

* Corresponding Author Cite this article

*(zyetgin@mersin.edu.tr) ORCID ID 0000 – 0001 – 5918 – 6565
 (msamdan@mersin.edu.tr) ORCID ID 0000 – 0003 – 4079 – 4565

Research Article / DOI: 10.31127/tuje.693103

Yetgin Z & Şamdan M (2021). Honey formation optimization: HFO. Turkish Journal of
Engineering, 5(2), 81-88

Received: 23/02/2020; Accepted: 21/04/2020

Turkish Journal of Engineering – 2021; 5(2); 81-88

Turkish Journal of Engineering

https://dergipark.org.tr/en/pub/tuje

e-ISSN 2587-1366

Honey formation optimization: HFO

Zeki Yetgin *1 , Mustafa Şamdan 2

1Mersin University, Faculty of Engineering, Department of Computer Engineering, Mersin, Turkey
2Mersin University, Faculty of Engineering, Information Technologies Research and Application Center, Mersin, Turkey

Keywords ABSTRACT
ABC
Bee colony algorithm
Honey formation
Function decomposition

 In this paper, a new optimization framework, namely Honey Formation Optimization (HFO),
is proposed. In contrary to the Artificial Bee Colony Optimization (ABC) variants in literature,
the HFO considers food sources consisting of many components and model the honey
formation inside bees as a process of mixing the components with their special enzymes
during chewing up the food source. We believe that bees analyze the amounts of components
inside the food source and attempt more to collect weaker (less amount) components to
improve the honey formation process. Thus, each time a worker exploits a food source it
selects a component in such a way that weaker components are more frequently selected. The
approach requires decomposing the solution into components where each component is
evaluated by a component fitness function. The honey formula maps the component fitness to
honey amount and considered as the equivalence of the fitness function. The worker bee uses
the fitness of the selected component to evaluate the food source and does local search only
around the selected component. The HFO and ABC Frameworks are compared on the basis of
9 benchmark functions. The result shows that HFO performs better than the ABC.

1. INTRODUCTION

Artificial Bee Colony (Karaboga 2005) is inspired by
the intelligent behavior of honey bees. Scout, worker and
onlooker bees form a colony and cooperatively search for
food source positions. In ABC algorithm, scouts find
initial positions of the food sources and then they are
converted to workers. Workers exploit these sources and
announce the information about them to onlooker bees
in hive. Onlooker bees pay more visits to the better food
sources and exploit them in the same way as workers do.
Exploiting a food source means local search around the
source and keeping track of the better food source. ABC
algorithm has an increasing popularity in scientific
community. It has been applied in solving many
problems, such as image enhancement (Chen et al. 2017),
compression (Ismail and Baskaran 2014), motion
estimation (Cuevas et al. 2013), network attacks (Lozano
et al. 2017), intrusion detection (Aldwairi et al. 2015),
training neural networks (Karaboga et al. 2007), feature
selection (Keles and Kilic 2018), clustering (Karaboga
and Ozturk 2011), and among many others(Akay and
Karaboga 2015; Liu et al. 2017; Apalak et al. 2014; Abro

and Mohamad-Saleh 2014; Kang et al. 2013). In
literature, ABC algorithm is initially proposed for
optimization of numeric functions (Karaboga 2005).
Since then many ABC variants (Karaboga et al. 2014; Jia
et al. 2015; Huang et al. 2016) have been proposed for
various type of optimizations such as constrained, multi
objective, continuous and combinatorial design
problems. Karaboga and his friends provided a
comprehensive survey (Karaboga et al. 2014) that
analyses these problems with the focus on ABC
drawbacks. According to the survey studies, the great
potential of ABC seems very clear with its good
exploration capability but also a strong need to alleviate
the weakness in exploitation capability (local search).

Majority of the ABC versions in literature focus on
the exploit phase (Gao and Liu 2012; Wang et al. 2019;
Han et al. 2015; Shah et al. 2014; Cheng and Jiang 2012;
He et al. 2015; Chen et al. 2012; Kang et al. 2011),which
improve the local search capability of bees (workers or
onlookers). The original bees search around the current
solution for a random neighbor towards to one of the
existing solutions. Some articles (Gao and Liu 2012)
(Shah et al. 2014) allow bees to search around the best

https://dergipark.org.tr/en/pub/tuje
https://orcid.org/0000-0001-5918-6565
https://orcid.org/0000-0003-4079-4565

Turkish Journal of Engineering – 2021; 5(2); 81-88

 82

solution of the current population. Although such
approaches enable bees to converge the optimal solution
very soon, they increases possibility of local stuck around
the near optimal solution. Thus, (Gao and Liu 2012) also
improves exploration ability of the scout bees by using
chaotic and opposition based initialization (Sun et al.
2018) allows bees to search around a random existing
solution for random neighbor towards to current
solution, which is quite opposite of the original approach.
Authors claim that this approach can expand the search
range of new solution and further improve the
exploration ability of ABC algorithm.

All the aforementioned ABC algorithms assume
single component inside a food source and no honey
formation inside bees. We considered that the honey
formation starts when the bees chew up the food source,
e.g. nectar, with their special enzymes and meanwhile
they can analyze which components are needed to
improve the quality of honey. The HFO Algorithm is
actually a framework that can be applied to any ABC
algorithms. It requires four major changes from existing
ABC versions: i) solution decomposition into
components where the component fitness function is
composed from the cost function ii) honey formula
mapping the component fitness to the solution fitness iii)
a selection strategy for worker bees to select the weaker
component randomly iv) applying local update only to
the selected component. No change in onlooker phase is
required. However optionally, instead of using fitness
function, honey formula could still be used in onlooker
phase. Also when the number of component is one, HFO
becomes equal to original ABC algorithm.

The article is organized as follows. Next section
provides the original ABC. Third section provides the
proposed HFO algorithm. The fourth section provides the
experimental results and the last section gives
concluding remarks and future directions.

2. ABC ALGORITHM

The basic ABC algorithm requires few parameters,
such as the number of food sources denoted as NS,
maximum iterations denoted as MaxIter, and the trial
limit denoted as limit. As given in Algorithm 1, the ABC
algorithm has three phases. In first phase, scout bees

randomly explore the food space to find initial food
sources, which are the initial solutions denoted as X=(𝒙𝟏,
𝒙𝟐,…,𝒙𝑵𝑺) and formulated in Eq. (1).

𝑥𝑖(𝑗) = 𝑥min(𝑗) + 𝑟𝑎𝑛𝑑(0,1). (𝑥min(𝑗) + 𝑥max(𝑗)) (1)

where j is the updating dimension ∈ {1, 2,…,D, 𝑥𝑚𝑖𝑛

and 𝑥𝑚𝑎𝑥 are upper and lower bound solutions
respectively. Any scout discovering the food source,
source 𝑥𝑖∈ RD becomes a worker bee with its associated
food source in its memory. The bees measure the quality
of the source 𝑥𝑖 using the fitness function, formulated on
basis of the cost function f(x) in Eq. (2).

𝑓𝑖𝑡𝑥𝑖 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = {
 1 (1 + 𝑓(𝑥𝑖))⁄ , 𝑓(𝑥𝑖) > 0
1 + 𝑎𝑏𝑠(𝑓(𝑥𝑖)), 𝑓(𝑥𝑖) ≤ 0

} (2)

In second phase, each worker i locally updates its
food source 𝑥𝑖 as a result of randomly searching its
neighbourhood for a better solution. This phase is
equivalent to local update procedure defined in Eq. (3-4),
which forms a candidate 𝑣𝑖∈ RD by updating a randomly
selected dimension j of the solution 𝑥𝑖 towards one of the
existing solution 𝑥𝑘 ≠ 𝑥𝑖 formulated in Eq. (3). The
workers replace the source 𝑥𝑖 with the candidate 𝑣𝑖 if
later is better, formulated in Eq. (4). Local update
procedure also updates a trial counter. If worker i cannot
(update) improve its current solution𝑥𝑖 , the trial counter
𝑐𝑖 will be incremented, otherwise the counter is reset to
zero.

𝑣𝑖(𝑗) = 𝑥𝑖(𝑗) + 𝑟𝑎𝑛𝑑(−1,1). (𝑥𝑖(𝑗) − 𝑥𝑘(𝑗)) (3)

{
𝑥𝑖 = 𝑣𝑖 , 𝑐𝑖 = 0, 𝑓𝑖𝑡𝑣𝑖 > 𝑓𝑖𝑡𝑥𝑖
𝑐𝑖 = 𝑐𝑖 + 1, 𝑓𝑖𝑡𝑣𝑖 ≤ 𝑓𝑖𝑡𝑥𝑖

} (4)

where k ∈ {1, 2, . . . , NS} is the randomly chosen
indice and k ≠ i ,j ∈ {1, 2, . . . , D} indicates a random
dimension selected to be updated. In third phase,
workers announce the information about the food
sources such as nectar amount and position by dancing
in the hive. Onlooker bees watch the dances of these bees
and select a random food source among the sources in
such a way that better sources have more chance to be
selected.

Algorithm 1. Basic ABC Algorithm (MaxIter, NS, limit): return Best

(1) Generate random NS solutions (Eq. 1)
(2) for iter =1 to MaxIter do
(3) for each worker:
(4) - apply local update procedure to the associated solution of the worker (Eq. 3-4)
(5) P←selection probabilities of solutions proportional to their fitness values (Eq.2, 5)
(6) for each onlookers:
(7) - select a random solution according to selection probability P
(8) - apply local update procedure to it (Eq. 3-4)
(9) for each scouts:
(10)- replace the associated solution with a random solution if the solution is not I updated for limit iteration (Eq. 1)
(10) keep track of Best solution so far

The selection probabilities, P = (𝑝1, 𝑝2,…,𝑝𝑁𝑆), are
formulated in Eq. (5) where 𝑝𝑖 is the selection probability
of the source 𝑥𝑖 .

pi =
fitxi

∑ fitxk
NS
k=1

 (5)

Then, they exploit their food sources in the same
fashion as workers do (local update procedure). Thus,

Turkish Journal of Engineering – 2021; 5(2); 81-88

 83

onlookers mostly gather around globally better solutions
to make global improvements. All bees keep track of the
best food sources during searching for the sources. Any
bee that cannot exploit its food source (improve its
solution) within some trial limit becomes scout again and
finds a random food source throughout the space. The
algorithm repeats worker-onlooker-scout phases until
the maximum cycles are completed. When algorithm
terminates one of the bees in current population is
expected to have the best food source in its memory.

3. HFO FRAMEWORK

The proposed HFO framework is given in Algorithm
2 below. HFO generalizes the ABC algorithm where single
component assumption equalizes the both. The main
difference is that the HFO assumes food sources each
consisting of K components and worker bees attempting
more to search for components that are needed
according to current honey form inside bees. Every food
source 𝒙𝒊 has its own honey form produced from it. Thus,
the food source and its honey form are associated.

Algorithm 2. HFO Framework (MaxIter, NS, limit, K): return Best

(1) Generate random NS solutions (Eq.1)
(2) for iter =1 to MaxIter do
(3) for each worker:
(4) - P ← selection probabilities of components in current solution, inversely proportional to their component fitness (Eq. 8)
(5) - select a random component according to selection probability P
(6) - apply local update procedure to the selected component (Eq. 9-10)
(7) P← selection probabilities of solutions, proportional to their fitness (Eq. 5, 12)
(8) for each onlookers:
(9) - select a random solution according to selection probability P
(10) - apply local update procedure (Eq. 3, 11)
(11) for each scouts:
(12) - replace the associated solution with a random solution if the solution is not updated for limit iteration (Eq.1)
(13) keep track of Best solution so far

The honey form or equivalently the food source is
considered as a solution and the components of the food
source are sub solutions. The HFO finally finds the source
that produce the best honey form. HFO uses cost-based
approach: instead of using fitness, cost values are used
when comparing solutions or components. The HFO
defines three design concepts:

i) Component Design that require to decompose the
solution into components where c. component of the
solution 𝑥𝑖 is denoted as 𝑥𝑖

𝑐
ii) Component Fitness Design that deals with how to

approximately measure each component fitness in a
given solution. Normally, in HFO Framework, component
fitness design is required for each component. However,
the design of component and its fitness depends on the
problem. Here, we assume original cost function f as
component fitness functions where the fitness of the
component 𝑥𝑖

𝑐 is denoted as 𝑓𝑖𝑡𝑥𝑖
𝑐 while its cost is

denoted as 𝑓(𝑥𝑖
𝑐
)

iii) Honey Formula Design (Optional): If the solution
fitness can be expressed as function of component fitness
such that this function shows equivalence /
approximation to the original fitness function, then we
call this function as Honey Function. If there is no way for
Honey Function, one can use the original fitness function
as Honey Function. One advantage of using honey
function is that the solution cost is computed in terms of
component cost values 𝑓(𝑥𝑖

𝑐) that are already computed
during local update procedure. This reduces the
complexity of HFO.

One major form for component design is given in Eq.
(6) where a solution 𝑥𝑖 ∈ RD is decomposed into K non-
overlapping sub solutions, causing a shift from the space
RD to RD/K, with D/K as the dimension of components.
Components are separated by pipe symbols in Eq. (6) just
for visualization.

Among many forms of solution decomposition,
following shows an overlapping form of components
where half of each component is overlapped with the
neighbor components.

xi = [xi11, xi21 , ... xi(D/K)1 | xi(D/K+1)2 , xi(D/K+2)2 ... xi(2D/K)2 | … .] = [xi1 | xi2 |. . .] (6)

Xi= [
𝑋𝑖
2

𝑋𝑖
1𝑋𝑖

3 , ……] (7)

The solution should be decomposed into
components in such a way that the honey formula can
bind the component fitness to the original fitness
function.

According to HFO, the worker i evaluates the
components of xi and more probably modify (local
update) the weaker component due to the fact that the
component in less amount are more vital and more
needed to improve the current honey form. Let 𝑥𝑖

𝑐 ⊆ 𝑥𝑖
be the c. component of 𝑥𝑖 .The selection probability of
component c for the worker i, denoted as 𝑃𝑖

𝑐, is inversely

proportional to its fitness, formulated in Eq. (8) where
the component cost 𝑓(𝑥𝑖

𝑐) = 𝑐𝑜𝑠𝑡𝑥𝑖
𝑐 naturally measures

the inverse fitness of the component c of xi.

Pi
c =

{

f(xi
c) + 1

∑ (f(xi
j) + 1)K

j=1

 if f(x) is in positive domain

f(xi
c) − min

k=1..K
 (f(xi

k)) + 1

∑ (f(xi
j) − min

k=1..K
 (f(xi

k)) + 1)K
j=1

 otherwise

}

 (8)

Turkish Journal of Engineering – 2021; 5(2); 81-88

 84

The local update procedure for worker bees is
applied on component basis, which is formulated in Eq.
(9-10) where c is the selected component and j is the
updating dimension of the component c during local
search around𝑥𝑖 . Note that the proposed local update
procedure can be applied to any ABC variant not limited
to Eq. (9-10). The idea here is the workers modifies the
selected component according to their local search
strategies.

vi
c(j) = xi

c(j) + rand(−1,1). (xi
c(j) − xk

c(j)) (9)

{
𝑥𝑖 = 𝑣𝑖 , 𝑐𝑖 = 0, 𝑓(𝑣𝑖

𝑐) < 𝑓(𝑥𝑖
𝑐)

𝑐𝑖 = 𝑐𝑖 + 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (10)

When comparing two solutions xi and vi in onlooker
phase, we also prefer to use cost function rather than
fitness function since the fitness definition in original
ABC may cause implementation issue related to infinite
precision requirement at the term 1/(1+cost). Thus, the
local update procedure for onlooker is modified using Eq.
(11) as follows

{
xi = vi, ci = 0, F(vi) < F(xi)
ci = ci + 1, otherwise

} (11)

where the 𝐹(𝑥) is the cost form of honey formula,
formulated in Eq.(12). Honey formula F(x) is an
approximation to the original cost function f(x) or must
have equivalence relation with the f(x). Here as honey
function we adapt summation operator.

𝐹(𝑥𝑖) =∑ 𝑓(𝑥𝑖
𝑐) ≅ 𝑓(𝑥𝑖)

𝐾

𝑐=1
 (12)

The cost function approximation using the
summation of component cost values are one form of
honey formula, among many others.

The fitness form of honey formula 𝐹𝑓𝑖𝑡(𝑥𝑖) is given in

Eq.(13) that is only used in Eq.(14) to compute the
selection probabilities 𝑝𝑖 of solutions for onlookers.

𝐹𝑓𝑖𝑡(𝑥𝑖) =

{

1

𝐹(𝑥𝑖) + 1
 𝑖𝑓 𝑓(𝑥) 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑜𝑚𝑎𝑖𝑛

1

𝐹(𝑥𝑖) − min
𝑘=1..𝑁𝑆

𝐹(𝑥𝑘) + 1
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

(13)

𝑝𝑖 =
𝐹𝑓𝑖𝑡(𝑥𝑖)

∑ 𝐹𝑓𝑖𝑡(𝑥𝑘)
𝑁𝑆
𝑘=1

(14)

HFO does not require any change in onlooker bees
except using cost function f(x) when comparing two
solutions. However, the approximated version of cost
function F(x) could optionally be used to benefit from
cost function decomposition. Cost functions may not be
easily decomposed into component cost functions. Some
cost functions are separable and easily expressed in
terms of component costs. Thus, one can consider cost
function approximation if it allows cost function
decomposition on components.

3.1. Some Forms for Component Design

The component cost functions f(xi
c) and component

itself xi
c must be considered together in design.

Component design is problem specific and must be done
for each benchmark functions. Here we propose some
design strategies for component and its cost functions.
Let the cost function f(x) expressed as f(x) = g(x) + h(x),
3 forms of component design are defined as follows:

1. Form: 𝑥𝑖
𝑐 is non-overlapped and partition on f(x) as

follows: 𝑓(𝑥𝑖
𝑐
) = 𝑔(𝑥𝑖

𝑐
) + ℎ(𝑥𝑖

𝑐
)

2. Form: 𝑥𝑖
𝑐 is non-overlapped and partition on g(x) as

follows: 𝑓(𝑥𝑖
𝑐) = 𝑔(𝑥𝑖

𝑐) + ℎ(𝑥)/𝐾
3. Form: 𝑥𝑖

𝑐 is overlapped and partition on f(x) as
follows: 𝑓(𝑥𝑖

𝑐) = 𝑔(𝑥𝑖
𝑐) + ℎ(𝑥𝑖

𝑐)

4. EXPERIMENTAL RESULTS

ABC and HFO algorithms are compared based on 9
benchmark functions given in Table 1. The benchmark
functions have different characteristics such as
multimodal and non-convex (Ackley, Qing, Egg-Crate,
Xin-She Yan, Rosenbrock), multimodal and
convex(Rastrigin), unimodal and non-
convex(Griewank), unimodal and convex(Brown,
Sphere). The functions are tested for the maximum
number of iterations MaxIter = 5000, the number of food
sources NS=60, the problem dimension D=50, and the
parameter limit=NS×D and the number of components
K=10 for HFO.

However with this limit setting, the Rastrigin
function is reached to global min zero for both ABC and
HFO, thus the limit = 0.1xNS x D is considered only for
Rastrigin function. The colony has equal number of
worker bees and onlooker bees, considered equal to NS.
Each experiment for the same parameter settings
repeated 20 times and the average values are used to
compute the performance metrics, such as min, max and
mean of cost function values. The component design for
each benchmark functions are provided in Table 3 where
the details of component design is given in previous
section.

The experimental results are provided in Table 4
and Figs. 1-9 where the table demonstrates the
comparison of the objective performances with achieved
min, max and mean cost values and the figures show the
evolution curves of ABC and HFO. The Table 4 clearly
shows that HFO is superior to original ABC for all
functions. Particularly, for unimodal and convex
problems the HFO performs best. However, for many
difficult functions such as Rosenbrock, Egg-Crate, and
Xin-She Yan that are multimodal and non-convex the
HFO also performs well.

The evolution curves of mean cost values across the
iterations are given in Figs. 1-9. The figures clearly show
that the HFO converge speed is also better than ABC. The
ABC sometimes early converges to a mean cost value
around 1.0e-16 due to its weak local search strategy.
With ABC local search, the solution is randomly updated
and this causes improvement in less speed. HFO causes
more correct solution update by updating only the worse
component of the moment.

For each benchmark functions the behaviors of ABC
and HFO varies. In general, ABC early maturates for all
functions except Ackley where HFO performs better but
converged earlier than ABC. Looking the Figure 1, around

Turkish Journal of Engineering – 2021; 5(2); 81-88

 85

the iteration 3800-4000 HFO becomes saturated,
however, ABC continue to improve. Due to early
maturation for Ackley, all solutions in the population

have sufficient time to reach the best value. Thus, the best
and worst values are converged to each other for Ackley.

Table 2. Typical benchmark functions
Name Function Range Min

Ackley 𝑓1 = −20𝑒𝑥𝑝(−0.2√
1

𝑛
∑ 𝑥𝑖

2𝑛

𝑖=1
) − 𝑒𝑥𝑝(

1

𝑛
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑛

𝑖=1
) + 20 + 𝑒 (−32.768, 32.768) 0

Brown 𝑓2 =∑ (𝑥𝑖
2)(𝑥𝑖+1

2 +1)
𝑛−1

𝑖=1
+ (𝑥𝑖+1

2)(𝑥𝑖
2+1) (−4, 4) 0

Griewank 𝑓3 = 1+∑
𝑥𝑖
2

4000

𝑛

𝑖=1
−∏ 𝑐𝑜𝑠(

𝑥𝑖

√𝑖
)

𝑛

𝑖=1
 (−600, 600) 0

Qing 𝑓4 =∑ (𝑥𝑖
2 − 𝑖)2

𝑛

𝑖=1
 (−10,10) 0

Rastrigin* 𝑓5 = 10𝑛 +∑ (𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖))

𝑛

𝑖=1
 (-5.12, 5.12) 0

Sphere 𝑓6 =∑ 𝑥𝑖
2𝑛

𝑖=1
 (−100, 100) 0

Egg Crate 𝑓7 =∑ 𝑥𝑖
2𝑛

𝑖=1
 + 25∑ 𝑠𝑖𝑛2(𝑥𝑖)

𝑛

𝑖=1
 (−500, 500) 0

Xin-SheYan 𝑓8 = (∑ 𝑠𝑖𝑛2(𝑥𝑖)
𝑛

𝑖=1
− 𝑒−∑ 𝑥𝑖

2𝑛

𝑖=1)𝑒
−∑ 𝑠𝑖𝑛2√|𝑥𝑖|

𝑛

𝑖=1 (−10,10) -1

Rosenbrock 𝑓9 =∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (1 − 𝑥𝑖)

2]
𝑛−1

𝑖=1
 (−50, 50) 0

 Table 3. Component design for benchmark functions
Objective Functions Component Overlapped Component Cost Function Form# Partition on g(x) or f(x)

Ackley No 1 f(x)

Brown Yes(1 element) 3 f(x)

Griewank No 1 g(x)= ∑
𝒙𝒊
𝟐

𝟒𝟎𝟎𝟎

𝒏

𝒊=𝟏

Qing No 1 f(x)

Rastrigin* No 1 f(x)
Sphere No 1 f(x)

EggCrate No 2 g(x)= ∑ 𝒙𝒊
𝟐𝒏

𝒊=𝟏

Xin-SheYang No 1 f(x)
Rosenbrock Yes(1 element) 3 f(x)

Table 4. Performance comparison : ABC versus HFO
Objective
Functions

ABC HFO

Best Mean Worst Best Mean Worst

Ackley 5.1e-14 6.3e-14 6.8e-14 8.0e-15 8.0e-15 8.0-15
Brown 7.5e-16 9.6e-16 1.2e-15 9.4e-48 3.2e-47 1.1e-46
Griewank 0 9.4e-17 1.1e-16 0 0 0

Qing 9.6e-16 2.7e-15 1.3e-14 2.3e-17 7.1e-16 7.2e-15
Rastrigin* 0 2.3e-14 1.1e-13 0 0 0
Sphere 7.7e-16 9.4e-16 1.1e-15 2.8e-44 1.7e-43 4.1e-43
EggCrate 6.5e-16 7.9e-16 9.9e-16 1.1e-34 5.8e-34 2.7e-34

Xin-SheYang 7.7e-17 9.7e-17 1.1e-16 3.5e-37 5.6e-33 3.1e-32
Rosenbrock 0.5e-02 0.2 0.8 2.2e-06 1.2e-05 4.4e-05

The Figure 3 and Figure 5 shows similar behaviors
where there is a limit around 1e-15 and 1e-17 for
Griewank and Rastrigin respectively and exceeding the
limit causes their converge to zero. Another reason for
similar behavior for both function is their similar

function definitions where 𝒈(𝒙) =∑ (𝒙𝒊
𝟐/4000)

𝒏

𝒊=𝟏
 and

ℎ(𝑥) = 1 −∏𝑐𝑜𝑠(𝑥𝑖/√𝑖) are used for Griewank function
where h(x) is defined in terms of cosine function and g(x)
and h(x) could be zero. When we look at the Rastrigin

where 𝑔(𝑥) = ∑ (𝑥𝑖
2)

𝑛

𝑖=1
 and 𝒉(𝑥) = 10𝑛 −

∑ 10𝑐𝑜𝑠(2𝜋𝑥𝑖)
𝑛

𝑖=1
 could be considered, h(x) is again

defined in terms of cosine function, and g(x) and h(x)
could be zero. Rastrigin seems simple for both ABC and
HFO. ABC is also reaching to zero with normal limit

parameter. Thus, we reduced the limit L for only
Rastrigin.

5. CONCLUSION

In this article, a new optimization framework
namely Honey Formation Optimization (HFO) is
introduced. HFO extends the Artificial Bee Colony
Algorithm by considering multiple components in food
sources and worker bees searching more frequently for
the components in less amount due to fact that the
component in less amount more limits the honey
formation process and thus more vital for worker bees.
For single component assumption, HFO and ABC become
equal. The proposed optimization is a framework that
could be applied to any ABC variant. The components are
considered as sub solutions and honey formation process

Turkish Journal of Engineering – 2021; 5(2); 81-88

 86

mix up the components towards better honey fitness.
The experimental results demonstrates that HFO can
performs better and converge earlier than the ABC.
However, HFO uses honey formula that requires design
for both solution decomposition and cost function
decomposition together. Thus, some functions are
difficult or even impossible to decompose perfectly. In
such cases new approaches are required to partition
functions on the basis of component design.

Figure 1. Evolution curves for Ackley

Figure 2. Evolution curves for Brown

Figure 3. Evolution curves for Griewank

Figure 4. Evolution curves for Qing

Figure 5. Evolution curves for Rastrigin

Turkish Journal of Engineering – 2021; 5(2); 81-88

 87

Figure 6. Evolution curves for Sphere

Figure 7. Evolution curves for Egg Crate

Figure 8. Evolution curves for Xin-SheYang

Figure 9. Evolution curves for Rosenbrock

REFERENCES

Abro A G & Mohamad-Saleh J (2014). Enhanced
probability-selection artificial bee colony algorithm
for economic load dispatch: A comprehensive
analysis. Engineering Optimization, 46(10), 1315–
1330. DOI: 10.1080/0305215X.2013.836639

Akay B & Karaboga D (2015). A survey on the
applications of artificial bee colony in signal, image,
and video processing. Signal, Image and Video
Processing, 9, 967–990. DOI: 10.1007/s11760-015-
0758-4

Aldwairi M, Khamayseh Y & Al-Masri M (2015).
Application of artificial bee colony for intrusion
detection systems. Security and Communication
Networks, 8(16), 2730–2740. DOI: 10.1002/sec.588

Apalak M K, Karaboga D & Akay B (2014). The Artificial
Bee Colony algorithm in layer optimization for the
maximum fundamental frequency of symmetrical
laminated composite plates. Engineering
Optimization, 46(3), 420–437. DOI:
10.1080/0305215X.2013.776551

Chen J, Li C & Yu W (2017). Adaptive Image Enhancement
Based on Artificial Bee Colony Algorithm. Advances
in Engineering Research, 116, 689-695.

Chen S-M, Sarosh A & Dong Y-F (2012). Simulated
annealing based artificial bee colony algorithm for
global numerical optimization. Applied Mathematics
and Computation, 219(8), 3575–3589. DOI:
10.1016/j.amc.2012.09.052

Cheng X & Jiang M (2012). An improved artificial bee
colony algorithm based on Gaussian mutation and
chaos disturbance. Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, 326–333. DOI:
10.1007/978-3-642-30976-2_39

Cuevas E, Zaldívar D, Pérez-Cisneros M, Sossa H & Osuna
V (2013). Block matching algorithm for motion
estimation based on Artificial Bee Colony (ABC).
Applied Soft Computing, 13(6), pp. 3047–3059. DOI:
10.1016/j.asoc.2012.09.020

https://doi.org/10.1002/sec.588
https://doi.org/10.1016/j.asoc.2012.09.020

Turkish Journal of Engineering – 2021; 5(2); 81-88

 88

Gao W & Liu S (2012). A modified artificial bee colony
algorithm. Computers & Operations Research, 39(3),
687–697. DOI: 10.1016/j.cor.2011.06.007

Han Y Y, Gong D & Sun X (2015). A discrete artificial bee
colony algorithm incorporating differential
evolution for the flow-shop scheduling problem
with blocking. Engineering Optimization, 47(7),
927–946. DOI: 10.1080/0305215X.2014.928817

He X, Wang W, Jiang J & Xu L (2015). An improved
artificial bee colony algorithm and its application to
multi-objective optimal power flow. Energies, 8(4),
2412–2437. DOI: 10.3390/en8042412

Huang F, Wang L & Yang C (2016). A new improved
artificial bee colony algorithm for ship hull form
optimization. Engineering Optimization, 48(4), 672–
686. DOI: 10.1080/0305215X.2015.1031660

Ismail M M & Baskaran K (2014). Hybrid lifting based
image compression scheme using particle swarm
optimization algorithm and artifical bee colony
algorithm. International Journal of Advanced
Research in Computer and Communication
Engineering, 3(1), 4899-4907.

Jia D, Duan X & Khan M K (2015). Modified artificial bee
colony optimization with block perturbation
strategy. Engineering Optimization, 47(5), 642–655.
DOI: 10.1080/0305215X.2014.914189

Kang F, Li J & Ma Z (2011). Rosenbrock artificial bee
colony algorithm for accurate global optimization of
numerical functions. Information Sciences, 181(16),
3508–3531. DOI: 10.1016/j.ins.2011.04.024

Kang F, Li J & Ma Z (2013). An artificial bee colony
algorithm for locating the critical slip surface in
slope stability analysis. Engineering Optimization,
45(2), 207–223. DOI:
10.1080/0305215X.2012.665451

Karaboga D (2005). An idea based on honey bee swarm
for numerical optimization. Technical Report-tr06,
Erciyes University, Engineering Faculty, Computer
Engineering Department, 200, 1-10.

Karaboga D, Akay B & Ozturk C (2007). Artificial bee
colony (ABC) optimization algorithm for training

Feed-Forward neural networks. Modeling Decisions
for Artificial Intelligence, Springer Berlin
Heidelberg, pp. 318–329. DOI: 10.1007/978-3-540-
73729-2_30

Karaboga D, Gorkemli B, Ozturk C & Karaboga N (2014).
A comprehensive survey: Artificial bee colony (ABC)
algorithm and applications. Artificial Intelligence
Review, 42, pp. 21–57. DOI: 10.1007/s10462-012-
9328-0

Karaboga D & Ozturk C (2011). A novel clustering
approach: Artificial Bee Colony (ABC) algorithm.
Applied Soft Computing, 11(1), 652–657. DOI:
10.1016/j.asoc.2009.12.025

Keles M K & Kilic U (2018). Artificial Bee Colony
Algorithm for feature selection on SCADI Dataset.
3rd International Conference on Computer Science
and Engineering (UBMK), IEEE, 463–466. DOI:
10.1109/UBMK.2018.8566287

Liu Y, Ma L & Yang G (2017). A Survey of Artificial Bee
Colony Algorithm. 7th Annual International
Conference on CYBER Technology in Automation,
Control, and Intelligent Systems (CYBER), IEEE,
1510–1515. DOI: 10.1109/CYBER.2017.8446301

Lozano M, García-Martínez C, Rodríguez F J & Trujillo H
M (2017). Optimizing network attacks by artificial
bee colony. Information Sciences, 377, 30–50. DOI:
10.1016/j.ins.2016.10.014

Shah H, Herawan T, Naseem R & Ghazali R (2014). Hybrid
guided artificial bee colony algorithm for numerical
function optimization. Lecture Notes in Computer
Science, 8794(7). DOI: 10.1007/978-3-319-11857-
4_23

Sun L, Chen T & Zhang Q (2018). An artificial bee colony
algorithm with random location updating. Scientific
Programming.

Wang S, Guo X & Liu J (2019). An efficient hybrid artificial
bee colony algorithm for disassembly line balancing
problem with sequence-dependent part removal
times. Engineering Optimization, 51(11), 1–18. DOI:
10.1080/0305215X.2018.1564918

© Author(s) 2021.
This work is distributed under https://creativecommons.org/licenses/by-sa/4.0/

https://doi.org/10.1016/j.cor.2011.06.007
https://doi.org/10.3390/en8042412
https://doi.org/10.1016/j.ins.2011.04.024
https://creativecommons.org/licenses/by-sa/4.0/

