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 In this paper, a new optimization framework, namely Honey Formation Optimization (HFO), 
is proposed. In contrary to the Artificial Bee Colony Optimization (ABC) variants in literature, 
the HFO considers food sources consisting of many components and model the honey 
formation inside bees as a process of mixing the components with their special enzymes 
during chewing up the food source. We believe that bees analyze the amounts of components 
inside the food source and attempt more to collect weaker (less amount) components to 
improve the honey formation process. Thus, each time a worker exploits a food source it 
selects a component in such a way that weaker components are more frequently selected. The 
approach requires decomposing the solution into components where each component is 
evaluated by a component fitness function. The honey formula maps the component fitness to 
honey amount and considered as the equivalence of the fitness function. The worker bee uses 
the fitness of the selected component to evaluate the food source and does local search only 
around the selected component. The HFO and ABC Frameworks are compared on the basis of 
9 benchmark functions. The result shows that HFO performs better than the ABC.  

 
 

 
 

1. INTRODUCTION  
 

Artificial Bee Colony (Karaboga 2005) is inspired by 
the intelligent behavior of honey bees. Scout, worker and 
onlooker bees form a colony and cooperatively search for 
food source positions. In ABC algorithm, scouts find 
initial positions of the food sources and then they are 
converted to workers. Workers exploit these sources and 
announce the information about them to onlooker bees 
in hive. Onlooker bees pay more visits to the better food 
sources and exploit them in the same way as workers do. 
Exploiting a food source means local search around the 
source and keeping track of the better food source. ABC 
algorithm has an increasing popularity in scientific 
community. It has been applied in solving many 
problems, such as image enhancement (Chen et al. 2017), 
compression (Ismail and Baskaran 2014), motion 
estimation (Cuevas et al. 2013), network attacks (Lozano 
et al. 2017), intrusion detection (Aldwairi et al. 2015), 
training neural networks (Karaboga et al. 2007), feature 
selection (Keles and Kilic 2018), clustering (Karaboga 
and Ozturk 2011), and among many others(Akay and 
Karaboga 2015; Liu et al. 2017; Apalak et al. 2014; Abro 

and Mohamad-Saleh 2014; Kang et al. 2013). In 
literature, ABC algorithm is initially proposed for 
optimization of numeric functions (Karaboga 2005). 
Since then many ABC variants (Karaboga et al. 2014; Jia 
et al. 2015; Huang et al. 2016) have been proposed for 
various type of optimizations such as constrained, multi 
objective, continuous and combinatorial design 
problems. Karaboga and his friends provided a 
comprehensive survey (Karaboga et al. 2014) that 
analyses these problems with the focus on ABC 
drawbacks. According to the survey studies, the great 
potential of ABC seems very clear with its good 
exploration capability but also a strong need to alleviate 
the weakness in exploitation capability (local search). 

Majority of the ABC versions in literature focus on 
the exploit phase (Gao and Liu 2012; Wang et al. 2019; 
Han et al. 2015; Shah et al. 2014; Cheng and Jiang 2012; 
He et al. 2015; Chen et al. 2012; Kang et al. 2011),which 
improve the local search capability of bees (workers or 
onlookers). The original bees search around the current 
solution for a random neighbor towards to one of the 
existing solutions. Some articles (Gao and Liu 2012) 
(Shah et al. 2014) allow bees to search around the best 
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solution of the current population. Although such 
approaches enable bees to converge the optimal solution 
very soon, they increases possibility of local stuck around 
the near optimal solution. Thus, (Gao and Liu 2012) also 
improves exploration ability of the scout bees by using 
chaotic and opposition based initialization (Sun et al. 
2018) allows bees to search around a random existing 
solution for random neighbor towards to current 
solution, which is quite opposite of the original approach. 
Authors claim that this approach can expand the search 
range of new solution and further improve the 
exploration ability of ABC algorithm. 

All the aforementioned ABC algorithms assume 
single component inside a food source and no honey 
formation inside bees. We considered that the honey 
formation starts when the bees chew up the food source, 
e.g. nectar, with their special enzymes and meanwhile 
they can analyze which components are needed to 
improve the quality of honey. The HFO Algorithm is 
actually a framework that can be applied to any ABC 
algorithms. It requires four major changes from existing 
ABC versions: i) solution decomposition into 
components where the component fitness function is 
composed from the cost function ii) honey formula 
mapping the component fitness to the solution fitness iii) 
a selection strategy for worker bees to select the weaker 
component randomly iv) applying local update only to 
the selected component. No change in onlooker phase is 
required. However optionally, instead of using fitness 
function, honey formula could still be used in onlooker 
phase. Also when the number of component is one, HFO 
becomes equal to original ABC algorithm. 

The article is organized as follows. Next section 
provides the original ABC. Third section provides the 
proposed HFO algorithm. The fourth section provides the 
experimental results and the last section gives 
concluding remarks and future directions. 

 

2. ABC ALGORITHM 
 

The basic ABC algorithm requires few parameters, 
such as the number of food sources denoted as NS, 
maximum iterations denoted as MaxIter, and the trial 
limit denoted as limit. As given in Algorithm 1, the ABC 
algorithm has three phases. In first phase, scout bees 

randomly explore the food space to find initial food 
sources, which are the initial solutions denoted as X=(𝒙𝟏, 
𝒙𝟐,…,𝒙𝑵𝑺) and formulated in Eq. (1).  
 

𝑥𝑖(𝑗) = 𝑥min(𝑗) + 𝑟𝑎𝑛𝑑(0,1). (𝑥min(𝑗) + 𝑥max(𝑗)) (1) 
 

where j is the updating dimension ∈ {1, 2,…,D, 𝑥𝑚𝑖𝑛 

and 𝑥𝑚𝑎𝑥  are upper and lower bound solutions 
respectively. Any scout discovering the food source, 
source 𝑥𝑖∈ RD becomes a worker bee with its associated 
food source in its memory. The bees measure the quality 
of the source 𝑥𝑖  using the fitness function, formulated on 
basis of the cost function f(x) in Eq. (2). 
 

𝑓𝑖𝑡𝑥𝑖 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = {
 1 (1 + 𝑓(𝑥𝑖) )⁄ ,        𝑓(𝑥𝑖) > 0 
1 + 𝑎𝑏𝑠(𝑓(𝑥𝑖)),       𝑓(𝑥𝑖) ≤ 0

} (2) 

 

In second phase, each worker i locally updates its 
food source 𝑥𝑖  as a result of randomly searching its 
neighbourhood for a better solution. This phase is 
equivalent to local update procedure defined in Eq. (3-4), 
which forms a candidate 𝑣𝑖∈ RD by updating a randomly 
selected dimension j of the solution 𝑥𝑖  towards one of the 
existing solution 𝑥𝑘 ≠ 𝑥𝑖  formulated in Eq. (3). The 
workers replace the source 𝑥𝑖  with the candidate 𝑣𝑖 if 
later is better, formulated in Eq. (4). Local update 
procedure also updates a trial counter. If worker i cannot 
(update) improve its current solution𝑥𝑖 , the trial counter 
𝑐𝑖  will be incremented, otherwise the counter is reset to 
zero. 
 

𝑣𝑖(𝑗) = 𝑥𝑖(𝑗) + 𝑟𝑎𝑛𝑑(−1,1). (𝑥𝑖(𝑗) − 𝑥𝑘(𝑗)) (3) 
 

{
𝑥𝑖 = 𝑣𝑖 ,    𝑐𝑖 = 0,       𝑓𝑖𝑡𝑣𝑖 >   𝑓𝑖𝑡𝑥𝑖
𝑐𝑖 = 𝑐𝑖 + 1,                 𝑓𝑖𝑡𝑣𝑖 ≤   𝑓𝑖𝑡𝑥𝑖

} (4) 

 

where k ∈ {1, 2, . . . , NS} is the randomly chosen 
indice and k ≠ i ,j ∈ {1, 2, . . . , D} indicates a random 
dimension selected to be updated. In third phase, 
workers announce the information about the food 
sources such as nectar amount and position by dancing 
in the hive. Onlooker bees watch the dances of these bees 
and select a random food source among the sources in 
such a way that better sources have more chance to be 
selected. 

 

Algorithm 1. Basic ABC Algorithm (MaxIter, NS, limit ): return Best 

 
(1) Generate random NS solutions          (Eq. 1) 
(2) for iter =1 to MaxIter do 
(3) for each worker: 
(4) - apply local update procedure to the associated solution of the worker       (Eq. 3-4) 
(5) P←selection probabilities of solutions proportional to their fitness values    (Eq.2, 5) 
(6) for each onlookers:  
(7) - select a random solution according to selection probability P  
(8) - apply local update procedure to it  (Eq. 3-4) 
(9) for each scouts:  
(10)- replace the associated solution with a random solution if the solution is not  I updated for limit iteration (Eq. 1) 
(10) keep track of Best solution so far 

 
 

The selection probabilities, P = (𝑝1, 𝑝2,…,𝑝𝑁𝑆), are 
formulated in Eq. (5) where 𝑝𝑖  is the selection probability 
of the source 𝑥𝑖 . 
 

pi =
fitxi

∑ fitxk
NS
k=1

 (5) 

 

Then, they exploit their food sources in the same 
fashion as workers do (local update procedure). Thus, 
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onlookers mostly gather around globally better solutions 
to make global improvements. All bees keep track of the 
best food sources during searching for the sources. Any 
bee that cannot exploit its food source (improve its 
solution) within some trial limit becomes scout again and 
finds a random food source throughout the space. The 
algorithm repeats worker-onlooker-scout phases until 
the maximum cycles are completed. When algorithm 
terminates one of the bees in current population is 
expected to have the best food source in its memory. 

3.  HFO FRAMEWORK 
 

The proposed HFO framework is given in Algorithm 
2 below. HFO generalizes the ABC algorithm where single 
component assumption equalizes the both. The main 
difference is that the HFO assumes food sources each 
consisting of K components and worker bees attempting 
more to search for components that are needed 
according to current honey form inside bees. Every food 
source 𝒙𝒊 has its own honey form produced from it. Thus, 
the food source and its honey form are associated. 

 

Algorithm 2. HFO Framework (MaxIter, NS, limit, K ): return Best 
 

(1) Generate random NS solutions           (Eq.1) 
(2) for iter =1 to MaxIter do 
(3)  for each worker: 
(4)  - P ← selection probabilities of components  in current solution, inversely proportional  to their component fitness            (Eq. 8) 
(5)   - select a random component according to selection probability P  
(6)   - apply local update procedure to the  selected component             (Eq. 9-10) 
(7)  P← selection probabilities of solutions, proportional to their fitness        (Eq. 5, 12) 
(8)  for each onlookers:  
(9)   - select a random solution according to  selection probability P  
(10)  - apply local update procedure               (Eq. 3, 11) 
(11) for each scouts: 
(12)  - replace the associated solution with a random solution if the solution is not updated for limit iteration    (Eq.1) 
(13) keep track of Best solution so far 

 
 

The honey form or equivalently the food source is 
considered as a solution and the components of the food 
source are sub solutions. The HFO finally finds the source 
that produce the best honey form. HFO uses cost-based 
approach: instead of using fitness, cost values are used 
when comparing solutions or components. The HFO 
defines three design concepts:  

i) Component Design that require to decompose the 
solution into components where c. component of the 
solution 𝑥𝑖  is denoted as 𝑥𝑖

𝑐  
ii) Component Fitness Design that deals with how to 

approximately measure each component fitness in a 
given solution. Normally, in HFO Framework, component 
fitness design is required for each component. However, 
the design of component and its fitness depends on the 
problem. Here, we assume original cost function f as 
component fitness functions where the fitness of the 
component 𝑥𝑖

𝑐  is denoted as 𝑓𝑖𝑡𝑥𝑖
𝑐 while its cost is 

denoted as 𝑓(𝑥𝑖
𝑐
) 

iii) Honey Formula Design (Optional): If the solution 
fitness can be expressed as function of component fitness 
such that this function shows equivalence / 
approximation to the original fitness function, then we 
call this function as Honey Function. If there is no way for 
Honey Function, one can use the original fitness function 
as Honey Function. One advantage of using honey 
function is that the solution cost is computed in terms of 
component cost values 𝑓(𝑥𝑖

𝑐) that are already computed 
during local update procedure. This reduces the 
complexity of HFO. 

One major form for component design is given in Eq. 
(6) where a solution 𝑥𝑖  ∈ RD is decomposed into K non-
overlapping sub solutions, causing a shift from the space 
RD to RD/K, with D/K as the dimension of components. 
Components are separated by pipe symbols in Eq. (6) just 
for visualization. 

Among many forms of solution decomposition, 
following shows an overlapping form of components 
where half of each component is overlapped with the 
neighbor components. 

 

xi = [xi11, xi21 , ... xi(D/K)1 | xi(D/K+1)2 , xi(D/K+2)2 ... xi(2D/K)2 | … .] = [ xi1 | xi2 |. . . ] (6) 
 

Xi= [
𝑋𝑖
2

𝑋𝑖
1𝑋𝑖

3 , ……] (7) 

The solution should be decomposed into 
components in such a way that the honey formula can 
bind the component fitness to the original fitness 
function. 

According to HFO, the worker i evaluates the 
components of xi and more probably modify (local 
update) the weaker component due to the fact that the 
component in less amount are more vital and more 
needed to improve the current honey form. Let 𝑥𝑖

𝑐 ⊆ 𝑥𝑖  
be the c. component of 𝑥𝑖 .The selection probability of 
component c for the worker i, denoted as 𝑃𝑖

𝑐, is inversely 

proportional to its fitness, formulated in Eq. (8) where 
the component cost 𝑓(𝑥𝑖

𝑐) = 𝑐𝑜𝑠𝑡𝑥𝑖
𝑐 naturally measures 

the inverse fitness of the component c of xi. 
 

Pi
c =

{
  
 

  
 

f(xi
c) + 1

∑ (f(xi
j) + 1)K

j=1

 if f(x) is in positive domain

f(xi
c) − min

k=1..K
  ( f(xi

k)) + 1

∑ (f(xi
j) − min

k=1..K
  ( f(xi

k)) + 1)K
j=1

   otherwise

}
  
 

  
 

 (8) 
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The local update procedure for worker bees is 
applied on component basis, which is formulated in Eq. 
(9-10) where c is the selected component and j is the 
updating dimension of the component c during local 
search around𝑥𝑖 . Note that the proposed local update 
procedure can be applied to any ABC variant not limited 
to Eq. (9-10). The idea here is the workers modifies the 
selected component according to their local search 
strategies. 
 

vi
c(j) = xi

c(j) + rand(−1,1). (xi
c(j) − xk

c(j)) (9) 

 

{
𝑥𝑖 = 𝑣𝑖 , 𝑐𝑖 = 0,         𝑓(𝑣𝑖

𝑐) < 𝑓(𝑥𝑖
𝑐)

𝑐𝑖 = 𝑐𝑖 + 1,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (10) 

 

When comparing two solutions xi and vi in onlooker 
phase, we also prefer to use cost function rather than 
fitness function since the fitness definition in original 
ABC may cause implementation issue related to infinite 
precision requirement at the term 1/(1+cost). Thus, the 
local update procedure for onlooker is modified using Eq. 
(11) as follows 
 

{
xi = vi, ci = 0,         F(vi) < F(xi)
ci = ci + 1,                      otherwise

} (11) 

 

where the 𝐹(𝑥) is the cost form of honey formula, 
formulated in Eq.(12). Honey formula F(x) is an 
approximation to the original cost function f(x) or must 
have equivalence relation with the f(x). Here as honey 
function we adapt summation operator. 
 

𝐹(𝑥𝑖) =∑ 𝑓(𝑥𝑖
𝑐) ≅ 𝑓(𝑥𝑖)

𝐾

𝑐=1
 (12) 

 

The cost function approximation using the 
summation of component cost values are one form of 
honey formula, among many others.  

The fitness form of honey formula 𝐹𝑓𝑖𝑡(𝑥𝑖) is given in 

Eq.(13) that is only used in Eq.(14) to compute the 
selection probabilities 𝑝𝑖  of solutions for onlookers.  
 

𝐹𝑓𝑖𝑡(𝑥𝑖) =

{
 
 

 
 

1

𝐹(𝑥𝑖) + 1
   𝑖𝑓 𝑓(𝑥) 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑜𝑚𝑎𝑖𝑛

1

𝐹(𝑥𝑖) − min
𝑘=1..𝑁𝑆

𝐹(𝑥𝑘) + 1
               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}
 
 

 
 

 

(13) 

𝑝𝑖 =
𝐹𝑓𝑖𝑡(𝑥𝑖)

∑ 𝐹𝑓𝑖𝑡(𝑥𝑘)
𝑁𝑆
𝑘=1

 
(14) 

 

HFO does not require any change in onlooker bees 
except using cost function f(x) when comparing two 
solutions. However, the approximated version of cost 
function F(x) could optionally be used to benefit from 
cost function decomposition. Cost functions may not be 
easily decomposed into component cost functions. Some 
cost functions are separable and easily expressed in 
terms of component costs. Thus, one can consider cost 
function approximation if it allows cost function 
decomposition on components.  
 

3.1. Some Forms for Component Design 
 

The component cost functions f(xi
c) and component 

itself xi
c must be considered together in design. 

Component design is problem specific and must be done 
for each benchmark functions. Here we propose some 
design strategies for component and its cost functions. 
Let the cost function f(x) expressed as f(x) = g(x) + h(x), 
3 forms of component design are defined as follows:  
 

1. Form: 𝑥𝑖
𝑐 is non-overlapped and partition on f(x) as 

follows:  𝑓(𝑥𝑖
𝑐
) =  𝑔(𝑥𝑖

𝑐
) + ℎ(𝑥𝑖

𝑐
) 

2. Form: 𝑥𝑖
𝑐 is non-overlapped and partition on g(x) as 

follows: 𝑓(𝑥𝑖
𝑐) =  𝑔(𝑥𝑖

𝑐) + ℎ(𝑥)/𝐾   
3. Form: 𝑥𝑖

𝑐 is overlapped and partition on f(x) as 
follows: 𝑓(𝑥𝑖

𝑐) =  𝑔(𝑥𝑖
𝑐) + ℎ(𝑥𝑖

𝑐) 
 

4. EXPERIMENTAL RESULTS 
 

ABC and HFO algorithms are compared based on 9 
benchmark functions given in Table 1. The benchmark 
functions have different characteristics such as 
multimodal and non-convex (Ackley, Qing, Egg-Crate, 
Xin-She Yan, Rosenbrock), multimodal and 
convex(Rastrigin), unimodal and non-
convex(Griewank), unimodal and convex( Brown, 
Sphere). The functions are tested for the maximum 
number of iterations MaxIter = 5000, the number of food 
sources NS=60, the problem dimension D=50, and the 
parameter limit=NS×D and the number of components 
K=10 for HFO. 

However with this limit setting, the Rastrigin 
function is reached to global min zero for both ABC and 
HFO, thus the limit = 0.1xNS x D is considered only for 
Rastrigin function. The colony has equal number of 
worker bees and onlooker bees, considered equal to NS. 
Each experiment for the same parameter settings 
repeated 20 times and the average values are used to 
compute the performance metrics, such as min, max and 
mean of cost function values. The component design for 
each benchmark functions are provided in Table 3 where 
the details of component design is given in previous 
section. 

The experimental results are provided in Table 4 
and Figs. 1-9 where the table demonstrates the 
comparison of the objective performances with achieved 
min, max and mean cost values and the figures show the 
evolution curves of ABC and HFO. The Table 4 clearly 
shows that HFO is superior to original ABC for all 
functions. Particularly, for unimodal and convex 
problems the HFO performs best. However, for many 
difficult functions such as Rosenbrock, Egg-Crate, and 
Xin-She Yan that are multimodal and non-convex the 
HFO also performs well.  

The evolution curves of mean cost values across the 
iterations are given in Figs. 1-9. The figures clearly show 
that the HFO converge speed is also better than ABC. The 
ABC sometimes early converges to a mean cost value 
around 1.0e-16 due to its weak local search strategy. 
With ABC local search, the solution is randomly updated 
and this causes improvement in less speed. HFO causes 
more correct solution update by updating only the worse 
component of the moment. 

For each benchmark functions the behaviors of ABC 
and HFO varies. In general, ABC early maturates for all 
functions except Ackley where HFO performs better but 
converged earlier than ABC. Looking the Figure 1, around 
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the iteration 3800-4000 HFO becomes saturated, 
however, ABC continue to improve. Due to early 
maturation for Ackley, all solutions in the population 

have sufficient time to reach the best value. Thus, the best 
and worst values are converged to each other for Ackley.   

 

Table 2. Typical benchmark functions 
Name Function Range Min 

Ackley 𝑓1 = −20𝑒𝑥𝑝(−0.2√
1

𝑛
∑ 𝑥𝑖

2𝑛

𝑖=1
) − 𝑒𝑥𝑝(

1

𝑛
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑛

𝑖=1
) + 20 + 𝑒  (−32.768, 32.768) 0 

Brown 𝑓2 =∑ (𝑥𝑖
2)(𝑥𝑖+1

2 +1)
𝑛−1

𝑖=1
+ (𝑥𝑖+1

2 )(𝑥𝑖
2+1)  (−4, 4) 0 

Griewank 𝑓3 = 1+∑
𝑥𝑖
2

4000

𝑛

𝑖=1
−∏ 𝑐𝑜𝑠(

𝑥𝑖

√𝑖
)

𝑛

𝑖=1
  (−600, 600) 0 

Qing 𝑓4 =∑ (𝑥𝑖
2 − 𝑖)2

𝑛

𝑖=1
  (−10,10) 0 

Rastrigin* 𝑓5 = 10𝑛 +∑ (𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖))

𝑛

𝑖=1
  (-5.12, 5.12) 0 

Sphere 𝑓6 =∑ 𝑥𝑖
2𝑛

𝑖=1
  (−100, 100) 0 

Egg Crate 𝑓7 =∑ 𝑥𝑖
2𝑛

𝑖=1
 + 25∑ 𝑠𝑖𝑛2(𝑥𝑖)

𝑛

𝑖=1
   (−500, 500) 0 

Xin-SheYan 𝑓8 = (∑ 𝑠𝑖𝑛2(𝑥𝑖)
𝑛

𝑖=1
− 𝑒−∑ 𝑥𝑖

2𝑛

𝑖=1 )𝑒
−∑ 𝑠𝑖𝑛2√|𝑥𝑖|

𝑛

𝑖=1   (−10,10) -1 

Rosenbrock 𝑓9 =∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (1 − 𝑥𝑖)

2]
𝑛−1

𝑖=1
  (−50, 50) 0 

 
 Table 3. Component design for benchmark functions 
Objective Functions Component Overlapped Component Cost Function Form# Partition on g(x) or f(x) 

Ackley No 1 f(x) 

Brown Yes(1 element) 3 f(x) 

Griewank No 1 g(x)= ∑
𝒙𝒊
𝟐

𝟒𝟎𝟎𝟎

𝒏

𝒊=𝟏
 

Qing No 1 f(x) 

Rastrigin* No 1 f(x) 
Sphere No 1 f(x) 

EggCrate No 2 g(x)= ∑ 𝒙𝒊
𝟐𝒏

𝒊=𝟏
 

Xin-SheYang No 1 f(x) 
Rosenbrock Yes(1 element) 3 f(x) 

 

Table 4. Performance comparison :  ABC versus HFO 
Objective 
Functions 

ABC HFO 

Best Mean Worst Best Mean Worst 

Ackley 5.1e-14 6.3e-14 6.8e-14 8.0e-15 8.0e-15 8.0-15 
Brown 7.5e-16 9.6e-16 1.2e-15 9.4e-48 3.2e-47 1.1e-46 
Griewank 0 9.4e-17 1.1e-16 0 0 0 

Qing 9.6e-16 2.7e-15 1.3e-14 2.3e-17 7.1e-16 7.2e-15 
Rastrigin* 0 2.3e-14 1.1e-13 0 0 0 
Sphere 7.7e-16 9.4e-16 1.1e-15 2.8e-44 1.7e-43 4.1e-43 
EggCrate 6.5e-16 7.9e-16 9.9e-16 1.1e-34 5.8e-34 2.7e-34 

Xin-SheYang 7.7e-17 9.7e-17 1.1e-16 3.5e-37 5.6e-33 3.1e-32 
Rosenbrock 0.5e-02 0.2 0.8 2.2e-06 1.2e-05 4.4e-05 

 

The Figure 3 and Figure 5 shows similar behaviors 
where there is a limit around 1e-15 and 1e-17 for 
Griewank and Rastrigin respectively and exceeding the 
limit causes their converge to zero. Another reason for 
similar behavior for both function is their similar 

function definitions where 𝒈(𝒙) =∑ (𝒙𝒊
𝟐/4000)

𝒏

𝒊=𝟏
 and 

ℎ(𝑥) =  1 −∏𝑐𝑜𝑠(𝑥𝑖/√𝑖) are used for Griewank function 
where  h(x) is defined in terms of cosine function and g(x) 
and h(x) could be zero. When we look at the Rastrigin 

where 𝑔(𝑥) = ∑ (𝑥𝑖
2)

𝑛

𝑖=1
 and 𝒉(𝑥) = 10𝑛 −

∑ 10𝑐𝑜𝑠(2𝜋𝑥𝑖)
𝑛

𝑖=1
 could be considered, h(x) is again 

defined in terms of cosine function, and g(x) and h(x) 
could be zero. Rastrigin seems simple for both ABC and 
HFO. ABC is also reaching to zero with normal limit 

parameter. Thus, we reduced the limit L for only 
Rastrigin. 

 

5. CONCLUSION 
 

In this article, a new optimization framework 
namely Honey Formation Optimization (HFO) is 
introduced. HFO extends the Artificial Bee Colony 
Algorithm by considering multiple components in food 
sources and worker bees searching more frequently for 
the components in less amount due to fact that the 
component in less amount more limits the honey 
formation process and thus more vital for worker bees. 
For single component assumption, HFO and ABC become 
equal. The proposed optimization is a framework that 
could be applied to any ABC variant. The components are 
considered as sub solutions and honey formation process 



Turkish Journal of Engineering – 2021; 5(2); 81-88 

 

  86  

 

mix up the components towards better honey fitness. 
The experimental results demonstrates that HFO can 
performs better and converge earlier than the ABC. 
However, HFO uses honey formula that requires design 
for both solution decomposition and cost function 
decomposition together. Thus, some functions are 
difficult or even impossible to decompose perfectly. In 
such cases new approaches are required to partition 
functions on the basis of component design. 
 

 
Figure 1. Evolution curves for Ackley 
 

 
Figure 2. Evolution curves for Brown 
 
 

 
Figure 3. Evolution curves for Griewank 
 

 
Figure 4. Evolution curves for Qing 
 

 
Figure 5. Evolution curves for Rastrigin 
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Figure 6. Evolution curves for Sphere 
 

 
Figure 7. Evolution curves for Egg Crate  
 

 
Figure 8. Evolution curves for Xin-SheYang 

 
Figure 9. Evolution curves for Rosenbrock 
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