
MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES
8 (2) 110-122 (2020) c©MSAEN

HTTPS://DOI.ORG/10.36753/MATHENOT.733364

4-Dimensional Euler-Totient Matrix Operator and
Some Double Sequence Spaces

Sezer Erdem and Serkan Demiriz*

Abstract
Our main purpose in this study is to investigate the matrix domains of the 4-dimensional Euler-totient
matrix operator on the classical double sequence spacesMu, Cp, Cbp and Cr. Besides these, we examine
their topological and algebraic properties and give inclusion relations about the new spaces. Also, the α−,
β(ϑ)− and γ−duals of these spaces are determined and finally, some matrix classes are characterized.
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1. Preliminaries, Background and Notations

The function f described by f : N× N→ ℘, (t, u) 7→ f(t, u) = xtu is entitled as double sequence, where ℘ denotes
any nonempty set and N = {1, 2, ...}. Ω stands for the set of all complex valued double sequences. It is well known
that this set is a vector space with coordinatewise addition and scalar multiplication. Any linear subspace of Ω is
called as double sequence space. The set of all bounded complex valued double sequences is symbolized withMu,
that is,

Mu =

{
x = (xtu) ∈ Ω : ‖x‖∞ = sup

t,u∈N
|xtu| <∞

}
.

It should be noted thatMu is a Banach space with the norm ‖x‖∞. We say that the double sequence x = (xtu)
is convergent in the Pringsheim’s sense provided that for every ε > 0 there exists nε ∈ N such that |xtu − L| < ε
whenever t, u > nε. In that case, L ∈ C is called the Pringsheim limit of x and stated by p− limt,u→∞ xtu = L; where
C denotes the complex field. Cp represents the space of all such x which are called shortly as p-convergent. Of
particular interest is unlike single sequences, p-convergent double sequences need not be bounded. For example, if
we consider the sequence x = (xtu) identified by

xtu =



1 2 3 · · · u · · ·
2 0 0 · · · 0 · · ·
3 0 0 · · · 0 · · ·
...

...
... · · ·

... · · ·
t 0 0 · · · 0 · · ·
...

...
... · · ·

... · · ·


,

it can easily seen that p− limxtu = 0 but ‖x‖∞ =∞. As a conclusion x ∈ Cp −Mu. The bounded sequences which
are also p-convergent are indicated by Cbp, that is, Cbp = Cp ∩Mu. A double sequence x = (xtu) ∈ Cp is called as
regularly convergent if the limits xt := limu xtu, (t ∈ N) and xu := limt xtu, (u ∈ N) exist, and the limits limt limu xtu
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and limu limt xtu exist and are equivalent to the p−lim of x. The space of all regularly convergent double sequences is
denoted by Cr. Obviously, the regular convergence of a double sequence x implies the convergence in Pringsheim’s
sense as well as the boundedness of the terms of x, but the converse implication fails. A sequence x = (xtu) is
called double null sequence if it converges to zero. Additionally, all double null sequences in the spaces Cbp and Cr are
denoted by Cbp0 and Cr0, respectively. Móricz [25] showed that the spaces Cbp, Cbp0, Cr and Cr0 are Banach spaces
endowed with the norm ‖.‖∞.

Let us take any x ∈ Ω and describe the sequence K = (krs) defined by

krs :=

r∑
t=1

s∑
u=1

xtu, (r, s ∈ N).

In that case, the pair ((xrs), (krs)) is entitled as double series. Here, the sequence K = (krs) is the sequence of partial
sums of the double series.

Consider the double sequence space Ψ converging with respect to some linear convergence rule ϑ− lim : Ψ→ C.
The sum of a double series

∑
t,u xtu relating to this rule is defined by ϑ−

∑
t,u xtu = ϑ− limr,s→∞ srs. Here and

thereafter, when needed we will use the summation
∑
t,u instead of

∑∞
t=1

∑∞
u=1, assume that ϑ ∈ {p, bp, r} and

p′ denotes the conjugate of p, that is, p′ = p/(p− 1) for 1 < p <∞. With the notation of Zeltser [42], we describe
the double sequences ers = (erstu) and e by erstu = 1 if (r, s) = (t, u) and er,st,u = 0 otherwise, and e =

∑
r,s e

r,s

(coordinatewise convergence) for every r, s, t, u ∈ N.
The α−dual Ψα, β(ϑ)−dual Ψβ(ϑ) with respect to the ϑ−convergence and the γ−dual Ψγ of a double sequence

space Ψ are described as

Ψα :=

{
c = (ctu) ∈ Ω :

∑
t,u

|ctuxtu| <∞ for all (xtu) ∈ Ψ

}
,

Ψβ(ϑ) :=

{
c = (ctu) ∈ Ω : ϑ−

∑
t,u

ctuxtu exists for all (xtu) ∈ Ψ

}
,

Ψγ :=

{
c = (ctu) ∈ Ω : sup

r,s∈N

∣∣∣∣ r,s∑
t,u=1

ctuxtu

∣∣∣∣ <∞ for all (xtu) ∈ Ψ

}
,

respectively. It is well known that Ψα ⊂ Ψγ and if Ψ ⊂ Λ, then Λα ⊂ Ψα for the double sequence spaces Ψ and Λ.
Let us remember the definition of triangle matrix. If brstu = 0 for t > r or u > s or both for every r, s, t, u ∈ N, it

is said that B = (brstu) is a triangular matrix and also if brsrs 6= 0 for every r, s ∈ N, then the 4-dimensional matrix B
is called triangle. It should be noted by [11] that, every triangle has a unique inverse which is also a triangle.

Now, we shall deal with matrix mapping. Let us consider double sequence spaces Ψ and Λ and the 4-dimensional
complex infinite matrix B = (brstu). In that case, we say that B defines a matrix mapping from Ψ into Λ and it is
written as B : Ψ→ Λ, if for every sequence x = (xtu) ∈ Ψ, the B-transform Bx = {(Bx)rs}r,s∈N of x exists and is in
Λ; where

(Bx)rs = ϑ−
∑
t,u

brstuxtu, (1.1)

for each r, s ∈ N. (Ψ : Λ) stands for the class of all 4-dimensional complex infinite matrices from a double sequence
space Ψ into a double sequence space Λ. In that case,B ∈ (Ψ : Λ) if and only ifBrs ∈ Ψβ(ϑ), whereBrs = (brstu)t,u∈N
for all r, s ∈ N.

The ϑ-summability domain Ψ
(ϑ)
B of a 4-dimensional complex infinite matrix B in a double sequence space Ψ

consists of whose B-transforms are in Ψ; that is,

Ψ
(ϑ)
B :=

x = (xtu) ∈ Ω : Bx :=

(
ϑ−

∑
tu

brstuxtu

)
r,s∈N

exists and is in Ψ

 .

In the past, many authors were interested in double sequence spaces. Now, let us give some information about
these studies. Zeltser [41] has fundamentally examined both the topological structure and the theory of summability
of double sequences in her doctoral dissertation. Recently, Altay and Başar [3] defined the double sequence spaces
BS, BS(t), CSp, CSbp, CSr and BV of double series whose sequences of partial sums are in the spacesMu,Mu(t),
Cp, Cbp, Cr and Lu, respectively, and also examined some properties of those spaces. Later, in [5], Başar and Sever
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have defined the set Lp of all absolutely p-summable double sequences which is a Banach space with the norm
‖.‖Lp

defined in the following way:

‖.‖Lp
=

(∑
t,u

|xtu|p
) 1

p

.

It is also significant that the double sequence space Lu which was defined by Zeltser [42] is the special case of
the space Lp for p = 1. For more details about the double sequences and related topics, the reader may refer to
[1, 3–5, 13, 25–28, 31, 35–40, 43] and references therein.

In the rest of the study, ϕ and µ represent Euler function and the Möbius function, respectively. For every
r ∈ N with r > 1, ϕ(r) is the number of positive integers less than r which are coprime with r and ϕ(1) = 1. If
a1
b1a2

b2a3
b3 ...am

bm is the prime factorization of a natural number r > 1, then

ϕ(r) = r(1− 1

a1
)(1− 1

a2
)(1− 1

a3
)...(1− 1

am
).

Also, the equality
r =

∑
t|r

ϕ(t)

holds for every r ∈ N and ϕ(r1r2) = ϕ(r1)ϕ(r2), where r1, r2 ∈ N are coprime. Given any r ∈ N with r > 1, µ is
defined as

µ(r) :=

 (−1)m , if r = a1a2...am, where a1a2...am are
non-equivalent prime numbers

0 , if a2 | r for some prime number a,

and µ(1) = 1. If a1
b1a2

b2a3
b3 ...am

bm is the prime factorization of a naturel number r > 1, in this fact,∑
t|r

tµ(t) = (1− a1)(1− a2)(1− a3)...(1− am).

If r 6= 1, then the equality ∑
t|r

µ(t) = 0

holds and µ(r1r2) = µ(r1)µ(r2), where r1, r2 ∈ N are coprime.
By using the regular 2-dimensional Euler-totient matrix Φ, the Euler-totient sequence spaces `p(Φ) and `∞(Φ)

which consist of all sequences whose Φ-transforms are in the spaces `p of absolutely p-summable and `∞ of bounded
single sequences are introduced and examined by İlkhan and Kara [18].

The target of the existing study is to acquaint the matrix domains of the 4-dimensional Euler-totient matrix on
some classical double sequence spaces.

2. Domain of Euler-Totient Matrix in Some Spaces of Double Sequences

In this section, we introduce the double sequence spaces Φ?(Mu), Φ?(Cp), Φ?(Cbp) and Φ?(Cr) by using the
4-dimensional Euler-totient matrix Φ? and give some properties and results on theese spaces.

In [14], we have defined the 4-dimensional matrix Φ? = (φ?rstu) which is called Euler-totient matrix operator as
follows:

φ?rstu :=


ϕ(t)ϕ(u)

rs
, t | r , u | s,

0 , otherwise,

(2.1)

for every r, s, t, u ∈ N. Thus, it is clear that Φ? is a triangle and the Φ?-transform of a double sequence x = (xrs) is
given by

yrs := (Φ?x)rs =
1

rs

∑
t|r,u|s

ϕ(t)ϕ(u)xtu, (2.2)
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for every r, s ∈ N. Throughout the article, we suppose that the terms of the double sequences x = (xrs) and
y = (yrs) are connected with the relation (2.2).

The inverse (Φ?)
−1

= (φ?−1
rstu) of the triangle matrix Φ? is calculated as

φ?−1
rstu :=


µ( rt )µ( su )

ϕ(r)ϕ(s)
tu , t | r , u | s,

0 , otherwise,

for every r, s, t, u ∈ N. We introduce the sequence spaces Φ?(Mu), Φ?(Cp), Φ?(Cbp) and Φ?(Cr) as the sets of all
double sequences such that Φ?-transforms of them are in the spacesMu, Cp, Cbp and Cr, that is,

Φ?(Mu) =

x = (xrs) ∈ Ω : sup
r,s∈N

∣∣∣∣∣∣ 1

rs

∑
t|r,u|s

ϕ(t)ϕ(u)xtu

∣∣∣∣∣∣ <∞
 ,

Φ?(Cp) =

x = (xrs) ∈ Ω : ∃L ∈ C 3 p− lim
r,s→∞

∣∣∣∣∣∣ 1

rs

∑
t|r,u|s

ϕ(t)ϕ(u)xtu − L

∣∣∣∣∣∣ = 0

 ,

Φ?(Cbp) =

x = (xrs) ∈ Ω :

 1

rs

∑
t|r,u|s

ϕ(t)ϕ(u)xtu

 ∈ Cbp
 ,

Φ?(Cr) =

x = (xrs) ∈ Ω :

 1

rs

∑
t|r,u|s

ϕ(t)ϕ(u)xtu

 ∈ Cr
 .

It is immediately seen that Φ?(Mu), Φ?(Cp), Φ?(Cbp) and Φ?(Cr) are the domains of the 4-dimensional Euler-
totient matrix Φ? in the spacesMu, Cp, Cbp and Cr, respectively.

If Ψ is any normed double sequence space, then we call the matrix domain Φ?(Ψ) as the double Euler-totient
sequence space.

Definition 2.1 (See [16],[31]). A 4-dimensional matrix B is said to be RH-regular if it maps every bounded p-
convergent sequence into a p-convergent sequence with the same p-limit.

Lemma 2.1 (See [16],[31]). A 4-dimensional triangle matrix B = (brstu) is RH-regular iff

RH1 : p− lim
r,s→∞

brstu = 0 for each t, u ∈ N,

RH2 : p− lim
r,s→∞

∑
t,u

brstu = 1,

RH3 : p− lim
r,s→∞

∑
t

|brstu| = 0 for each u ∈ N,

RH4 : p− lim
r,s→∞

∑
u

|brstu| = 0 for each t ∈ N,

RH5 : There exists finite positive integers M1 and M2 such that∑
t,u>M1

|brstu| < M2.

It should be noted that the 4-dimensional Euler-totient matrix Φ? described by (2.1) is RH-regular [14].
Now, we may continue with the following two theorems which are the essential in the study.

Theorem 2.1. The sets Φ?(Mu), Φ?(Cbp) and Φ?(Cr) are the linear spaces which are linearly norm isomorphic to the spaces
Mu, Cbp and Cr, respectively, and are the Banach spaces with the norm

‖x‖Φ?(Mu) = ‖Φ?x‖∞ = sup
r,s∈N

∣∣∣∣∣∣ 1

rs

∑
t|r,u|s

ϕ(t)ϕ(u)xtu

∣∣∣∣∣∣ . (2.3)
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Proof. To avoid the repetition of the similar statements, we give the proof only for the space Φ?(Mu). Since the
initial assertion is routine verification and is easy to prove, we ignore its proof in here. To confirm the fact that
Φ?(Mu) is linearly norm isomorphic to the space Mu, we need to be sure the existence of a linear and norm
preserving bijection between the spaces Φ?(Mu) andMu. For this purpose, let us take the transformationB defined
from Φ?(Mu) intoMu by x 7→ y = Bx, where y = (yrs) is the Φ?-transform of the sequence x = (xtu). The linearity
of B is clear. Consider the equality Bx = θ which yields us that xtu = 0 for every t, u ∈ N. So, x = θ. Therefore, B is
injective. Let us consider y ∈Mu and describe the double sequence x = (xrs) by

xrs =
∑
t|r,u|s

µ( rt )µ( su )

ϕ(r)ϕ(s)
tuytu (2.4)

for every r, s ∈ N. By taking supremum over r, s ∈ N on the following equality

|(Φ?x)rs| =

∣∣∣∣∣∣ 1

rs

∑
t|r,s|u

ϕ(t)ϕ(u)xtu

∣∣∣∣∣∣ = |yrs|,

it can be derived that B is surjective and norm preserving.
Now, we may prove that Φ?(Mu) is a Banach space with the norm ‖.‖Φ?(Mu) described by (2.3). SinceMu is a

Banach space from [25], we obtain the desired result from Section (b) of Corollary 6.3.41 in [6].

Theorem 2.2. The set Φ?(Cp) is linearly isomorphic to the space Cp and is a complete semi-normed space with the semi-norm

‖x‖Φ?(Cp) = lim
i→∞

(
sup
r,s≥i

|(Φ?x)rs|
)
.

Proof. Since the proof of the theorem is similar to the proof of Theorem 2.1, we ignore it.

Now, let us give our results about inclusion relations.

Theorem 2.3. The inclusionMu ⊂ Φ?(Mu) holds.

Proof. Let us take a sequence x = (xtu) ∈ Mu. In that case, there exists a positive real number M3 such that
supt,u∈N |xtu| ≤M3. Therefore, one can immediately see that

‖x‖Φ?(Mu) = sup
r,s∈N

∣∣∣∣∣∣ 1

rs

∑
t|r,u|s

ϕ(t)ϕ(u)xtu

∣∣∣∣∣∣
≤ sup

r,s∈N

∣∣∣∣∣∣ 1

rs

∑
t|r,u|s

ϕ(t)ϕ(u)

∣∣∣∣∣∣ |xtu|
≤ M3 sup

r,s∈N

∣∣∣∣∣∣ 1

rs

∑
t|r,u|s

ϕ(t)ϕ(u)

∣∣∣∣∣∣ = M3.

Thus, the inclusion is valid.

Theorem 2.4. The inclusion Cbp ⊂ Φ?(Cp) holds.

Proof. Let us take the sequence x = (xtu) ∈ Cbp with p limt,u→∞ xtu = L. Since 4-dimensional Euler-totient matrix is
RH-regular, p limt,u→∞ ytu = L, where (ytu) = (Φ?x)tu. Hence, we see that Cbp ⊂ Φ?(Cp).
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3. Dual Spaces

In the current section, we tend to compute the α−, β(ϑ)− and γ−duals of the new double Euler-totient sequence
spaces.

Theorem 3.1. The α-dual of the space Φ?(Mu) is Lu.

Proof. Suppose that c = (crs) ∈ {Φ?(Mu)}α but c /∈ Lu. Then,
∑
r,s |crsxrs| <∞ for all x = (xrs) ∈ Φ?(Mu). If we

consider e ∈ Φ?(Mu), in that case ce = c /∈ Lu, that is c /∈ {Φ?(Mu)}α and it is seen that this is a contradiction.
Thus, c must be in Lu.

Conversely, let us take sequences c = (crs) ∈ Lu and x = (xrs) ∈ Φ?(Mu). In that case, there exists a double
sequence y = (yrs) ∈ Mu such that y = Φ?x and supr,s |yrs| < M4, where M4 ∈ R+. Then, we have from the
following inequality

∑
r,s

|crsxrs| =
∑
r,s

|crs|

∣∣∣∣∣∣
∑
t|r,u|s

µ( rt )µ( su )

ϕ(r)ϕ(s)
tuytu

∣∣∣∣∣∣
≤ M4

∑
r,s

|crs|

∣∣∣∣∣∣
∑
t|r,u|s

µ( rt )µ( su )

ϕ(r)ϕ(s)
tu

∣∣∣∣∣∣
= M4

∑
r,s

|crs| <∞,

that c ∈ (Φ?(Mu))
α and this completes the proof.

Now, we give some lemmas which characterize the classes of 4-dimensional matrix mappings(see [16], [42]
and [43]). With the help of these lemmas, we will calculate the β(ϑ), β(bp), β(p) and γ-duals of our new double
sequence spaces.

Lemma 3.1. Suppose that B = (brstu) is a 4-dimensional infinite matrix. Then, B ∈ (Cbp : Cϑ) iff following conditions hold:

sup
r,s∈N

∑
t,u

|brstu| <∞, (3.1)

∃btu ∈ C 3 ϑ− lim
r,s→∞

brstu = btu for all t, u ∈ N, (3.2)

∃L ∈ C 3 ϑ− lim
r,s→∞

∑
t,u

brstu = L exists, (3.3)

∃t0 ∈ N 3 ϑ− lim
r,s→∞

∑
u

|brst0u − bt0u| = 0, (3.4)

∃u0 ∈ N 3 ϑ− lim
r,s→∞

∑
t

|brstu0
− btu0

| = 0. (3.5)

In the case of (3.5), b = (btu) ∈ Lu and

ϑ− lim
r,s→∞

[Bx]rs =
∑
t,u

btuxtu +

(
L−

∑
t,u

btu

)
bp− lim

r,s→∞
xrs

satisfies for x ∈ Cbp.

Lemma 3.2. Suppose that B = (brstu) is a 4-dimensional infinite matrix. Then, B ∈ (Cp : Cϑ) iff (3.1)-(3.3) hold and the
following conditions hold, too:

∀t ∈ N, ∃u0 ∈ N 3 brstu = 0 for every u > u0 and r, s ∈ N, (3.6)
∀u ∈ N, ∃t0 ∈ N 3 brstu = 0 for every t > t0 and r, s ∈ N. (3.7)

In the case of (3.7), ∃t0, u0 ∈ N such that b = (btu) ∈ Lu and (btu0
)t∈N, (bt0u)u∈N ∈ ζ, where ζ represents the space of every

finitely sequences which are non-equivalent zero and

ϑ− lim
r,s→∞

[Bx]rs =
∑
t,u

btuxtu +
∑
t

(
L−

∑
t,u

btu

)
p− lim

r,s→∞
xrs
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satisfies for x ∈ Cp.

Lemma 3.3. Suppose that B = (brstu) is a 4-dimensional infinite matrix. Then, B ∈ (Cr : Cϑ) iff (3.1)-(3.3) hold and the
following conditions hold, too:

∃u0 ∈ N 3 ϑ− lim
r,s→∞

∑
t

brstu0 = ρu0 , (3.8)

∃t0 ∈ N 3 ϑ− lim
r,s→∞

∑
u

brst0u = %t0 . (3.9)

In the case of (3.9), b = (btu) ∈ Lu and ρu, %t ∈ `1 and

ϑ− lim
r,s→∞

[Bx]rs =
∑
t,u

btuxtu +
∑
t

(
%t −

∑
u

btu

)
xt +

∑
u

(
ρu −

∑
t

btu

)
xu

+

(
L+

∑
t,u

btu −
∑
t

%t −
∑
u

ρu

)
r − lim

r,s→∞
xrs

satisfies for x ∈ Cr.

Lemma 3.4. [36] Suppose that B = (brstu) is a 4-dimensional infinite matrix. Then, B ∈ (Cbp :Mu) iff the condition (3.1)
hold.

Lemma 3.5. [12] Suppose that B = (brstu) is a 4-dimensional infinite matrix. Then, B ∈ (Mu : Cbp) iff the conditions (3.1),
(3.2) hold and the following conditions hold, too:

∃btu ∈ C 3 bp− lim
r,s→∞

∑
tu

|brstu − btu| = 0, (3.10)

bp− lim
r,s→∞

s∑
u=0

brstu exists for each t ∈ N, (3.11)

bp− lim
r,s→∞

r∑
t=0

brstu exists for each u ∈ N, (3.12)∑
t,u

|brstu| converges. (3.13)

Lemma 3.6. [38] Suppose that B = (brstu) is a 4-dimensional infinite matrix. Then, B ∈ (Mu :Mu) iff the condition (3.1)
holds.

Lemma 3.7. [39] Suppose that B = (brstu) is a 4-dimensional infinite matrix. Then, B ∈ (Mu : Cp) iff the conditions (3.2),
(3.6) and (3.7) hold.

Lemma 3.8. [40] Suppose that B = (brstu) is a 4-dimensional infinite matrix. In that case:

(i) If 0 < p ≤ 1, then B ∈ (Lp :Mu) iff
sup

r,s,t,u∈N
|brstu| <∞, (3.14)

(ii) If 1 < p <∞, then B ∈ (Lp :Mu) iff

sup
r,s∈N

∑
t,u

|brstu|p′ <∞. (3.15)

Lemma 3.9. [40] Suppose that B = (brstu) is a 4-dimensional infinite matrix. In that case:

(i) If 0 < p ≤ 1, then B ∈ (Lp : Cbp) iff the conditions (3.2) and (3.14) hold with ϑ = bp,

(ii) If 1 < p <∞, then B ∈ (Lp : Cbp) iff the conditions (3.2) and (3.15) hold.
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Theorem 3.2. Consider the set w1 defined by

w1 =

{
c = (crs) ∈ Ω : sup

r,s

∑
t,u

|σ(r, s, t, u,m, n)| <∞

}
,

where

σ(r, s, t, u,m, n) =

r∑
m=t,t|m

s∑
n=u,u|n

µ(mt )µ(nu )

ϕ(m)ϕ(n)
tucmn.

Then, (Φ?(Cbp))γ = w1 = (Φ?(Mu))
γ .

Proof. Suppose that c = (crs) ∈ Ω and x = (xrs) ∈ Φ?(Cbp). Then, we can conclude from (2.2) that y = (yrs) ∈ Cbp.
Now, let us define the 4-dimensional matrix O = (orstu) by

orstu :=

 σ(r, s, t, u,m, n) , t | m , u | n,

0 , otherwise,

for every r, s, t, u ∈ N. Therefore, we obtain by using the relation (2.4) that

zrs =

r,s∑
t,u=1

ctuxtu

=

r,s∑
t,u=1

ctu

 ∑
m|t,n|u

µ( tm )µ(un )

ϕ(t)ϕ(u)
mnymn


=

r,s∑
t,u=1

 r∑
m=t,t|m

s∑
n=u,u|n

µ(mt )µ(nu )

ϕ(m)ϕ(n)
tucmn

 ytu
= (Oy)rs (3.16)

for every r, s ∈ N. Then, by considering the equality (3.16), we deduce that cx = (crsxrs) ∈ BS whenever x ∈ Φ?(Cbp)
iff z = (zrs) ∈Mu whenever y ∈ Cbp. This leads us to the fact that c = (crs) ∈ (Φ?(Cbp))γ iff O ∈ (Cbp :Mu). Hence,
we achieve that (Φ?(Cbp))γ = w1. The other part of the theorem can be proven by using similar technique. So, we
omit it.
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Theorem 3.3. Consider the sets w2 − w13 defined by

w2 =

{
c = (crs) ∈ Ω : ∃btu ∈ C 3 ϑ− lim

r,s→∞
σ(r, s, t, u,m, n) = btu

}
,

w3 =

{
c = (crs) ∈ Ω : ∃L ∈ C 3 ϑ− lim

r,s→∞

∑
t,u

σ(r, s, t, u,m, n) = L exists

}
,

w4 =

{
c = (crs) ∈ Ω : ∃u0 ∈ N 3 ϑ− lim

r,s→∞

∑
t

|σ(r, s, t, u0,m, n)− btu0
| = 0

}
,

w5 =

{
c = (crs) ∈ Ω : ∃t0 ∈ N 3 ϑ− lim

r,s→∞

∑
u

|σ(r, s, t0, u,m, n)− bt0u| = 0

}
,

w6 =

{
c = (crs) ∈ Ω : ∀t ∈ N,∃u0 ∈ N 3 σ(r, s, t, u,m, n) = 0,∀u > u0,∀r, s ∈ N

}
,

w7 =

{
c = (crs) ∈ Ω : ∀u ∈ N,∃t0 ∈ N 3 σ(r, s, t, u,m, n) = 0,∀t > t0,∀r, s ∈ N

}
,

w8 =

{
c = (crs) ∈ Ω : ∃u0 ∈ N 3 ϑ− lim

r,s→∞

∑
t

σ(r, s, t, u0,m, n) = bu0

}
,

w9 =

{
c = (crs) ∈ Ω : ∃t0 ∈ N 3 ϑ− lim

r,s→∞

∑
u

σ(r, s, t0, u,m, n) = bt0

}
,

w10 =

{
c = (crs) ∈ Ω : ∃btu ∈ C 3 bp− lim

r,s→∞

∑
t,u

|σ(r, s, t, u,m, n)− btu| = 0

}
,

w11 =

{
c = (crs) ∈ Ω : ∀t ∈ N 3 bp− lim

r,s→∞

s∑
u=1

σ(r, s, t, u,m, n) exists

}
,

w12 =

{
c = (crs) ∈ Ω : ∀u ∈ N 3 bp− lim

r,s→∞

r∑
t=1

σ(r, s, t, u,m, n) exists

}
,

w13 =

{
c = (crs) ∈ Ω :

∑
t,u

|σ(r, s, t, u,m, n)| converges

}
.

In that case, following statements are satisfied:

(i) (Φ?(Cbp))β(ϑ)
=
⋂5
k=1 wk,

(ii) (Φ?(Cp))β(ϑ)
=
⋂3
k=1 wk ∩ w6 ∩ w7,

(iii) (Φ?(Cr))β(ϑ)
=
⋂3
k=1 wk ∩ w8 ∩ w9,

(iV) (Φ?(Mu))
β(bp)

= w1 ∩ w2

⋂13
k=10 wk,

(V) (Φ?(Mu))
β(p)

= w2 ∩ w6 ∩ w7.

Proof.

(i) Suppose that c = (crs) ∈ Ω and x = (xrs) ∈ Φ?(Cbp). In that case, there exists a double sequence y = (yrs) ∈ Cbp
with Φ?x = y. Since (3.16) holds, we deduce that cx ∈ CSϑ whenever x ∈ Φ?(Cbp) iff z ∈ Cϑ whenever y ∈ Cbp. This
leads us to the fact that c = (crs) ∈ (Φ?(Cbp))β(ϑ) iff O ∈ (Cbp : Cϑ). Therefore, the conditions of Lemma 3.1 are
satisfied with O = (orstu) defined as in Theorem 3.2. Hence, we achieve that the β(ϑ) -dual of the space Φ?(Cbp) is⋂5
k=1 wk.

The other parts of the Theorem can be done analogously by using the Lemmas 3.2, 3.3, 3.5 and 3.7, respectively.
So, we pass the details.
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4. Charactarization of Some Classes of 4-Dimensional Matrices
In the current section, we deal with some 4-dimensional matrix mapping classes related to the double sequence

spaces Φ?(Mu), Φ?(Cp), Φ?(Cbp) and Φ?(Cr) by using dual summability methods for double sequences which have
been presented and examined by Başar [4] and Yeşilkayagil and Başar [37] and which have been applied by Tuḡ
[36].

Theorem 4.1. Assume that the elements of 4-dimensional infinite matrices B = (brstu) and H = (hrstu) are connected with
the relation

hrstu =

∞∑
m=t,t|m

∞∑
n=u,u|n

µ(mt )µ(nu )

ϕ(m)ϕ(n)
tubrsmn. (4.1)

Then, B ∈ (Φ?(Ψ) : Λ) iff Brs ∈ [Φ?(Ψ)]
β(ϑ) for every r, s ∈ N and H ∈ (Ψ : Λ), where Ψ and Λ ∈ {Mu, Cp, Cbp, Cr}.

Proof. Assume that B ∈ (Φ?(Ψ) : Λ). In that case, Bx exists and is in Λ for every x ∈ Φ?(Ψ) and it also implies that
Brs ∈ [Φ?(Ψ)]

β(ϑ) for every r, s ∈ N. Thus, we have the following equality derived from partial sums of the series∑
t,u brstuxtu with relation (2.4)

i,j∑
t,u=1

brstuxtu =

i,j∑
t,u=1

brstu

 ∑
m|t,n|u

µ( tm )µ(un )

ϕ(t)ϕ(u)
mnymn


=

i,j∑
t,u=1

 i∑
m=t,t|m

j∑
n=u,u|n

µ(mt )µ(nu )

ϕ(m)ϕ(n)
tubrsmn

 ytu
for every i, j ∈ N. In that case, if we take ϑ-limit on equality above as i, j →∞, we have Bx = Hy. Therefore, we
obtain that Hy ∈ Λ whenever y ∈ Ψ, that is H ∈ (Ψ : Λ).

Conversely, suppose that Brs ∈ [Φ?(Ψ)]
β(ϑ) for every r, s ∈ N, H ∈ (Ψ : Λ) and x ∈ Φ?(Ψ) such that y = Φ?x. In

that case, Bx exists and therefore, the (k, l)th rectangular partial sums of the series
∑
t,u brstuxtu obtained as

(Bx)[k,l]
rs =

k,l∑
t,u=1

brstuxtu

=

k,l∑
t,u=1

brstu

 ∑
m|t,n|u

µ( tm )µ(un )

ϕ(t)ϕ(u)
mnymn


=

k,l∑
t,u=1

 k∑
m=t,t|m

l∑
n=u,u|n

µ(mt )µ(nu )

ϕ(m)ϕ(n)
tubrsmn

 ytu
(4.2)

for every r, s, k, l ∈ N. By taking ϑ-limit on ( 4.2) while k, l→∞, it can be easily obtain from the following equality∑
t,u

brstuxtu =
∑
t,u

hrstuytu

for every r, s ∈ N that Bx = Hy which leads us to the fact that B ∈ (Φ?(Ψ) : Λ).

Corollary 4.1. Suppose that B = (brstu) is a 4-dimensional matrix. In that case the following statements are satisfied:

(i) B ∈ (Φ?(Cp) : Cϑ) iff the conditions (3.1)-(3.3), (3.6) and (3.7) are satisfied with hrstu in place of brstu,

(ii) B ∈ (Φ?(Cbp) : Cϑ) iff the conditions (3.1)-(3.5) are satisfied with hrstu in place of brstu,

(iii) B ∈ (Φ?(Cbp) :Mu) iff the condition (3.1) is satisfied with hrstu in place of brstu,

(iv) B ∈ (Φ?(Cr) : Cϑ) iff the conditions (3.1)-(3.3), (3.8) and (3.9) are satisfied with hrstu in place of brstu,

(v) B ∈ (Φ?(Mu) : Cbp) iff the conditions (3.1), (3.2), (3.10)-(3.13) are satisfied with hrstu in place of brstu,
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(vi) B ∈ (Φ?(Mu) : Cp) iff the conditions (3.2), (3.6) and (3.7) are satisfied with hrstu in place of brstu.

Lemma 4.1. [40] Let Ψ and Λ be two double sequence spaces, B = (brstu) be any 4-dimensional matrix and F = (frstu) also
be a 4-dimensional triangle matrix such that frstu = 0 if t > r and u > s for every r, s, t, u ∈ N. In that case, B ∈ (Ψ : ΛF )
iff FB ∈ (Ψ : Λ).

Now, let us define the 4-dimensional matrix G = (grstu) by

grstu =
∑

m|r,n|s

φ?rsmnbmntu

for every r, s, t, u ∈ N and give following corollary.

Corollary 4.2. Suppose that B = (brstu) is a 4-dimensional matrix. In that case the following statements are satisfied:

(i) B ∈ (Cp : Φ?(Cϑ)) iff the conditions (3.1)-(3.3), (3.6) and (3.7) are satisfied with grstu in place of brstu,

(ii) B ∈ (Cbp : Φ?(Cϑ)) iff the conditions (3.1)-(3.5) are satisfied with grstu in place of brstu,

(iii) B ∈ (Cr : Φ?(Cϑ)) iff the conditions (3.1)-(3.3), (3.8) and (3.9) are satisfied with grstu in place of brstu,

(iv) B ∈ (Lp : Φ?(Cbp)) iff the conditions (3.2) and (3.14) are satisfied for 0 < p ≤ 1 and ϑ = bp with grstu in place of brstu,

(v) B ∈ (Lp : Φ?(Cbp)) iff the conditions (3.2) and (3.15) are satisfied for 1 < p <∞ and ϑ = bp with grstu in place of brstu,

(vi) B ∈ (Lp : Φ?(Mu)) iff the condition (3.14) is satisfied for 0 < p ≤ 1 with grstu in place of brstu,

(vii) B ∈ (Lp : Φ?(Mu)) iff the condition (3.15) is satisfied for 1 < p <∞ with grstu in place of brstu,

(viii) B ∈ (Mu : Φ?(Cbp)) iff the conditions (3.1),(3.2), (3.10)-(3.13) are satisfied with grstu in place of brstu,

(ix) B ∈ (Mu : Φ?(Cp)) iff the conditions (3.2), (3.6) and (3.7) are satisfied with grstu in place of brstu,

(x) B ∈ (Cbp : Φ?(Mu)) iff the condition (3.1) is satisfied with grstu in place of brstu.

References
[1] Adams, C.R.: On non-factorable transformations of double sequences. Proc. Natl. Acad. Sci. USA. 19 (5), 564-567

(1933).

[2] Alp, P.Z., İlkhan, M.: On the difference sequence space `p(T̂ p). Math. Sci. Appl. E-Notes. 7 (2), 161-173 (2019).
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[15] Güleç, G.C.H., İlkhan, M.: A New Paranormed Series Space Using Euler Totient Means and Some Matrix Transforma-
tions. Korean J. Math. 28 (2), 205-221 (2020).

[16] Hamilton, H.J.: Transformations of multiple sequences. Duke Math. J. 2, 29-60 (1936).
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[38] Yeşilkayagil, M., Başar, F.: Mercerian theorem for four dimensional matrices. Commun. Fac. Sci. Univ. Ank. Ser. A1.
65 (1), 147-155 (2016).
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