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 Modeling and simulation are prerequisite to analysis and design of engineering systems. 
Modern engineering systems often are multy disciplinary, i.e., may include blocks from 
different majors of engineering, such as electrical, mechanical, fluid, etc.  Availability of a 
unified approach for system modeling will make it easy for engineers or researcher from a 
certain discipline to model the systems from other disciplines. For example, with availability 
of a unified modeling methodology an electrical engineer will be able to model a system 
composed of electrical, mechanical and fluid systems. Modeling of complex mechanical 
systems is not always easy for engineers from other disciplines. On the other hand, it is much 
easier to establish mathematical model of electric circuits. Furthermore, simulation software 
is much richer for electric circuits. Therefore, in this paper a methodology is proposed for 
unifying the modeling of electrical and complex mechanical systems by obtaining electric 
circuit model of complex mechanic systems. In developing the proposed methodology, analogy 
between the electrical and mechanical elements have been used as tools. Proposed 
methodology has been applied to modeling and simulation of a relatively complex mechanical 
system and benefits accrued from this approach has been discussed. It is further proposed that 
the approach presented in this paper can be easily extended to modeling of dynamic systems 
from other engineering disciplines. 

 
 

 
 
 
 

1. INTRODUCTION  
 

Modeling and simulation are prerequisite to the 
design of a dynamic system, because directly proceeding 
to the designing and manufacturing a system and then 
testing for expected performance would be inevitably 
expensive. Wide-spread availability of high speed and 
high storage capacity computers made the simulation 
process even more attractive. Modeling and simulation 
lie at the intersection between theory and experiment 
and highly valued in scientific discovery. Simulation 
provides additional insights that are often impractical or 
impossible to discover through real-world experimental 
and theoretical analysis alone. It could be viewed as 
virtual experimentation that could be implemented in 
any circumstances. Benefits of the modeling and 
simulation can be summarized as follows: 

a) A simulation model executed on a computer 
system can compress the time frame in thousands of 

folds and can be used to investigate quickly the effects of 
a changes in a real-life situation that take place over 
several years. 

b) Simulation could be used to study complex 
systems, that would be very difficult to investigate, 
without runing a simulation model on a fast digital- 
computer. 

c) The effects of various changes on a complex 
systems performance can be easily investigated without 
producing a physical prototype. 

d) Simulation culd be used to investigate situation 
that true hands-on experiments would be dangerous in 
real life 

e) Optimization routines can be incorporated into 
the simulation models and system can be designed with 
optimum performance in various aspects. 

There are several software packages available for 
simulation of mechanical systems such as 
MATLAB/Simulink toolbox SimMechanics (Hrankova 
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and Pastor 2013; Virgala et al. 2013; SIMULA 2008; 
ANSYS 2008; COMSOL 2008). Also, there are many 
publications on modeling and simulation of mechanical 
systems such as (Macchelli et al. 2009; Dulau et al. 2016; 
Hussein 2015). Modeling of dynamic systems from each 
individual engineering specialization are given in several 
texts (Ogata and Yang 2002; Ogata 2004; Woods and 
Lawrence 1997; Dabney and Harman 2004; Close at al. 
2002; Ljung and Glad 1994; Rowell and Wormley 1997). 

 However, modern engineering systems are often 
multy disciplinary, containing blocks from different 
engineering disciplines. As such, modeling of a multy 
disciplinary dynamic systems by an engineer or 
researcher from a single discipline will rise some 
difficulties. Therefore, availability of a unified modeling 
methodology will be much useful in modeling process. 
Towards this aim, in this paper a unified modelling 
methodology is proposed for unifying the modeling of 
electrical and mechanical systems by obtaining electrical 
circuit model of complex mechanical systems. In 
developing the methodology of proposed unified model, 
analogy between the electrical and mechanical elements, 
that are given in several text (Ogata 2004, Woods and 
Lawrence, 1997, Close at al. 2002), have been used as 
tools. It should be noted here that a reverse modeling 
methodology, i.e., modeling an electrical circuit as an 
equivalent mechanical system is also possible, which 
may be preferred by mechanical engineers.   

The unified modeling methodology proposed in this 
paper, has been applied to modeling and subsequently 
simulation of a complex mechanical system. It has been 
shown that how the proposed approach simplifies the 
modeling of complex mechanical dynamic systems. The 
benefits accrued from proposed approach have been 
discussed.  It is also proposed that the approach 
explained in this investigation can similarly be extended 
to the dynamic systems from other engineering 
disciplines. 

 

2. METHODOLOGY 
 

In translational mechanical systems there are three 
main system elements, which are mass (M), stiffness 
element (K) and viscous friction element (B). The most 
common stiffness element is she spring, which will be 
considered in this paper. Corresponding elements in a 
rotational mechanical system are moment of inertia, 
rotational stiffness and rotational viscous friction. 
Similarly, in electrical systems there are well known 
three elements main that are inductance (L), capacitance 
(C) and resistance (R). The governing equations between 
mechanical and electrical systems show a complete 
similarity as shown in the Table 1 and Table 2. This gives 
opportunity for a perfect analogy between mechanical 
and electrical systems. Based on this characteristic it is 
possible to develop unified modeling methodology for 
modeling complex dynamic mechanical systems in the 
form of electric circuits.  Analogy given in Table 1 is 
known as direct analog or force-voltage analog in which 
each velocity corresponds to an electrical current and 
each displacement corresponds to an electrical charge 
(Ogata 2004). 

Analogy between the governing equations of the 
mechanical and electrical elements given in Table 1 are 
written in Table 2. It can be seen from Table 2 there is 
complete similarity between the governing equations of 
the mechanical and electrical elements.  This gives 
opportunity for developing a unified modeling 
methodology between the two systems. 
 

Table 1. Analogy between the electrical and mechanical 
elements 

Symbols Mechanical Unit Symbols 
Electrical 
Analog 

Unit 

𝑓 Force N 𝐸 Voltage V 

𝑥 Disp. m 𝑞 
Electrical 
Charge 

C 

𝑣 Speed  m/s 𝑖 
Electric 
Current 

A 

𝑀 Mass kg 𝐿 
Inductanc
e 

H 

𝐵 
Viscous 
Friction 

Ns/m 𝑅 
Electrical 
Resistance 

Ω 

𝐾 Spring  N/m 
1

𝐶
 Capacitor F 

 

Table 2. Governing equations of the mechanical and 
electrical elements given in Table 1 

Mechanical Elements and 
governing equations 

Analogue Electrical 
elements and analog 
governing equations 
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The analogy between the physical elements and 
related governing equations given in tables 1 and 2 
clearly show that there is a complete similarity between 
the two systems. Therefore, the two systems always can 
virtually represent each other. 



Turkish Journal of Engineering – 2021; 5(3); 111-117 

 

  113  

 

The key elements in developing a unified modeling 
methodology is the form of organizing the interconnects 
between the different blocks of the mechanical systems, 
in the corresponding equivalent electrical circuits. These 
key elements can be laid down as follows: 
 

a) Each mass in a mechanical system corresponds to 
a circuit loop in the equivalent electrical circuit. 
Therefor the number of loops in the equivalent 
electrical circuit is defined by the number of 
different masses in the mechanical system. 

 

b) The interconnect elements in each mass block in 
mechanical systems corresponds to the electrical 
elements shared between the equivalent electrical 
circuit loops.  

 

c) In a mechanical system the series connected 
elements carrying the same value of force 
correspond to the parallel connected elements in 
the equivalent electric circuit. 

 

d) In a mechanical system velocity of each mass 
corresponds to the each loop current in the 
equivalent electrical circuit. 

 

e) In a mechanical system displacement of a mass 
corresponds to the total electrical charge 
accumulated on each associated capacitor in the 
equivalent electrical circuit.  

 

f) In a mechanical system the displacement 
difference between the two masses corresponds to 
the total charge on the associated capacitor placed 
on the branch of equivalent electric circuit that is 
common to the loops associated with each mass. 

 

3.  APPLICATION AND DICUSSIONS 
 

An example mechanical system is shown in Fig. 1. 

M3

M1

M2

K1

B2 K2

Fa(t)

K3

B1

Fb(t)

M1

M3

M2

M1g

M2g

M3g

x1

x3

x
2

 
Figure 1. Example suspended mechanical system 
 

A suspended system is selected in order in which the 
gravitational forces can be accounted for. The 
gravitational forces are shown as M1g, M2g and M3g 
respectively, where g is the usual gravitational 
acceleration (g=9.8 m/s2).  If references for 
displacements x1, x2 and x3 are taken as the positions of 
the masses, before application of the external forces Fa(t) 
and Fb(t), but after the system being suspended and the 
sprigs are lengthened, i.e., as the first equilibrium 
position is attained, then all the gravitational forces can 
be dropped from the model equations. In this case the 
model equations of a suspended systems become like the 
model equations of a translational systems. Therefore, 
the way of modelling applied to the suspended system in 
hand will be equally valid for translational systems as 
well. In this case values of the displacement and 
velocities of the masses can be taken as zero. 
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Figure 2. Equivalent Electrical circuit of the mechanical system given in Figure 1 
 

Applying the principles of the analogy that have 
been explained earlier in section 2.1, the electrical 
equivalent circuit of the mechanical system given in Fig. 
1 will be as shown in Fig. 2: 

The system parameters are selected as:M1=18 kg, 
M2=12 kg, M3=9 kg, K1=220 N/m, K2=350 N/m, K3=200 
N/m, B1=20 Ns/m, B2=15 Ns/m and the two applied 
forces are selected as: 

NettF

NettF

t

b

t

a

 20)2cos(30)(

 and    120)2sin(60)(

08.0

1.0









 
 

Applying the principles of the analogy that have 
been explained earlier in section 2.1, the electrical 
equivalent circuit of the mechanical system given in Fig. 
1 will be as shown in Fig. 2: 
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Source voltages Ea(t) and Eb(t) in Fig. 2 are 
corresponding to the applied forces Fa(t) and Fb(t) 
respectively. 

 At the beginning the system was in equilibrium 
position and at instant t=0 both forces are applied 
simultaneously. 

The amplitudes of equivalent electrical circuits 
parameters naturally are L1=M1, L2=M2, L3=M3, C1=1/K1 

C2=1/K2, C3=1/K3, R1=B1, R2=B2, Ea(t)=Fa(t) and 
Eb(t)=Fb(t).  Equations governing the circuit given in Fig. 
2 will be as follows: 
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     Organizing the above six simultaneous differential 
equations into State-Space model (Ogata and Yang 2002; 
Ogata 2004) one obtains: 
 

)()()(

)()()(

tDutCxty

tButAxtx
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(7) 

 

Where A is the system matrix, B is the input matrix, 
C is the output matrix, x(t) are the state variables, y(t) are 
the output variables and u(t) are the input forcing 
functions. For the system in hand the open form of these 
matrixes is given in equation (8). The matrices A, B and 
u(t) are available from equation (8). The outputs are 
taken as state variables themselves then the matrix D is a 
6 by 2 zero matrix and matrix C is a 6 by 6 unity diagonal 
matrix. 
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Equation (8) can be solved by any numerical method 
or can be solved by using MATLAM/Simulink (Danbey 
and Harman, 2004). In this paper 4th order Runge-Kutta 
method has been selected as solution tool (Chapra and 
Canale 2010) and MATLAB is used for programming. 

     The simulation results are shown in Fig. 3 for the 
velocities of the three masses. 

Examination of the Fig. 3 shows that when the 
system attains new equilibrium position velocities of the 
3 masses becomes zero, which is the expected natural 
results. This shows the success of the proposed unified 
modeling approach. Therefor expected correct results 
are obtained without deriving real mechanical equations. 

A new equilibrium position established because as 
the time progressed the decaying sine and cosine terms 
in force expressions becomes zero and only the constant 
components remains. Fig. 3 also shows that, although the 
larger force on the top side has much higher constant 
term than the amplitude of exponentially decaying 
component (60 to 120 N), the velocity of the middle mass 
attains higher value then the velocities of the both top 

and bottom masses, because the middle mass is affected 
by the vibration of both the top and bottom masses which 
are under the transient force components that are 
displaced from each other by 90o time phase difference 
(sine and cosine terms are displaced by 90o). 

 The simulation results are shown in Fig. 4 for the 
displacements of the three masses. 

Fig. 4 shows that the displacements exhibit large 
excursions between positive and negative values. These 
large excursions in the displacements are the combined 
results of the effect of the phase difference between the 
sinusoidal components of the applied forces and the 
natural vibrations arising from sudden application of the 
forces. From Fig. 4 also can be observed that mass M1 
which is under lager force has much higher positive 
displacement and higher steady-state displacement, 
which is a further proof of the correctness of the applied 
approach. 
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Figure 3. Velocities of the 3 masses M1, M2 and M3 

 

To verify that the effect of phase difference in the 
exponentially decaying sinusoidal components of the 
forces, the displacements are re-determined by 
removing the above said phase difference, i.e., converting 
the cosine term to sine term in Fb(t), where forces are 
expressed as: 
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 and    120)2sin(60)(
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
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The displacements computed under this condition is 
presented in Fig. 5. It can be observed from this figure 
that when keeping all force amplitudes same as before 
but removing only the phase difference between the 
forces, the large excursions in the displacements are 
greatly reduced. On the other hand, the settling time is 
shortened to a large extent.  The remaining transient 
components are almost the result of natural vibration 
arising from sudden application of the forces. 
 

 
 

 

 
Figure 4. Displacement of the 3 masses M1, M2 and M3 
 

It can be observed From Figs. 4 and 5 that the final 
steady-state values of the displacements are same in both 
cases (46.4 cm, 5.7 cm and 9.8 cm respectively), i.e., they 
are not affected by the decaying components of the 
forces. Only the constant terms (120 N and 20 N) are 
effective on the steady-state values of the displacements. 

To verify the above arguments further, the 
exponentially decaying sinusoidal components are 
removed from force expressions and displacements are 
recalculated, i.e., when force expressions are: 
 

NtF

NtF

b

a

 20)(

 and    120)(





 
 

Results of these calculations are plotted in Fig. 6. 
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Figure 5. Displacements of the three masses under new 
set of forces (amplitudes are same as before but the 
phase difference between the forces are removed). 
 

Comparison of the figs. 5 and 6 show that the results 
are almost same in both cases. There are only minor 
differences in the transient portions of the 
displacements. This clarifies all the above argument 
regarding the phase difference between the applied 
forces. 

An experienced system engineer could easily 
identify that the obtained results are well in lie with the 
expected results. 

The proposed unified modeling methodology can 
easily be extended to some other dynamic engineering 
systems such as the fluid systems. Analogy between the 
basic three elements of the electric systems and the basic 
fluid quantities, fluid resistance, fluid capacitance and 
fluid inductance or inertance and also analogy between 
their governing equations are given in (Close et al. 2002; 
Woods and Lawrence 1997). 
 

 

 

 
Figure 6. Displacements of the three masses under when 
Fa (t) =120 N and Fb (t) =20 N 
 

3. CONCLUSION  
 

In this paper a unified modeling methodology has 
been proposed for unifying the modeling of dynamic 
mechanical systems and electrical systems. Electrical 
circuits has been taken as the base system and modeling 
dynamic mechanical systems are modelled as electrical 
circuit. The unified modeling methodology is based on 
the analogy between the corresponding basic elements in 
the mechanical and electrical systems. The main 
elements of the proposed unified modeling methodology 
have been laid down in details and then it has been 
applied to modeling and subsequently simulation of a 
relatively complex dynamic mechanical system. It is 
shown how a complex dynamic mechanical system can 
be easily modelled as electrical circuit, without deriving 
the true mechanical equations, for example going 
through free body diagrams, which is not always easy for 
engineers or researches whose are not mechanical 
engineers. Further the proposed methodology is 
benefiting from the relatively easy modeling of electrical 
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circuits. Simulation has been performed for different 
forms of applied forces and expected results were 
obtained at each case. This gives confidence about the 
proposed unified modeling methodology. 

Similar unified modeling methodology can be easily 
extended to dynamic systems from other engineering 
systems such as fluid systems. 

It is also recommended that the prosed 
methodology could be useful to the practicing engineers 
and educational purposes. 
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