.2, 3.3, 3.5 and 3.7, respectively.
So, we pass the details. O
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4. Charactarization of Some Classes of 4-Dimensional Matrices

In the current section, we deal with some 4-dimensional matrix mapping classes related to the double sequence
spaces ®*(M,,), ®*(C,), *(Cpp) and ®*(C,) by using dual summability methods for double sequences which have
been presented and examined by Basar [4] and Yesilkayagil and Basar [37] and which have been applied by Tug
[36].

Theorem 4.1. Assume that the elements of 4-dimensional infinite matrices B = (bysty,) and H = (hyst,,) are connected with
the relation

ﬁ

hrsta = Z Z % /J u — U smn- (41)

m n
m=t,tl/m n= uu\n QO )

Then, B € (2*(¥) : A) iff B, € [(I)*(\IJ)]B(ﬂ)for everyr,s € Nand H € (¥ : A), where U and A € {M,,C,,Cpp,C,}.

Proof. Assume that B € (®*(¥) : A). In that case, Bz exists and is in A for every z € ®*(¥) and it also implies that

B, € [0*())° @) for every 7, s € N. Thus, we have the following equality derived from partial sums of the series
Zm bystuTiy With relation (2.4)

Z brstuTin = z brstu [ Z Wmnymn]

t,au=1 t,u=1 mlt,n|u

Z [ Z Z % a Z tUbrsmn] Ytu

m n
t,u=1 | m=t,tlm n=u,u|n ( SO )

for every i, j € N. In that case, if we take ¥-limit on equality above as i, j — oo, we have Bx = Hy. Therefore, we
obtain that Hy € A whenever y € U, thatis H € (¥ : A).

Conversely, suppose that B, € [CD*(\IJ)]HW) foreveryr,s € N, H € (I : A) and z € ®*(¥) such that y = &*z. In
that case, Bz exists and therefore, the (k,)th rectangular partial sums of the series Zt.u brstu Tty Obtained as

k,l
(Bx)[r]?l] = Z sttumtu
t,u=1
k,l t u
P )m(s)
- brs U anymn
Zzl t LZ () (u)

3

u tUbrsmn] Ytu
(m)e(n)

=§[zz

t,u=1 [ m=t,tl/mn uu\n

(4.2)

for every r, s, k,l € N. By taking ¥J-limit on ( 4.2) while k,! — oo, it can be easily obtain from the following equality
Z brstuxtu = Z hrstuytu
t,u t,u

for every r, s € N that Bx = Hy which leads us to the fact that B € (*(T) : A). O

Corollary 4.1. Suppose that B = (byst.,) is a 4-dimensional matrix. In that case the following statements are satisfied:
(i) B € (2*(Cp) : Cy) iff the conditions (3.1)-(3.3), (3.6) and (3.7) are satisfied with hy, in place of bysiu,
(ii) B € (D*(Cyp) : Cy) iff the conditions (3.1)-(3.5) are satisfied with h,sy, in place of byst.,
(iii) B € (®*(Cpp) : My,) iff the condition (3.1) is satisfied with sy, in place of by,
(iv) B € (®*(C,) : Cy) iff the conditions (3.1)-(3.3), (3.8) and (3.9) are satisfied with hys., in place of bysi,
(v) B € (D*(My,) : Cyp) iff the conditions (3.1), (3.2), (3.10)-(3.13) are satisfied with h,s, in place of byst.,
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(vi) B € (2*(M,,) : Cp) iff the conditions (3.2), (3.6) and (3.7) are satisfied with h,s, in place of by,

Lemma 4.1. [40] Let U and A be two double sequence spaces, B = (bys1y,) be any 4-dimensional matrix and F = (fy,,) also
be a 4-dimensional triangle matrix such that f,s, = 0ift > r and u > s for every r, s, t,u € N. In that case, B € (¥ : Ap)
iff FB € (U :A).

Now, let us define the 4-dimensional matrix G = (g, st.,) by

*
Grstu = § ¢7-smnbmntu

m|r,n|s
for every r, s,t,u € N and give following corollary.

Corollary 4.2. Suppose that B = (b,s,,) is a 4-dimensional matrix. In that case the following statements are satisfied:
(i) B € (Cp, : ®*(Cy)) iff the conditions (3.1)-(3.3), (3.6) and (3.7) are satisfied with g,s., in place of b, st
(i) B € (Cop : P*(Cy)) iff the conditions (3.1)-(3.5) are satisfied with gyst,, in place of bystu,
(iii) B € (C, : ®*(Cy)) iff the conditions (3.1)-(3.3), (3.8) and (3.9) are satisfied with g,st,, in place of bystw,
(iv) B € (L, : D*(Cp)) iff the conditions (3.2) and (3.14) are satisfied for 0 < p < 1 and ¥ = bp with g,s1,, in place of byt
(v) B € (L, : D*(Cyp)) iff the conditions (3.2) and (3.15) are satisfied for 1 < p < oo and ¥ = bp with g,s,, in place of bysiy,
(vi) B € (L, : D*(My,,)) iff the condition (3.14) is satisfied for 0 < p < 1 with gy, in place of bysu,
(vii) B € (L, : @*(M.,,)) iff the condition (3.15) is satisfied for 1 < p < 0o With Grsty in place of bysiw,
(viii) B € (M, : ©*(Cup)) iff the conditions (3.1),(3.2), (3.10)-(3.13) are satisfied with gy, in place of bysiy,
(ix) B € (M, : ®*(Cp)) iff the conditions (3.2), (3.6) and (3.7) are satisfied with g, in place of bysiy,
(x) B € (Cpp : D*(M,,)) iff the condition (3.1) is satisfied with g,sy,, in place of bysty.
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