Solvable graphs of finite groups

Parthajit Bhowal, Deiborlang Nongsiang, Rajat Kanti Nath

1 Department of Mathematical Sciences, Tezpur University, Napaam-784028, Sonitpur, Assam, India
2 Department of Mathematics, Union Christian College, Umiam-793122, Meghalaya, India

Abstract

Let G be a finite non-solvable group with solvable radical $\text{Sol}(G)$. The solvable graph $\Gamma_s(G)$ of G is a graph with vertex set $G \setminus \text{Sol}(G)$ and two distinct vertices u and v are adjacent if and only if $\langle u, v \rangle$ is solvable. We show that $\Gamma_s(G)$ is not a star graph, a tree, an n-partite graph for any positive integer $n \geq 2$ and not a regular graph for any non-solvable finite group G. We compute the girth of $\Gamma_s(G)$ and derive a lower bound of the clique number of $\Gamma_s(G)$. We prove the non-existence of finite non-solvable groups whose solvable graphs are planar, toroidal, double-toroidal, triple-toroidal or projective. We conclude the paper by obtaining a relation between $\Gamma_s(G)$ and the solvability degree of G.

Mathematics Subject Classification (2010). 20D60, 05C25

Keywords. solvable graph, genus, solvability degree, finite group

1. Introduction

Let G be a finite group and $u \in G$. The solvabilizer of u, denoted by $\text{Sol}_G(u)$, is the set given by $\{v \in G : \langle u, v \rangle \text{ is solvable} \}$. Note that the centralizer $C_G(u) := \{v \in G : uv = vu\}$ is a subset of $\text{Sol}_G(u)$ and hence the center $Z(G) \subseteq \text{Sol}_G(u)$ for all $u \in G$. By [21, Proposition 2.13], $|C_G(u)|$ divides $|\text{Sol}_G(u)|$ for all $u \in G$ though $\text{Sol}_G(u)$ is not a subgroup of G in general. A group G is called a S-group if $\text{Sol}(G)$ is a subgroup of G for all $u \in G$. A finite group G is a S-group if and only if it is solvable (see [21, Proposition 2.22]). Many other properties of $\text{Sol}_G(u)$ can be found in [21]. We write $\text{Sol}(G) = \{u \in G : \langle u, v \rangle \text{ is solvable for all } v \in G\}$. It is easy to see that $\text{Sol}(G) = \bigcap_{u \in G} \text{Sol}_G(u)$. Also, $\text{Sol}(G)$ is the solvable radical of G (see [18]). The solvable graph of a finite non-solvable group G is a simple undirected graph whose vertex set is $G \setminus \text{Sol}(G)$, and two vertices u and v are adjacent if $\langle u, v \rangle$ is a solvable. We write $\Gamma_s(G)$ to denote this graph. It is worth mentioning that $\Gamma_s(G)$ is the complement of the non-solvable graph of G considered in [4,21] and extension of commuting and nilpotent graphs of finite groups that are studied extensively in [1–3, 5, 6, 9–11, 13–16, 25, 26]. It is worth mentioning that the study of commuting graphs of finite groups is originated from a question posed by Erdös [23].

In this paper, we show that $\Gamma_s(G)$ is not a star graph, a tree, an n-partite graph for any positive integer $n \geq 2$ and not a regular graph for any non-solvable finite group G. In Section 2, we also show that the girth of $\Gamma_s(G)$ is 3 and the clique number of $\Gamma_s(G)$ is

*Corresponding Author.

Email addresses: bhowal.parthajit8@gmail.com (P. Bhowal), ndeiborlang@yahoo.in (D. Nongsiang), rajatkantinath@yahoo.com (R.K. Nath)

Received: 05.06.2019; Accepted: 09.03.2020
greater than or equal to 4. In Section 3, we first show that for a given non-negative integer \(k\), there are at the most finitely many finite non-solvable groups whose solvable graph have genus \(k\). We also show that there is no finite non-solvable group, whose solvable graph is planar, toroidal, double-toroidal, triple-toroidal or projective. We conclude the paper by obtaining a relation between \(\Gamma_s(G)\) and \(P_s(G)\) in Section 4, where \(P_s(G)\) is the probability that a randomly chosen pair of elements of \(G\) generate a solvable group (see [20]).

The reader may refer to [27] and [28] for various standard graph theoretic terminologies. For any subset \(X\) of the vertex set of a graph \(\Gamma\), we write \(\Gamma[X]\) to denote the induced subgraph of \(\Gamma\) on \(X\). The girth of \(\Gamma\) is the minimum of the lengths of all cycles in \(\Gamma\), and is denoted by \(\text{girth}(\Gamma)\). We write \(\omega(\Gamma)\) to denote the clique number of \(\Gamma\) which is the least upper bound of the sizes of all the cliques of \(\Gamma\). The smallest non-negative integer \(k\) is called the genus of a graph \(\Gamma\) if \(\Gamma\) can be embedded on the surface obtained by attaching \(k\) handles to a sphere. Let \(\gamma(\Gamma)\) be the genus of \(\Gamma\). Then, it is clear that \(\gamma(\Gamma) \geq \gamma(\Gamma_0)\) for any subgraph \(\Gamma_0\) of \(\Gamma\). Let \(K_n\) be the complete graph on \(n\) vertices and \(mK_n\) the disjoint union of \(m\) copies of \(K_n\). It was proved in [7, Corollary 1] that \(\gamma(\Gamma) \geq \gamma(K_m) + \gamma(K_n)\) if \(\Gamma\) has two disjoint subgraphs isomorphic to \(K_m\) and \(K_n\). Also, by [28, Theorem 6-38] we have

\[
\gamma(K_n) = \left\lfloor \frac{(n-3)(n-4)}{12} \right\rfloor \quad \text{if } n \geq 3. \tag{1.1}
\]

A graph \(\Gamma\) is called planar, toroidal, double-toroidal and triple-toroidal if \(\gamma(\Gamma) = 0, 1, 2\) and 3 respectively.

Let \(N_k\) be the connected sum of \(k\) projective planes. A simple graph which can be embedded in \(N_k\) but not in \(N_{k-1}\), is called a graph of crosscap \(k\). The notation \(\bar{\gamma}(\Gamma)\) stand for the crosscap of a graph \(\Gamma\). It is easy to see that \(\bar{\gamma}(\Gamma) \geq \gamma(\Gamma_0)\) for any subgraph \(\Gamma_0\) of \(\Gamma\). It was shown in [8] that

\[
\bar{\gamma}(K_n) = \begin{cases} \left\lfloor \frac{1}{6} (n-3)(n-4) \right\rfloor & \text{if } n \geq 3 \text{ and } n \neq 7, \\ 3 & \text{if } n = 7. \end{cases} \tag{1.2}
\]

A graph \(\Gamma\) is called a projective graph if \(\bar{\gamma}(\Gamma) = 1\). It is worth mentioning that \(2K_5\) is not projective graph (see [17]).

2. Graph realization

We begin with the following lemma.

Lemma 2.1. For every \(u \in G \setminus \text{Sol}(G)\) we have

\[
\text{deg}(u) = |\text{Sol}_G(u)| - |\text{Sol}(G)| - 1.
\]

Proof. Note that \(\text{deg}(u)\) represents the number of vertices from \(G \setminus \text{Sol}(G)\) which are adjacent to \(u\). Since \(u \in \text{Sol}_G(u)\), therefore \(|\text{Sol}_G(u)| - 1\) represents the number of vertices which are adjacent to \(u\). Since we are excluding \(\text{Sol}(G)\) from the vertex set therefore \(\text{deg}(u) = |\text{Sol}_G(u)| - |\text{Sol}(G)| - 1\). \(\square\)

Proposition 2.2. \(\Gamma_s(G)\) is not a star.

Proof. Suppose for a contradiction \(\Gamma_s(G)\) is a star. Let \(|G| - |\text{Sol}(G)| = n\). Then there exists \(u \in G \setminus \text{Sol}(G)\) such that \(\text{deg}(u) = n - 1\). Therefore, by Lemma 2.1, \(|\text{Sol}_G(u)| = |G|\). This gives \(u \in \text{Sol}(G)\), a contradiction. Hence, the result follows. \(\square\)

Proposition 2.3. \(\Gamma_s(G)\) is not complete bipartite.

Proof. Let \(\Gamma_s(G)\) be complete bipartite. Suppose that \(A_1\) and \(A_2\) are parts of the bipartition. Then, by Proposition 2.2, \(|A_1| \geq 2\) and \(|A_2| \geq 2\). Let \(u \in A_1, v \in A_2\). If \(|\langle u, v \rangle \setminus \text{Sol}(G)| > 2\), then there exists \(y \in \langle u, v \rangle \setminus \text{Sol}(G)\) such that \(\langle u, y \rangle\) and \(\langle v, y \rangle\) are both solvable. But then \(y \notin A_1\) and \(y \notin A_2\), a contradiction.
It follows that \(|\langle u, v \rangle \text{Sol}(G) \setminus \text{Sol}(G)| = 2\). In particular, \(\text{Sol}(G) = 1\) and \(\langle u, v \rangle\) is cyclic of order 3 or \(|\text{Sol}(G)| = 2\) and \(v = uz\) for \(z\) an involution in \(\text{Sol}(G)\). Now the neighbours of \(u \in A_1\) is just \(u^2 \in A_2\) or \(uz\) in the respective cases. Hence \(|A_2| = |A_1| = 1\), a contradiction. Hence, the result follows. \(\square\)

Following similar arguments as in the proof of Proposition 2.3 we get the following result.

Proposition 2.4. \(\Gamma_s(G)\) is not complete \(n\)-partite.

Proposition 2.5. For any finite non-solvable group \(G\), \(\Gamma_s(G)\) has no isolated vertex.

Proof. Suppose \(x\) is an isolated vertex of \(\Gamma_s(G)\). Then \(|\text{Sol}(G)| = 1\); otherwise \(x\) is adjacent to \(xz\) for any \(z \in \text{Sol}(G) \setminus \{1\}\). Thus it follows that \(o(x) = 2\); otherwise \(x\) is adjacent to \(x^2\). Let \(y \in G\). Then \(\langle x, x^y \rangle\) is dihedral and so \(x = x^y\) as \(x\) is isolated. Hence \(x \in Z(G)\) and so \(x \in Z(G) \leq \text{Sol}(G)\), a contradiction. Hence, \(\Gamma_s(G)\) has no isolated vertex. \(\square\)

The following lemma is useful in proving the next two results as well as some results in subsequent sections.

Lemma 2.6. Let \(G\) be a finite non-solvable group. Then there exist \(x \in G\) such that \(x, x^2 \notin \text{Sol}(G)\).

Proof. Suppose that for all \(x \in G\), we have \(x^2 \in \text{Sol}(G)\). Therefore, \(G/\text{Sol}(G)\) is elementary abelian and hence solvable. Also, \(\text{Sol}(G)\) is solvable. It follows that \(G\) is solvable, a contradiction. Hence, the result follows. \(\square\)

Theorem 2.7. Let \(G\) be a finite non-solvable group. Then \(\text{girth}(\Gamma_s(G)) = 3\).

Proof. Suppose for a contradiction that \(\Gamma_s(G)\) has no 3-cycle. Let \(x \in G\) such that \(x, x^2 \notin \text{Sol}(G)\) (by Lemma 2.6). Suppose \(|\text{Sol}(G)| \geq 2\). Let \(z \in \text{Sol}(G), z \neq 1\), then \(x, x^2\) and \(xz\) form a 3-cycle, which is a contradiction. Thus \(|\text{Sol}(G)| = 1\). In this case, every element of \(G\) has order 2 or 3; otherwise, \(\{x, x^2, x^3\}\) forms a 3-cycle in \(\Gamma_s(G)\) for all \(x \in G\) with \(o(x) > 3\). Therefore, \(|G| = 2^m3^n\) for some non-negative integers \(m\) and \(n\). By Burnside’s Theorem, it follows that \(G\) is solvable; a contradiction. Hence, \(\text{girth}(\Gamma_s(G)) = 3\). \(\square\)

Theorem 2.8. Let \(G\) be a finite non-solvable group. Then \(\omega(\Gamma_s(G)) \geq 4\).

Proof. Suppose for a contradiction that \(G\) is a finite non-solvable group with \(\omega(\Gamma_s(G)) \leq 3\). Let \(x \in G \setminus \text{Sol}(G)\) such that \(x^2 \notin \text{Sol}(G)\) according to Lemma 2.6. Suppose \(|\text{Sol}(G)| \geq 2\). Let \(z \in \text{Sol}(G), z \neq 1\), then \(\{x, x^2, xz, x^2z\}\) is a clique which is a contradiction. Thus \(|\text{Sol}(G)| = 1\). In this case every element of \(G \setminus \text{Sol}(G)\) has order 2, 3 or 4 otherwise \(\{x, x^2, x^3, x^4\}\) is a clique with \(o(x) > 4\), which is a contradiction. Therefore \(|G| = 2^m3^n\) where \(m, n\) are non-negative integers. Again, by Burnside’s Theorem, it follows that \(G\) is solvable; a contradiction. This completes the proof. \(\square\)

As a consequence of Theorem 2.7 and Theorem 2.8 we have the following corollary.

Corollary 2.9. The solvable graph of a finite non-solvable group is not a tree.

We conclude this section with the following result.

Proposition 2.10. \(\Gamma_s(G)\) is not regular.

Proof. Follows from [21, Corollary 3.17], noting the fact that a graph is regular if and only if its complement is regular. \(\square\)
3. Genus and diameter

We begin this section with the following useful lemma.

Lemma 3.1. Let G be a finite group and H a solvable subgroup of G. Then $\langle H, \text{Sol}(G) \rangle$ is a solvable subgroup of G.

Proposition 3.2. Let G be a finite non-solvable group such that $\gamma(\Gamma_s(G)) = m$.

(a) If S is a nonempty subset of $G \setminus \text{Sol}(G)$ such that $\langle x, y \rangle$ is solvable for all $x, y \in S$, then $|S| \leq \left\lfloor \frac{7 + \sqrt{1 + 48m}}{2} \right\rfloor$.

(b) $|\text{Sol}(G)| \leq \frac{7 + \sqrt{1 + 48m}}{2}$, where $t = \max\{o(x) \text{Sol}(G)) | x \text{Sol}(G) \in G/\text{Sol}(G)\}$.

(c) If H is a solvable subgroup of G, then $|H| \leq \frac{7 + \sqrt{1 + 48m}}{2} + |\text{Sol}(G)|$.

Proof. We have $\Gamma_s(G)[S] \cong K|S|$ and $\gamma(K|S|) = \gamma(\Gamma_s(G)[S]) \leq \gamma(\Gamma_s(G))$. Therefore, if $m = 0$ then $\gamma(K|S|) = 0$. This gives $|S| \leq 4$, otherwise $K|S|$ will have a subgraph K_5 having genus 1. If $m > 0$ then, by Heawood’s formula [27, Theorem 6.3.25], we have

$$|S| = 4\gamma(\Gamma_s(G)[S]) \leq \omega(\Gamma_s(G)) \leq \chi(\Gamma_s(G)) \leq \left\lfloor \frac{7 + \sqrt{1 + 48m}}{2} \right\rfloor$$

where $\chi(\Gamma_s(G))$ is the chromatic number of $\Gamma_s(G)$. Hence part (a) follows.

Part (b) follows from Lemma 3.1 and part (a) considering $S = \bigcup_{i=1}^{t-1} y^i \text{Sol}(G)$, where $y \in G \setminus \text{Sol}(G)$ such that $o(y) \text{Sol}(G)) = t$.

Part (c) follows from part (a) noting that $H = (H \setminus \text{Sol}(G)) \cup (H \cap \text{Sol}(G))$. □

Theorem 3.3. Let G be a finite non-solvable group. Then $|G|$ is bounded above by a function of $\gamma(\Gamma_s(G))$.

Proof. Let $\gamma(\Gamma_s(G)) = m$ and $h_m = \left\lfloor \frac{7 + \sqrt{1 + 48m}}{2} \right\rfloor$. By Lemma 3.1, we have $\Gamma_s(G)[x \text{Sol}(G)] \cong K|\text{Sol}(G)|$, where $x \in G \setminus \text{Sol}(G)$. Therefore by Proposition 3.2(a), $|\text{Sol}(G)| \leq h_m$.

Let P be a Sylow p-subgroup of G for any prime p dividing $|G|$ having order p^n for some positive integer n. Then P is a solvable. Therefore, by Proposition 3.2(c), we have $|P| \leq h_m + |\text{Sol}(G)| \leq 2h_m$. Hence, $|G| < (2h_m)^h_m$ noting that the number of primes less than $2h_m$ is at most h_m. This completes the proof. □

As an immediate consequence of Theorem 3.3 we have the following corollary.

Corollary 3.4. Let n be a non-negative integer. Then there are at the most finitely many finite non-solvable groups G such that $\gamma(\Gamma_s(G)) = n$.

The following two lemmas are essential in proving the main results of this section.

Lemma 3.5. [24, Lemma 3.4] Let G be a finite group.

(a) If $|G| = 7m$ and the Sylow 7-subgroup is normal in G, then G has an abelian subgroup of order at least 14 or $|G| \leq 42$.

(b) If $|G| = 9m$, where $3 \nmid m$ and the Sylow 3-subgroup is normal in G, then G has an abelian subgroup of order at least 18 or $|G| \leq 72$.

Lemma 3.6. If G is a non-solvable group of order not exceeding 120 then $\Gamma_s(G)$ has a subgraph isomorphic to K_{11} and $\gamma(\Gamma_s(G)) \geq 5$.

Proof. If G is a non-solvable group and $|G| \leq 120$ then G is isomorphic to A_5, $A_5 \times Z_2$, S_5 or $SL(2, 5)$. Note that $|\text{Sol}(A_5)| = |\text{Sol}(S_5)| = 1$ and $|\text{Sol}(A_5 \times Z_2)| = |\text{Sol}(SL(2, 5))| = 2$. Also, A_5 has a solvable subgroup of order 12 and S_5, $A_5 \times Z_2$, $SL(2, 5)$ have solvable subgroups of order 24. It follows that $\Gamma_s(G)$ has a subgraph isomorphic to K_{11}. Therefore, by (1.1), $\gamma(\Gamma_s(G)) \geq \gamma(K_{11}) = 5$. □
The solvable graph of a finite non-solvable group is neither planar, toroidal, double-toroidal nor triple-toroidal.

Proof. Let G be a finite non-solvable group. Note that it is enough to show $\gamma(\Gamma_s(G)) \geq 4$ to complete the proof. Suppose that $\gamma(\Gamma_s(G)) \leq 3$. Let $x \in G \setminus \text{Sol}(G)$ such that $x^2 \not\in \text{Sol}(G)$. Such element exists by Lemma 2.6. Since any two elements of the set $A = x \text{Sol}(G) \cup x^2 \text{Sol}(G)$ generate a solvable group, by Proposition 3.2(a), we have $2|\text{Sol}(G)| = |A| \leq \frac{7+\sqrt{1+48}}{2} = 9$. Thus $|\text{Sol}(G)| \leq 4$. Let p be a prime divisor of $|G|$ and P is a Sylow p-subgroup of G. Since P is solvable, by Proposition 3.2(c), we get $|P| \leq 9 + |P \cap \text{Sol}(G)| \leq 13$. If $|P| = 11$ or 13 then $|P \cap \text{Sol}(G)| = 1$. Therefore, $\Gamma_s(G)[P \setminus \text{Sol}(G)] \cong K_{10}$ or K_{12}. Using (1.1), we get $\gamma(\Gamma_s(G)[P \setminus \text{Sol}(G)]) = 4$ or 6. Therefore, $\gamma(\Gamma_s(G)) \geq \gamma(\Gamma_s(G)[P \setminus \text{Sol}(G)]) \geq 4$, a contradiction. Thus $|P| \leq 9$ and hence $p \leq 7$. This shows that $|G|$ divides $2^7 \cdot 3^2 \cdot 5 \cdot 7$.

We consider the following cases.

Case 1. $|\text{Sol}(G)| = 4.$

If H is a Sylow p-subgroup of G where $p = 5$ or 7 then $\langle H, \text{Sol}(G) \rangle$ is solvable since H is solvable (by Lemma 3.1). We have $|H \cap \text{Sol}(G)| = 1$ and $|\langle H, \text{Sol}(G) \rangle| = 20, 28$ according as $p = 5, 7$ respectively. Therefore $\Gamma_s(G)[\langle H, \text{Sol}(G) \rangle \setminus \text{Sol}(G)] \cong K_{16}$ or K_{24}. By (1.1) we get $\gamma(\Gamma_s(G)) \geq \gamma(\Gamma_s(G)[\langle H, \text{Sol}(G) \rangle \setminus \text{Sol}(G)]) \geq 13$, which is a contradiction.

Thus $|G|$ is a divisor of 72. Therefore, by Lemma 3.6 we have $\gamma(\Gamma_s(G)) \geq 5$, a contradiction.

Case 2. $|\text{Sol}(G)| = 3.$

If H is a Sylow p-subgroup of G where $p = 5$ or 7 then $\langle H, \text{Sol}(G) \rangle$ is solvable. We have $|H \cap \text{Sol}(G)| = 1$ and $|\langle H, \text{Sol}(G) \rangle| = 15, 21$ according as $p = 5, 7$ respectively. Therefore $\Gamma_s(G)[\langle H, \text{Sol}(G) \rangle \setminus \text{Sol}(G)] \cong K_{12}$ or K_{18}. By (1.1) we get $\gamma(\Gamma_s(G)) \geq \gamma(\Gamma_s(G)[\langle H, \text{Sol}(G) \rangle \setminus \text{Sol}(G)]) \geq 6$, which is a contradiction.

Thus $|G|$ is a divisor of 72. Therefore, by Lemma 3.6 we have $\gamma(\Gamma_s(G)) \geq 5$, a contradiction.

Case 3. $|\text{Sol}(G)| = 2.$

If H is a Sylow 7-subgroup of G then $\langle H, \text{Sol}(G) \rangle$ is solvable. We have $|H \cap \text{Sol}(G)| = 1$ and $|\langle H, \text{Sol}(G) \rangle| = 14$. So, $\Gamma_s(G)[\langle H, \text{Sol}(G) \rangle \setminus \text{Sol}(G)] \cong K_{12}$. By (1.1) we get $\gamma(\Gamma_s(G)) \geq \gamma(\Gamma_s(G)[\langle H, \text{Sol}(G) \rangle \setminus \text{Sol}(G)]) \geq 6$, which is a contradiction. Let K be a Sylow 3-subgroup of G. If $|K| = 9$ then $\langle K, \text{Sol}(G) \rangle$ is solvable since K is solvable (by Lemma 3.1). We have $|K \cap \text{Sol}(G)| = 1$ and $|\langle K, \text{Sol}(G) \rangle| = 18$. So, $\Gamma_s(G)[\langle K, \text{Sol}(G) \rangle \setminus \text{Sol}(G)] \cong K_{16}$. By (1.1) we get $\gamma(\Gamma_s(G)) \geq \gamma(\Gamma_s(G)[\langle K, \text{Sol}(G) \rangle \setminus \text{Sol}(G)]) = 13$, which is a contradiction.

Thus $|G|$ is a divisor of 120. Therefore, by Lemma 3.6 we have $\gamma(\Gamma_s(G)) \geq 5$, a contradiction.

Case 4. $|\text{Sol}(G)| = 1.$

In this case, first we shall show that $7 \nmid |G|$. On the contrary, assume that $7 \mid |G|$. Let n be the number of Sylow 7-subgroups of G. Then $n \mid 2^7 \cdot 3^2 \cdot 5$ and $n \equiv 1 \mod 7$. If $n \neq 1$ then $n \geq 8$. Let H_1, \ldots, H_8 be the eight distinct Sylow 7-subgroups of G. Then the induced subgraphs $\Gamma_s(G)[H_i \setminus \text{Sol}(G)]$ for each $1 \leq i \leq 8$ contribute $\gamma(\Gamma_s(G)[H_i \setminus \text{Sol}(G)]) = 1$ to the genus of $\Gamma_s(G)$. Thus

$$\gamma(\Gamma_s(G)) \geq \sum_{i=1}^{8} \gamma(\Gamma_s(G)[H_i \setminus \text{Sol}(G)]) = 8,$$

a contradiction. Therefore, Sylow 7-subgroup of G is unique and hence normal. Since we have started with a non-solvable group, by Lemma 3.5, it follows that G has an abelian subgroup of order at least 14. Therefore, by (1.1) we have $\gamma(\Gamma_s(G)) \geq \gamma(K_{13}) = 8$, a contradiction. Hence, $|G|$ is a divisor of $2^7 \cdot 3^2 \cdot 5$.

Now, we shall show that $9 \nmid |G|$. Assume that, on the contrary, $9 \mid |G|$. If Sylow 3-subgroup of G is not normal in G, then the number of Sylow 3-subgroups is greater than
or equal to 4. Let \(H_1, H_2, H_3 \) be the three Sylow 3-subgroups of \(G \). Then the induced subgraph \(\Gamma_S(G)[H_1 \setminus \Sol(G)] \cong K_8 \) and so it contributes \(\gamma(\Gamma_S(G)[H_1 \setminus \Sol(G)]) = 2 \) to the genus of \(\Gamma_S(G) \). If \(|H_1 \cap H_2| = 1\), then the induced subgraph \(\Gamma_S(G)[H_2 \setminus \Sol(G)] \cong K_8 \) and so it contributes +2 to the genus \(\Gamma_S(G) \). Thus
\[
\gamma(\Gamma_S(G)) \geq \gamma(\Gamma_S(G)[(H_1 \cup H_2) \setminus \Sol(G)]) = 4
\]
which is a contradiction. So assume that \(|H_1 \cap H_2| = 3\). Similarly \(|H_1 \cap H_3| = 3\) and \(|H_2 \cap H_3| = 3\). Let \(M = H_2 \setminus H_1 \). Then \(|M| = 6\). Also note that if \(L = H_1 \cup H_2 \) and \(K = H_3 \setminus L \), then \(|K| \geq 4\). Also \(H_1 \cap M = H_1 \cap K = M \cap K = \emptyset \).

If \(|K| \geq 5\) then \(H_1 \) contribute +2 to genus of \(\Gamma_S(G) \), \(M \) and \(K \) each contribute +1 to genus of \(\Gamma_S(G) \). Hence genus of \(\Gamma_S(G) \) is greater than or equal to 4, a contradiction.

Assume that \(|K| = 4\). In this case \(|M \cap H_3| = 2\). Let \(x \in M \cap H_3 \). Then \(H_1 \) contribute +2 to genus of \(\Gamma_S(G) \), \(M \setminus \{x\} \) and \(K \cup \{x\} \) each contribute +1 to genus of \(\Gamma_S(G) \). Hence genus of \(\Gamma_S(G) \) is greater than or equal to 4, a contradiction.

These show that Sylow 3-subgroup of \(G \) is unique and hence normal in \(G \). Therefore, by Lemma 3.5 and Lemma 3.6, \(G \) has an abelian subgroup \(A \) of order at least 18. Hence,
\[
\gamma(\Gamma_S(G)) \geq \gamma(\Gamma_S(G)[A \setminus \Sol(G)]) \geq \gamma(K_{17}) = 16
\]
which is a contradiction.

It follows that \(|G| \neq |K_3|\) and \(|G| \) is a divisor of 120. Therefore, by Lemma 3.6 we get \(\gamma(\Gamma_S(G)) \geq 5 \), a contradiction. Hence, \(\gamma(\Gamma_S(G)) \geq 4 \) and the result follows. \(\Box \)

The above theorem gives that \(\gamma(\Gamma_S(G)) \geq 4 \). Usually, genera of solvable graphs of finite non-solvable groups are very large. For example, if \(G \) is the smallest non-solvable group \(A_5 \) then \(\Gamma_S(G) \) has 59 vertices and 571 edges. Also \(\gamma(\Gamma_S(G)) \geq 571/6 - 59/2 + 1 = 68 \) (follows from [28, Corollary 6–14]). The following theorem shows that the crosscap number of the solvable graph of a finite non-solvable group is greater than 1.

Proposition 3.8. The solvable graph of a finite non-solvable group is not projective.

Proof. Suppose \(G \) is a finite non-solvable group whose solvable graph is projective. Note that if \(\Gamma_S(G) \) has a subgraph isomorphic to \(K_n \) then, by (1.2), we must have \(n \leq 6 \). Let \(x \in G \), such that \(x, x^2 \notin \Sol(G) \). Then
\[
\Gamma_S(G)[x \Sol(G) \cup x^2 \Sol(G)] \cong K_{2|\Sol(G)|}
\]
Therefore, \(2|\Sol(G)| \leq 6 \) and hence \(|\Sol(G)| \leq 3 \).

Let \(p \mid |G| \) be a prime and \(P \) be a Sylow \(p \)-subgroup of \(G \). Then \(\Gamma_S(G)[P \setminus \Sol(G)] \cong K_{|P|/\Sol(G)|} \) since \(P \) is solvable. Therefore, \(|P \setminus \Sol(G)| = |P| - |P \cap \Sol(G)| \leq 6 \) and hence \(|P| \leq 9 \). This shows that \(|G|\) is a divisor of \(2^33^35 \).

If \(|P| \geq 7\mid |G|\) then Sylow 7-subgroup of \(G \) is unique and hence normal in \(G \); otherwise, let \(H \) and \(K \) be two Sylow 7-subgroups of \(G \). Then \(|H \cap K| = |H \setminus \Sol(G)| = |K \setminus \Sol(G)| = 1\). Therefore, \(\Gamma_S(G)[(H \cup K) \setminus \Sol(G)] \) has a subgraph isomorphic to \(2K_3 \). Hence, \(\Gamma_S(G) \) has a subgraph isomorphic to \(2K_5 \), which is a contradiction. Similarly, if \(|G| \leq 6\mid |G|\), then the Sylow 3-subgroup of \(G \) is normal in \(G \). Therefore, by Lemma 3.5, it follows that \(|G| \leq 72 \) or \(|G| \) is a divisor of \(2^33^5 \). In the both cases, by Lemma 3.6, \(\Gamma_S(G) \) has complete subgraphs isomorphic to \(K_{11} \), which is a contradiction. This completes the proof. \(\Box \)

We conclude this section, by an observation and a couple of problems regarding the diameter and connectedness of \(\Gamma_S(G) \). Using the following programme in GAP [29], we see that the solvable graph of the groups \(A_5, S_5, A_5 \times Z_2, SL(2, 5), PSL(3, 2) \) and \(GL(2, 4) \) are connected with diameter 2. The solvable graphs of \(S_6 \) and \(A_6 \) are connected with diameters greater than 2.

\[\text{P. Bhowal, D. Nongsiang and R.K. Nath}\]
g:=PSL(3,2);
sol:=RadicalGroup(g);
L:=[];
gsol:=Difference(g,sol);
for x in gsol do
 AddSet(L,[x]);
 for y in Difference(gsol,L) do
 if IsSolvable(Subgroup(g,[x,y]))=true then
 break;
 fi;
 i:=0;
 for z in gsol do
 if IsSolvable(Subgroup(g,[x,z]))=true and
 IsSolvable(Subgroup(g,[z,y]))=true
 then
 i:=1;
 break;
 fi;
 od;
 if i=0 then
 Print("Diameter>2");
 Print(x, " ", y);
 fi;
 od;
od;

In this connection, we have the following problems.

Problem 3.1. Is $\Gamma_s(G)$ connected for any finite non-solvable group G?

Problem 3.2. Is there any finite bound for the diameter of $\Gamma_s(G)$ when $\Gamma_s(G)$ is connected?

4. Relations with solvability degree

The solvability degree of a finite group G is defined by the following ratio

$$P_s(G) := \frac{|\{(u,v) \in G \times G : \langle u, v \rangle \text{ is solvable}\}|}{|G|^2}.$$

Using the solvability criterion (see [12, Section 1]),

“A finite group is solvable if and only if every pair of its elements generates a solvable group”

for finite groups we have G is solvable if and only if its solvability degree is 1. It was shown in [20, Theorem A] that $P_s(G) \leq \frac{11}{30}$ for any finite non-solvable group G. In this section, we study a few properties of $P_s(G)$ and derive a connection between $P_s(G)$ and $\Gamma_s(G)$ for finite non-solvable groups G. We begin with the following lemma.

Lemma 4.1. Let G be a finite group. Then $P_s(G) = \frac{1}{|G|^2} \sum_{u \in G} |\text{Sol}_G(u)|$.

Proof. Let $S = \{(u,v) \in G \times G : \langle u, v \rangle \text{ is solvable}\}$. Then

$$S = \bigcup_{u \in G} \left(\{u\} \times \{v \in G : \langle u, v \rangle \text{ is solvable}\} \right) = \bigcup_{u \in G} \{u\} \times \text{Sol}_G(u).$$

Therefore, $|S| = \sum_{u \in G} |\text{Sol}_G(u)|$. Hence, the result follows. \qed
Corollary 4.2. \(|G|P_s(G)\) is an integer for any finite group \(G\).

Proof. By Proposition 2.16 of [21] we have that \(|G|\) divides \(\sum_{u \in G} |\text{Sol}_G(u)|\). Hence, the result follows from Lemma 4.1.

We have the following lower bound for \(P_s(G)\).

Theorem 4.3. For any finite group \(G\),

\[
P_s(G) \geq \frac{|\text{Sol}(G)|}{|G|} + \frac{2(|G| - |\text{Sol}(G)|)}{|G|^2}.
\]

Proof. By Lemma 4.1, we have

\[
|G|^2 P_s(G) = \sum_{u \in \text{Sol}(G)} |\text{Sol}_G(u)| + \sum_{u \in G \setminus \text{Sol}(G)} |\text{Sol}_G(u)|
\]

\[
= |G||\text{Sol}(G)| + \sum_{u \in G \setminus \text{Sol}(G)} |\text{Sol}_G(u)|.
\]

By Proposition 2.13 of [21], \(|C_G(u)|\) is a divisor of \(|\text{Sol}_G(u)|\) for all \(u \in G\) where \(C_G(u) = \{v \in G : uv = vu\}\), the centralizer of \(u \in G\). Since \(|C_G(u)| \geq 2\) for all \(u \in G\) we have \(|\text{Sol}_G(u)| \geq 2\) for all \(u \in G\). Therefore

\[
\sum_{u \in G \setminus \text{Sol}(G)} |\text{Sol}_G(u)| \geq 2(|G| - |\text{Sol}(G)|).
\]

Hence, the result follows from (4.1).

The following theorem shows that \(P_s(G) > \Pr(G)\) for any finite non-solvable group where \(\Pr(G)\) is the commuting probability of \(G\) (see [19]).

Theorem 4.4. Let \(G\) be a finite group. Then \(P_s(G) \geq \Pr(G)\) with equality if and only if \(G\) is a solvable group.

Proof. The result follows from Lemma 4.1 and the fact that \(\Pr(G) = \frac{1}{|G|^2} \sum_{u \in G} |C_G(u)|\) noting that \(C_G(u) \subseteq \text{Sol}_G(u)\) and so \(|\text{Sol}_G(u)| \geq |C_G(u)|\) for all \(u \in G\).

The equality holds if and only if \(C_G(u) = \text{Sol}_G(u)\) for all \(u \in G\), that is \(\text{Sol}_G(u)\) is a subgroup of \(G\) for all \(u \in G\). Hence, by Proposition 2.22 of [21], the equality holds if and only if \(G\) is solvable.

Let \(|E(\Gamma_s(G))|\) be the number of edges of the non-solvable graph \(\Gamma_s(G)\) of \(G\). The following theorem gives a relation between \(P_s(G)\) and \(|E(\Gamma_s(G))|\).

Theorem 4.5. Let \(G\) be a finite non-solvable group. Then

\[
2|E(\Gamma_s(G))| = |G|^2 P_s(G) + |\text{Sol}(G)|^2 + |\text{Sol}(G)| - |G|(2|\text{Sol}(G)| + 1).
\]

Proof. We have

\[
2|E(\Gamma_s(G))| = |\{(x, y) \in (G \setminus \text{Sol}(G)) \times (G \setminus \text{Sol}(G)) : \langle x, y \rangle \text{ is solvable}\}| - |G| + |\text{Sol}(G)|.
\]

Also

\[
S = \{(x, y) \in G \times G : \langle x, y \rangle \text{ is solvable}\}
\]

\[
= \text{Sol}(G) \times \text{Sol}(G) \quad \succeq \quad \text{Sol}(G) \times (G \setminus \text{Sol}(G)) \quad \succeq \quad \text{Sol}(G) \times (G \setminus \text{Sol}(G)) \times \text{Sol}(G)
\]

\[
\succeq \quad \{(x, y) \in (G \setminus \text{Sol}(G)) \times (G \setminus \text{Sol}(G)) : \langle x, y \rangle \text{ is solvable}\}.
\]

Therefore

\[
|S| = |\text{Sol}(G)|^2 + 2|\text{Sol}(G)|(|G| - |\text{Sol}(G)|) + 2|E(\Gamma_s(G))| + |G| - |\text{Sol}(G)|
\]

\[
\implies |G|^2 P_s(G) = |G|(2|\text{Sol}(G)| + 1) - |\text{Sol}(G)|^2 - |\text{Sol}(G)| + 2|E(\Gamma_s(G))|.
\]

Hence, the result follows.
We conclude this paper noting that lower bounds for $|E(\Gamma_s(G))|$ can be obtained from Theorem 4.5 using the lower bounds given in Theorem 4.3, Theorem 4.4 and the lower bounds for $\Pr(G)$ obtained in [22].

Acknowledgment. The authors would like to thank the referee for his/her valuable comments and suggestions. The first author is thankful to Council of Scientific and Industrial Research for the fellowship (File No. 09/796(0094)/2019-EMR-I).

References