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Abstract
In this paper, we obtain a bijection between the weakly Zn

2 -equivariant homeomorphism
classes of small covers over an n-cube and the orbits of the action of Z2 ≀ Sn on acyclic
digraphs with n vertices given by local complementation and reordering of vertices. We
obtain a similar formula for the number of orientable small covers over an n-cube. We also
count the Zn

2 -equivariant homeomorphism classes of orientable small covers and estimate
the ratio between this number and the number of Zn

2 -equivariant homeomorphism classes
of small covers over an n-cube.
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1. Introduction
A small cover is an n-dimensional smooth closed manifold M with a locally standard

Zn
2 -action whose orbit space is a simple convex polytope. One of the important problems

of toric topology is to classify small covers over a given polytope (see [2,3,5,8]). For a given
simple convex polytope P , let F(P ) be the set of codimension one faces of P . For every
small cover M over P , there is an associated function λ : F(P ) → Zn

2 , called the charac-
teristic function (see Section 2 for definition). Small covers M1 and M2 over P are said
to be Davis-Januskiewicz equivalent if there is a weakly Zn

2 -equivariant homeomorphism
between them which covers the identity on P . In [6], Davis and Januszkiewicz show that
characteristic functions can be used to reconstruct small covers up to Davis-Januskiewicz
equivalence. Moreover, they show that the characteristic functions that are in the same
orbit of the standard free action of the general linear group give the same small cover up
to Davis-Januskiewicz equivalence.

Another group that acts naturally on the set of characteristic functions on P is the group
of automorphisms of the face poset of P . In [10], Lü and Masuda show that there is a
one-to-one correspondence between the orbit space of this action and the set of equivariant
homeomorphism classes of small covers over P . Therefore the characteristic functions that
are in the same double coset of these actions produce the same small cover up to weakly
Zn

2 -equivariant homeomorphism. Since the action of the automorphism group is not free,
it is not easy to count the number of elements in these orbits.

The total space of iterated RP 1 bundles starting with a point where each fibration is the
projectivization of a Whitney sum of two real line bundles is called a real Bott manifold.
Kamishima and Masuda [9] show that real Bott manifolds satisfy the cohomological rigidity
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property, that is, two real Bott manifolds are diffeomorphic if and only if there is a graded
ring ismorphism between their cohomology rings with Z2-coefficients. This also shows
that their homeomorphism and diffeomorphism classes are the same. It is known that
every real Bott manifold is a small cover over a cube and conversely, every small cover
over a cube is homeomorphic to a real Bott manifold (see [11]). For this reason, small
covers over n-cubes are studied intensively. In [3], Choi constructs a bijection from the
set of Davis-Januszkiewicz equivalence classes of small covers over an n-cube to the set of
acyclic digraphs with n labeled nodes. Choi [3] also obtains a formula for the number of Zn

2 -
equivariant homeomorphism classes of small covers over an n-cube. In [5], Choi, Masuda
and Oum introduce a notion of a Bott equivalence on acyclic digraphs and they show that
two real Bott manifolds are diffeomorphic if and only if the associated digraphs are Bott
equivalent. This also classifies the small covers over an n-cube up to homeomorphism.
Using this correspondence and the list of non-isomorphic acyclic digraphs provided by B.
D. McKay [14], they count the number of Bott manifolds up to dimension eight. Before
that the number of Bott manifolds was known up to 5. Unfortunately, there is no known
formula giving this number directly.

In this paper, we obtain a one-to-one correspondence between weakly Zn
2 -equivariant

homeomorphism classes of small covers over an n-cube and the orbit space of the action
of Z2 ≀ Sn on acyclic digraphs with n labeled vertices given by local complementation and
reordering of vertices (see Theorem 3.4). The number of weakly Zn

2 -equivariant homeo-
morphism classes of small covers over an n-cube gives an upper bound for the number
of homeomorphism classes and hence the diffeomorphism classes of real Bott manifolds.
Counting the size of the orbits of the action of Z2 ≀ Sn on acyclic digraphs seems difficult
but more computable than the number of Bott equivalence classes of digraphs. We also
give a similar correspondece for the number of orientable small covers over an n-cube up
to weakly Zn

2 -equivariant homeomorphism.
In [4], Choi determines the number of Davis-Januskiewicz equivalence classes of ori-

entable small covers over an n-cube and approximates the ratio On/Rn where On is the
number of orientable small covers and Rn is the number of small covers over an n-cube
up to Davis-Januskiewicz equivalence. In Section 4, we obtain a recursive formula for the
number of orientable small covers over an n-cube up to Zn

2 -equivariant homeomorphism
(see Theorem 4.2). We also show that the ratio between this number and the number of
small covers up to Zn

2 -equivariant homeomorphism is approximately 2.26
2n .

This paper is organized as follows. In Section 2, we give the necessary background on
small covers. Section 3 is devoted the classification of small covers over an n-cube up to
weakly Zn

2 -equivariant homeomorphism. In Section 4, we give a formula for the number
of orientable small covers over an n-cube up to Zn

2 -equivariant homeomorphism.

2. Preliminaries
Let P be a simple convex polytope of dimension n. A small cover over P is a smooth

closed n-manifold endowed with a Zn
2 -action that satisfies the following conditions:

i) The action is locally isomorphic to the standard action of Zn
2 on Rn,

ii) The orbit space of the action is homeomorphic to P .
Small covers M1 and M2 over P are said to be Davis-Januszkiewicz equivalent (DJ-
equivalent) if there is a weakly Zn

2 -equivariant homeomorphism f : M1 → M2 covering the
identity on P .

Given a simple convex polytope P of dimension n, let F(P ) = {F1, . . . , Fm} be the
set of facets of P . A function λ : F(P ) → Zn

2 is said to satisfy the non-singularity
condition if whenever the facets Fi1 , · · · , Fin meet at a vertex then {λ(Fi1), . . . , λ(Fin)} is
a basis for Zn

2 . Such a function is called a characteristic function on P . We denote the
set of all characteristic functions on P by Λ(P ). Every point p ∈ P is contained in the
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relative interior of a unique face, say F (p). Let GF (p) be the subgroup of Zn
2 generated by

λ(Fi1), . . . , λ(Fik
) where Fi1 , · · · , Fik

are the set of all facets containing F (p). Then the
manifold M(λ) = (P × Zn

2 )/ ∼ where the equivalence relation is defined by

(p, g) ∼ (q, h) if p = q and g−1h ∈ GF (p)

is a small cover over P .

Theorem 2.1. [6] For every small cover M over P , there is a characteristic function λ
with Zn

2 -equivariant homeomorphism M(λ) → M covering the identity on P .

The general linear group GL(n,Z2) acts freely on Λ(P ) by composition. The char-
acteristic functions in the same orbit induce DJ-equivalent small covers. Therefore
the DJ-equivalence classes of small covers over P bijectively corresponds to the cosets
GL(n,Z2)\Λ(P ) by the above theorem. A standard way to count the number of orbits is
to work with (n × m)-matrices associated to characteristic functions. More precisely, for
every λ, there is an associated matrix

Λ = (λ(F1), · · · , λ(Fm)).

By reordering the facets and choosing a basis, we can choose a representative of the orbit
of Λ of the form (In|Λ∗) where Λ∗ is an (n × (m − n))-matrix. We call Λ a characteristic
matrix of λ and Λ∗ the reduced submatrix of λ.

Another group that acts naturally on Λ(P ) is Aut(F(P )), the automorphism group of the
face poset of P . The right action of Aut(F(P )) on Λ(P ) is also defined by composition.
In [10], Lü and Masuda prove that the equivariant classes of small covers over P are
characterized by this action.

Theorem 2.2. [10] The set of Zn
2 -equivariant homeomorphism classes of small covers

over P corresponds bijectively to the coset Λ(P )/Aut(F(P )).

By the above theorem the number of equivariant classes of small covers over P is equal to
the number of orbits of Λ(P ) under the action of Aut(F(P )). Therefore Burnside’s Lemma
reduces the problem of counting the number of equivariant homeomorphism classes of small
covers over P to an enumeration of characteristic functions that are fixed by an element
of Aut(F(P )).

One can combines above theorems to enumerate the number of weakly Zn
2 -equivariant

small covers over P .

Theorem 2.3. The set of weakly Zn
2 -homeomorphism classes of small covers over P

corresponds bijectively the double cosets GL(n,Z2)\Λ(P )/Aut(F(P )).

In [12], Nakayama and Nishimura give the following simple criterion for a small cover
to be orientable.

Theorem 2.4. [12] For a basis {e1, · · · , en} of Zn
2 , let the homomorphism ϵ : Zn

2 → Z2
be defined by ϵ(ei) = 1 for i = 1, · · · , n. Then a small cover M(λ) over a simple convex
polytope P of dimension n is orientable if and only if there exists a basis {e1, · · · , en} of
Zn

2 such that the image of the composition ϵ ◦ λ is {1}.

By the above theorem a small cover M with a characteristic matrix Λ is orientable
if and only if the sum of entries of the j-th column of Λ is odd for 1 ≤ j ≤ m. A
characteristic function satifying the orientability condition given in the above theorem is
called orientable. The action of Aut(F(P )) on the set of characteristic functions iduces an
action on the orientable ones. Hence the number of equivariant and weakly equivariant
small covers over P n are equal to the number of orbit spaces of the actions of Aut(F(P ))
and GL(n,Z2) × Aut(F(P )) on the set of orientable characteristic functions, respectively.
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3. Weakly equivariant classification of small cover over an n-cube
In this section, we classify the weakly Zn

2 -equivariant classes of small covers over an
n-cube in terms of acyclic digraphs. An n-dimensional cube In has 2n facets and for each
facet there is only one facet that does not intersect it. Following Choi ([3]), we order the
facets of In so that Fi and Fi+j do not intersect for 1 ≤ i ≤ n. In this case Λ∗ = (aij) is an
(n×n)-matrix and the non-singularity condition holds if and only if every principal minor
of Λ∗ is 1 (see [3]). This means that there is a bijection between the set of DJ-equivalence
classes of small covers over an n-cube and the set M(n) of (n × n) matrices over Z2 all of
whose principal minors are 1. Here every diagonal of Λ∗ is a principal minor and hence

aii = 1 for 1 ≤ i ≤ n. Moreover the (2 × 2)-matrix
(

aii aij

aji ajj

)
is a principal minor of Λ∗

and hence aijaji = 0 for every 1 ≤ i ̸= j ≤ n. Therefore Λ∗ − In is equal to an adjacency
matrix of some digraph. Choi [3] shows that the corresponding digraph is acyclic and the
correspondence is a bijection.

Theorem 3.1 (Theorem 2.2, [3]). There is a bijection between the DJ-equivalence classes
of small covers over In and the set of acyclic digraphs with n labeled vertices.

Recall that a digraph is a graph where the each edge has a direction. The edge from a
vertex v to a vertex w is denoted by [v, w]. We denote the set of vertices of G by V (G)
and the set of edges of G by E(G). If [v, w] ∈ E(G) then we say that v is an in-neighbor
of w and w is an out-neighbor of v. For a vertex v ∈ V (G), let N+

G (v) be the set of
all out-neighbors of v and N−

G (v) be the set of all in-neighbors of v. Given a directed
graph G with V (G) = {v1, · · · , vn}, the adjacency matrix of G is an (n × n)-matrix whose
(i, j)-entry is 1 if [v(i), v(j)] ∈ E(G), and 0, otherwise. A digraph is said to be acyclic if
there is no cycle in which each edge is traversed in the same direction. Let Gn be the set
of acyclic digraphs with n labeled vertices and Rn be the number of such digraphs.

Theorem 3.2. [13] The number of acyclic digraphs with n labeled vertices is given by the
following recursive formula:

Rn =
n∑

k=1
(−1)k+1

(
n

k

)
2k(n−k)Rn−k.

By theorem 2.3, the number of weakly Zn
2 -equivariant homeomorphism classes of small

covers over In is equal to |M(n)/Aut(F(In))|. Here the action of Aut(F(In)) on M(n) is
induced from its action on the set of characteristic functions on In. It is well-known that
Aut(F(In)) is the wreath product Z2 ≀ Sn of Z2 by Sn. Let us denote the involution that
interchanges Fi and Fn+i and fixes other faces by χi. Then every element of this group
can be written in the form µ · χe1

1 · · · χen
n where µ ∈ Sn and ei ∈ Z2. Here a permutation

µ ∈ Sn sends Fj to Fµ(j) and Fn+j to Fn+µ(j) for 1 ≤ j ≤ n. Let Λ∗ be the (n×n) reduced
submatrix of a given characteristic function λ. Then for any µ ∈ Sn we have

(In|Λ∗) · µ = (In|P (µ)−1Λ∗P (µ)).

Under the bijection given by Theorem 3.1, this action corresponds to the standard action
of Sn on the set of acyclic digraphs by permuting the vertices. Using this, Choi (Theorem
4.1 , [3]) shows that |M(n)/Aut(F(In))| is less than equal to the number of unlabeled
acyclic digraphs with n-vertices. In this section, we give a complete classification of small
covers over an n-cube up to weakly Zn

2 -equivariant homeomorphism. For this we need the
following definition.

Definition 3.3. ([7]) Let G be a digraph and v be a vertex in G. The local complemen-
tation of G at v is the acyclic digraph G ∗ v with V (G ∗ v) = V (G) and E(G ∗ v) is the
symmetric difference of sets E(G) and {[u, w]| (u, w) ∈ N−

G (v) × N+
G (v)}.
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In other words, the local complementation of G at v is obtained by removing [u, w] from
G if it is an edge of G or adding [u, w], otherwise for every in-neighbor u and out-neighbor
w of v.

v1

v2 v3

v5

v4 v1

v2 v3

v5

v4

Figure 1. Local complementation at v1.

Theorem 3.4. There is a bijection between the set of weakly Zn
2 -equivariant homeomor-

phism classes of small covers over In and the orbit space of the action of Z2 ≀ Sn on Gn

where µ ∈ Sn acts by permuting the vertices and χi acts as local complementation at vi.

Proof. Let λ be a characteristic function on In with a reduced submatrix Λ∗ = (apq).
This means that we can represent the equivalence class of λ in GL(n,Z2)\Λ(In) by (In|Λ∗).
Since χi acts on faces by interchanging Fi and Fn+i, we have

(In|Λ∗) · χi = (Pi(Λ∗)|Qi(Λ∗)),
where Pi(Λ∗) is the (n × n)-matrix obtained by replacing the i-th column of the identity
with the i-the column of Λ∗ and Qi(Λ∗) is the (n × n)-matrix obtained by replacing the
i-th column of Λ∗ with the i-the column of the identity. Since the diagonals of Λ∗ are all 1
and we are working with matrices over Z2, the invertible matrix Pi(Λ∗) is involutary, i.e,
Pi(Λ∗)−1 = Pi(Λ∗). Therefore we have (In|Λ∗) · χi = Pi(Λ∗) · (In|Pi(Λ∗) · Qi(Λ∗)). Clearly
(p, q)-entry of Pi(Λ∗) · Qi(Λ∗) is apq if i ∈ {p, q} and apiaiq + apq, otherwise. Therefore χi

sends orbit of λ with Λ∗ = (apq) in GL(n,Z2)\Λ(In) to a orbit represented by (In|(bpq))
where

bpq =
{

apq if i ∈ {p, q}
apiaiq + apq otherwise.

Let G be the acyclic digraphs with labeled vertices {v1, · · · , vn} and the adjacency
matrix Λ∗ − In. Then the induced action of χi sends G to a digraph G′ with the adjaceny
matrix (bpq) − In. Here, bpq is different than apq if and only if vp is an in-neighbor and vq

is an out-neighbor of vi in G. In this case, [vp, vq] is an edge of G′ if and only if [vp, vq]
is not an edge of G. This means that G′ is obtained from G by removing [vp, vq] from G
if it is an edge of G or adding [vp, vq], otherwise whenever vp is an in-neighbor and vq is
an out-neighbor of vi in G . Therefore χi sends G to the local complementation of G at
vi. �

Since the number of weakly Zn
2 -equivariant homeomorphism classes gives an upper

bound for the number of homeomorphism classes, as an immediate consequence of the
above theorem we obtain the following corollary.

Corollary 3.5. The number of small covers of small covers over In up to homeomorphism
is less than or equal to the size of the orbit space of the action of Z2 ≀ Sn on Gn where
µ ∈ Sn acts by permuting the vertices and χi acts as local complementation at vi.

Remark 3.6. The local complementation of a digraph at a vertex also appears in the
classification of small covers over cubes up to homeomorphisms (see [5]). In [5], Choi,
Masuda and Oum show that level types, rank, odd height and sibling classes of associated
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acyclic digraphs are invariant under homeomorphism classes of small covers over an n-cube.
Therefore these are also invariants of weakly equivariant homeomorphism classses. In [1],
Bouchet shows that local complementation also preserves cut-rank functions. However, it
is not an invariant of homeorphism classes of small covers over an n-cube (see [5]). It is
easy to see that cut-rank is also invariant under the reordering of vertices and hence it is
an invariant of weakly Z/2-equivariant homeomorphism classes of small covers.

By counting the orbits of the action of Z2 ≀ Sn on the set of acyclic digraphs with n
labeled vertices, one can obtain an upper bound for the number of homeomorphism classes
of small covers, which is known up to n = 8 ([5]). By Burnside’s Lemma, this number can
be found counting the number of elements that are fixed by elements of Z2 ≀ Sn. Clearly
when n = 2, the number of orbits of the Z2 ≀ Z2-action is 2.

Example 3.7. As listed in Figure 2, there are 5 different weakly Zn
2 -equivariant homeo-

morphism classes of small cover over I3. However, the number of homeomorphism classes
of small covers over I3 is 4. In this case, Class 2 and Class 4 represent the same homeo-
morphism class (see [5]).

Class 1 Class 2 Class 3

Class 4 Class 5

Figure 2. Representatives of orbits of Z2 ≀S3-action on the set of acyclic digraphs
with 3 labeled vertices.

With a custom SAGE implementation, we calculate the size of fixed points of elements
of the automorphism group of the face poset of I4 and obtain that the number of weakly
equivariant homeomorphism classes of small covers over I4 is 19. In this case the number of
DJ-equivalence classes, equivariant homeomorphism and homeomorphism classes of small
covers over I4 are 543, 259, and 12, respectively. In the following example, we give the
size of these fixed points.

Example 3.8. Recall that an arbitrary element g of Aut(F(I4)) is of the form µ·χe1
1 · · · χe4

4
where µ ∈ S4, χi ∈ Z/2 and ei ∈ {0, 1}. If µ is the identity, then we have

|(GL(n,Z2)\Λ(I4))g| =



543 if g = id,

375 if g = χi, 1 ≤ i ≤ 4,

247 if g = χiχj , 1 ≤< j ≤ 4,

159 if g = χiχjχk, 1 < i < j < k ≤ 4,

111 if g = χ1χ2χ3χ4.

When the cycle type of µ is (2, 2), (3, 1) or (4), the number of fixed points of g does not
depend on the choice of {e1, e2, e3, e4} and is 7, 3, and 1, respectively. When the cycle
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type of µ is (2, 1, 1), say µ = (a, b), the number of fixed points of g is given as follows:

|(GL(n,Z2)\Λ(I4))g| =


21 if g = (a, b) · χi with i ∈ {a, b},

21 if g = (a, b) · χiχj with |{a, b} ∩ {i, j}| = 1,

21 if g = (a, b) · χiχjχk with |{a, b} ∩ {i, j, k}| = 1,

25 otherwise.

Therefore the number of weakly equivariant small covers over I4 is
543 + 375 · 4 + 247 · 6 + 159 · 4 + 111 + 7 · 48 + 3 · 128 + 1 · 96 + 21 · 48 + 25 · 48

24 · 16
= 19

by Burnside’s Lemma.

Remark 3.9. The size of fixed points of g = χi can be counted easily even in the general
case. Indeed, an acyclic digraph G with labeled vertex set {v1, · · · , vn} is fixed by χi if
and only if either there is no edge directed from vi (i.e, vi is a source of G) or there is no
edge directed to vi (i.e, vi is a sink of G). By inclusion-exclusion principle, the number of
such digraphs is

2n−1Rn−1 + 2n−1Rn−1 − Rn−1 = (2n − 1)Rn−1.

Therefore when n = 4, |(GL(n,Z2)\Λ(I4))χi | = 375. One can compute the fixed points of
χiχj and χiχjχk, similarly but it is not easy to find a formula giving the size of the fixed
point set of χi1 · · · χik

in general. It is an open and important problem of graph theory
since it gives the number of equivalence classes of digraphs under local complementations
by Burnside’s Lemma.

4. Orientable small covers over an n-cube
Let O(n) be the number of orientable small covers over an n-cube up to DJ-equivalence.

In [4], Choi shows that O(n) is equal to the number of acyclic digraphs all of whose vertices
have even out-degree and hence obtains the following formula

O(n) =
n∑

k=1
(−1)k+1

(
n

k

)
2(k−1)(n−k)Rn−k. (4.1)

and shows that the ratio O(n)/R(n) is approximately 1.262
2n .

Theorem 4.1. (Theorem 3.3, [3]) Let ER(n) denote the number of Zn
2 -equivariant home-

omorphisms classes of small covers over an n-cube. Then

ER(n) =
∑n

k=0
(n

k

)
2k(n−i)Rn−k

2nn!
·

n−1∏
i=0

(2n − 2i). (4.2)

We obtain a similar formula for the number of orientable small covers over an n-cube.
Although the proof is similar to that of the above theorem, we provide it for completeness.

Theorem 4.2. Let EQ(n) denote the number of orientable small covers over an n-cube
up to Zn

2 -equivariant homeomorphisms. Then

EQ(n) =
∑n

k=0((−1)k+1 + 1)
(n

k

)
2(k−1)(n−k)Rn−k

2nn!
·

n−1∏
i=0

(2n − 2i). (4.3)

Proof. Recall that an element g of an automorphism group of the face poset of an n-cube
is of the form g = µ · χe1

1 · · · χen
n where µ ∈ Sn, the χi are reflections, and ei ∈ {0, 1}.

If µ ̸= 1 then for any characteristic function λ, there exist i, j with n - i − j such that
(λ · g)(Fi) = (λ · g)(Fj). This contradicts the non-singularity condition and hence the set
of fix points of g is empty. If g = 1 then the number of fixed points of g is the number of
orientable small covers, which is given by formula 4.1. Now let, let g = χ1 · · · χk for some
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k ≥ 1. Let λ be an orientable characteristic function fixed by g whose associated matrix
is Λ = (A|B). Since g fixes λ, the first k columns of A and B are the same. Therefore the
reduced submatrix of λ is of the form

Λ∗ =
(

Ik S
0 T

)
,

where Ik is the identity matrix of size k, S is a (k × (n − k))-matrix and T is a square
matrix of size (n − k). Here Λ∗ is in M(n) if and only if T is in M(n − k). By Theorem
2.4, λ is orientable if and only if the sum of entries of j-th columns of S and T is odd
for 1 ≤ j ≤ n − k. By controlling only one row of S, we can ensure that Λ∗ satisfy this
condition. Therefore the number of fixed point of g is |GL(n,Zn

2 )| × 2(k−1)(n−k)Rn−k for
k ≥ 1. This number is independent of choices of reflections. Since the size of GL(n,Zn

2 ) is∏n−1
i=0 (2n − 2i), we have the required formula by Burnside’s Lemma. �

n 1 2 3 4 5 6 · · ·
ER(n) 1 6 259 87360 236240088 5143046823936 · · ·
EQ(n) 1 3 70 12180 16644768 181797614208 · · ·

Table 1. Some values of ER(n) and EQ(n)

Now we estimate the ratio EQ(n)/ER(n). Note that EQ(n)/ER(n) = Kn/Ln where

Kn =
n∑

k=0
((−1)k+1 + 1)

(
n

k

)
2(k−1)(n−k)Rn−k,

Ln =
n∑

k=0

(
n

k

)
2k(n−i)Rn−k.

Given a sequence {An}, let A(x) be the chromatic generating function of An:

A(x) =
∞∑

n=0
An

xn

n!2(n
2)

.

Then A(x) = B(x)C(x), where A(x), B(x) and C(x) are the chromatic generating
functions of the sequences {An}, {Bn} and {Cn}, respectively, if and only if An =

n∑
k=0

BkCn−k

(
n

k

)
2k(n−k).

Lemma 4.3. Let F (x) be the chromatic generating function of the constant sequence
Fn = 1. Then we have

K(x) = F (x) − F (−x)
F (−x

2 )
and L(x) = F (x)

F (−x)
.

Proof. By Theorem 3.2, we have F (−x)R(x) = 1, where R(x) is the chromatic generating
function of Rn. Therefore the second equality easily follows from Thereom 4.1. For the
first one, write Kn = K1

n + K2
n where

K1
n =

n∑
k=1

(−1)k+1
(

n

k

)
2(k−1)(n−k)

n−k

K2
n =

n∑
k=1

(
n

k

)
2(k−1)(n−k)Rn−k.
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Since K1(x) = R(x
2 )
(
R(x

2 ) − F (−x)
)

and K2(x) = R(x
2 )
(
F (x) − R(x

2 )
)
, we have

K(x) = R(x

2
)
(
F (x) − F (−x)

)
= F (x) − F (−x)

F (−x
2 )

.

�

Since F (x) has an isolated zero at α = −1.488 (see [4]), L(x) also has an isolated zero
at α. Since F ′(x) = F (x

2 ), we have

L(x) ∼ F ′(α)
F (−α)

(x − α) =
F (α

2 )
F (−α)

(x − α).

Therefore we have the formula

L(x) ∼ 1
L(−x)

= F (−α)
F (α

2 )(−x − α)
= F (−α)

−αF (α
2 )

∞∑
n=0

(
− x

α

)n

and hence Ln ∼ A · 2(n
2)n!

(−1
α

)n
where A = 5.42.

To estimate the behavior of Kn, let

b(x) =
F (x

2 )
F (−x) − F (x)

.

It has an isolated zero at 2α and hence

b(x) ∼ F ′(α)
2(F (−2α) − F (2α))

(x − 2α) =
F (α

2 )
2(F (−2α) − F (2α))

(x − 2α).

Therefore, we have

K(x) = 1
b(−x)

∼ 2(F (−2α) − F (2α))
F (α

2 )(−x − 2α)
= F (−2α) − F (2α)

−αF (α
2 )

∞∑
n=0

(
− x

2α

)n
.

It estimates Kn as B · 2(n
2)n!

(−1
2α

)n
where B = 12.28.

Corollary 4.4. EQ(n)/ER(n) ∼ 2.26
2n

.

As an immediate consequence of Theorem 3.4, we have the following classification for the
weakly Zn

2 -equivariant homeomorphism classes of orientable small covers over an n-cube.

Theorem 4.5. There is a bijection between the set of weakly Zn
2 -equivariant homeomor-

phism classes of small covers over In and the orbit space of the action of Z2 ≀ Sn on the
set of acyclic digraphs all of whose vertices have even out-degree by permuting the vertices
and local complementations.

By above theorem, the number of orientable small covers over I3 is 2 up to weakly
Zn

2 -equivariant homeomorphisms. They are represented by Class 1 and Class 3 of Figure 2.
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