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Abstract: Checking the normality assumption is necessary to decide whether a 

parametric or non-parametric test needs to be used. Different ways are suggested 

in literature to use for checking normality. Skewness and kurtosis values are one of 

them. However, there is no consensus which values indicated a normal distribution. 

Therefore, the effects of different criteria in terms of skewness values were 

simulated in this study. Specifically, the results of t-test and U-test are compared 

under different skewness values. The results showed that t-test and U-test give 

different results when the data showed skewness. Based on the results, using 

skewness values alone to decide about normality of a dataset may not be enough.  

Therefore, the use of non-parametric tests might be inevitable. 

1. INTRODUCTION 

Mean comparison tests, such as t-test, Analysis of Variance (ANOVA) or Mann-Whitney U 

test, are frequently used statistical techniques in educational sciences. The techniques used 

differ according to the properties of the data sets such as normality or equal variance. For 

example, if the data is not normally distributed Mann-Whitney U test is used instead of 

independent sample t-test. In a broader sense, they are categorized as parametric and non-

parametric statistics respectively. Parametric statistics are based on a particular distribution 

such as a normal distribution. However, non-parametric tests do not assume such distributions. 

Therefore, they are also known as distribution free techniques (Boslaung & Watters, 2008; 

Rachon, Gondan, & Kieser, 2012).  

Parametric mean comparison tests such as t-test and ANOVA have assumptions such as equal 

variance and normality. Equal variance assumption indicates that the variances of the groups 

which are subject to test are the same. The null hypothesis for this assumption indicated that all 

the groups’ variances are equal to each other. In other words, not rejecting the null hypothesis 

shows equality of the variances. The normality assumption, on the other hand, indicates that the 

data were drawn from a normally distributed population. A normal distribution has some 

properties. For example, it is symmetric with respect to the mean of the distribution where the 

mean, median and mode are equal. Also, normal distribution has a horizontal asymptote 

(Boslaung & Watters, 2008). That is, the curve approaches but never touches the x-axis. With 
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normality assumption, it is expected that the distribution of the sample is also normal (Boslaung 

& Watters, 2008; Demir, Saatçioğlu & İmrol, 2016; Orçan, 2020). In case for comparison of 

two samples, for example, normality assumption indicates that each independent sample should 

be distributed normally.  Departure from the normality for any of the independent sample 

indicates that the parametric tests should not be used (Rietveld & van Hout, 2015) since the 

type I error rate is affected (Blanca, Alarcon, Arnua, et al., 2017; Cain, Zhang, & Yuan, 2017). 

That is, parametric tests are robust in terms of type I error rate (Demir et al., 2016) and as the 

distribution of the groups apart from each other type I error rate raises (Blanca et al., 2017) 

For independent samples, test of normality should be run separately for each sample. Checking 

the normality of the dependent variable for entire sample, without considering the grouping 

variable (the independent variable), is not the correct way. For example, if a researcher wants 

to compare exam scores between male and female students, the normality of exam scores for 

male and female students should be tested separately. If one of the groups is normally and the 

other is non-normally distributed the normality assumption is violated. Only if both groups’ 

tests indicate normal distribution then parametric tests (i.e., independent sample t-test) should 

be considered. On the other hand, for one sample t-test or paired samples t-test (testing 

difference between pairs), normalities of the dependent variables are tested for entire sample at 

once.  

Normality could be tested with variety of ways, some of which are Kolmogorov-Smirnov (KS) 

test and Shapiro-Wilk (SW) test. These are two of the most common ways to check normality 

(Park, 2008; Razali & Wah, 2011). Both tests assume that the data is normal, H0. Therefore, it 

was expected to not to reject the null (Miot, 2016). KS test is recommended to use when the 

sample size is large while SW is used with small sample sizes (Büyüköztürk et al., 2014; Demir 

et al., 2016; Razali & Wah, 2011). Park (2008) pointed that SW test is not reliable when sample 

size is larger than 2000 while KS is usefull when the sample size is larger than 2000. However, 

it was also pointed that SW test can be powerful with large sample sizes (Rachon et al., 2012). 

Besides, it was stated that KS test is not useful and less accurate in practice (Field, 2009; 

Ghasemi & Zahediasl, 2012; Schucany & Tong NG, 2006).  

In addition, KS and SW tests, other ways are also available for checking the normality of a 

given data set. Among them, few graphical methods are also available: Histogram, boxplot or 

probability-probability (P-P) plots (Demir 2016; Miot, 2016; Park, 2008; Rietveld & van Hout, 

2015). For example, shape of the histogram for a given data set is checked to see if it looks 

normal or not. Even though it is frequently used, the decisions made based only on it would be 

subjective. Nevertheless, using histogram with other methods to check the shape of the 

distribution can be informative. Therefore, it will be useful to use graphical methods with other 

methods. 

Another way to check the normality of data is based on checking skewness and kurtosis values. 

Although the use of skewness and kurtosis values are common in practice, there is no consensus 

about the values which indicate normality. Some suggest skewness and kurtosis up to absolute 

value of 1 may indicate normality (Büyüköztürk, Çokluk, & Köklü, 2014; Demir et al., 2016; 

Huck, 2012; Ramos et al., 2018), while some others suggest much larger values of skewness 

and kurtosis for normality (Iyer, Sharp, & Brush, 2017; Kim, 2013; Perry, Dempster & McKay, 

2017; Şirin, Aydın, & Bilir, 2018; West et al., 1996). Lei and Lomax (2005) categorized non-

normality into 3 groups: “The absolute values of skewness and kurtosis less than 1.0 as slight 

nonnormality, the values between 1.0 and about 2.3 as moderate nonnormality, and the values 

beyond 2.3 as severe nonnormality” (p. 2). Similarly, Bulmer (1979) pointed skewness, in 

absolute values, between 0 and .5 shows fairly symmetrical, between .5 and 1 shows moderately 

skewed and larger than 1 shows highly skewed distribution.  
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Standard error of skewness and kurtosis were also used for checking normality. That is, z-scores 

for skewness and kurtosis were used as a rule. If z-scores of skewness and kurtosis are smaller 

than 1.96 (for %5 of type I error rate) the data was considered as normal (Field, 2009; Kim, 

2013). Besides, for larger sample sizes it was suggested to increase the z-score from 1.96 up to 

3.29 (Kim, 2013). 

Sample size is also an important issue regarding normality. With small sample size normality 

of a data cannot be quarantined.  In an example, it was shown that sample of 50 taken from 

normal distribution looked nonnormal (Altman, 1991, as cited in Rachon et al., 2012).  Blanca 

et al. (2013) examined 693 data sets with sample sizes, ranging between 10 and 30, in terms of 

skewness and kurtosis. They found that only 5.5% of the distributions were close to normal 

distribution (skewness and kurtosis between negative and positive .25). It was suggested that 

even with small sample size the normality should be controlled prior to analysis.  

Since parametric tests are more powerful (Demir et al. 2016) researchers may try to find a way 

to show that their data is normal. Sometimes only SW or KS test are used while sometimes 

values such as skewness and kurtosis are used. In fact, based on Demir et al. (2016) study, 

24.8% of the studies which test normality used skewness and kurtosis values while 24.1% of 

them used KS or SW tests. Even though the difference between the percentages is small, more 

researchers used skewness and kurtosis to check normality. There might be different reasons 

why researchers use skewness and kurtosis values to check normality. One of which might be 

related to get broader flexibility on the reference values of skewness and kurtosis. As indicated, 

different reference points on skewness and kurtosis were available in the literature. Therefore, 

it seems that it is easier for the researchers to show normality by using skewness and kurtosis 

values.  

Based on the criteria chosen to check normality it is decided to use parametric or nonparametric 

tests. If the criterion is changed, the test to be chosen might also change. For example, if one 

use “skewness smaller than 1” instead of “z-score of skewness” criteria t-test instead of U-test 

might need to be used. In fact, normality test results might change with respect to the test which 

is used to utilized (Razali & Wah, 2011). Therefore, the aim of this study is to see how much 

difference might occur on decisions made on the used of t-test and U-tests under different 

skewness criteria. It was not aimed to point whether parametric or non-parametric tests are more 

or less useful then the other one. For this purpose, a simulation study was conducted with 

different design factors. 

2. METHOD 

2.1. Study Design Factors  

Three different design factors were used to simulate independent sample testing proses. The 

first design factor was sample size. In order to simulate data from small to large sample four 

different values were considered (60, 100, 300 and 1000). It was indicated that sample size of 

30 is small, while around 400 is large (Abbott, 2011, as cited in Demir et al., 2016). Later, 

percentages of the independent groups (25%, 50% or 75%) within the sample were changed 

and only one of the independent groups’ normality was altered as the second design factor.  For 

the third design factor, non-normality was added to the selected group. For non-normality, five 

conditions were utilized. The conditions were choosen to represent normal to non-normal 

distributions. The non-normality values were summarized at Table 1.  For example, under Sk=0, 

the skewness values were constrained to be between .00 and .10 while kurtosis values were 

between .00 and .20. For SK=2*SE group, maximum values of skewness and kurtosis were 

constrained to be smaller than 1.96 time of their standard errors. These values were considered 

to represent normal (Sk=0), non-normal (Sk=1) and severe non-normal (Sk=1.75) distributions. 
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Data generation procedure was different for one sample and independent sample tests. First, the 

procedure for independent sample test was described. Namely, data were generated to simulated 

one factor structure which was estimated by five items. The values of the factor loadings were 

adapted from Demirdağ and Kalafat (2015) and set to .70, .78, .87, .77 and .53. The loadings 

represent small (.53) to large (.87) values. 

2.2. Data Generation Procedure 

To simulate independent sample testing, first, normally distributed factor scores with mean of 

0 and standard deviation of 1 was generated in R. Then, Fleishman’s power transformation 

method (Fleishman, 1978) was used to get non-normal factor scores. This is one of the 

recognized method to simulate non-normality (Bendayan, Arnau, Blanca & Bono, 2014). Only 

one of the two independent groups was non-normal.  

Table 1. Skewness and Kurtosis Values Used for Data Generation 

Condition 
Skewness  Kurtosis 

Min Max  Min Max 

Sk=0 .00 .10  .00 .20 

Sk=2*SE 1.70*SES 1.96*SES  1.50*SEK 1.96*SEK 

Sk=1 .90 1.00  .80 1.00 

Sk=1.5 1.40 1.50  1.50 2.50 

Sk=1.75 1.60 1.75  5.00 - 

Sk: Skewness; SES: Standard Error of Skewness, SEK: Standard Error of Kurtosis 

For example, for 25% of the sample (group 1) was non-normal and 75% of the data (group 2) 

was normal. That is, for the specified percent of total sample was non-normally distributed and 

the rest of sample was normal. To ensure this structure, first a normal distributed data set was 

generated for a given sample size. After getting a normally distributed data set another data set 

with non-normal distribution was generated. Later these two data sets were merged to get one 

data set in which the grouping variable was also available.  Before saving the merged data set 

equal variance assumption was tested in R. If the assumption was satisfied the merged data sets 

were saved for independent sample tests. In total of 500 data sets were generated for each 

condition. Therefore, totally 30,000 (500*4*3*5) data sets were generated for independent 

sample tests. 

For the dependent sample (one sample) test, the same factor structure was used. Fleishman’s 

power transformation method was used to get non-normal factor scores. The simulated scores 

were considered as if they were score differences between pre-test and post-test results. For the 

dependent sample tests, only sample size and level of non-normality was used as design factors. 

The replication number was 500. Namely, 500 data sets were simulated for each of the given 

conditions. In total, 10,000 (500*4*5) data sets were generated for the dependent sample tests. 

2.3. Data Analysis 

The simulated data sets were also tested in R. To run the t-test and Mann-Whitney U test (U-

test) t.test and wilcox.test functions were used. Type I error rates for both test was set to .05. In 

other words, significancies of the U-test and t-test were tested at the .05 alpaha level. For 

independent sample t-test equal variance was assumed since it was controlled within data 

generation process. Simulated data sets were analyzed under both t-test and U-test. For 

empirical studies only the p-values of the tests were used to decide about the null hypothesis. 

Therefore, only the p-values for the t-test and U-test were checked under this study too. 

Consequently, the numbers of t-test and U-test which showed the same result based on the p-

values (significant or not significant) were counted. In other words, p-values larger than .05 and 
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smaller than .05 for both t-test and U-test were counted. These results showed how much of 

conclusion made on the null hypothesis were the same between t-test and U-test. 

3. RESULT / FINDINGS 

3.1. One Sample Test Results 

Based on the simulation conditions given above, one sample test results were given below. 

Based on the results, skewness (i.e., non-normality) of the data has effect on t-test and U-test. 

Figure 1 shows the discrepancy between one sample t-test and Mann-Whitney U test. As the 

skewness of the data was increased the dissimilarity between the tests was increased. For 

example, when skewness was 1, under sample size of 100, t-test and U-test were given different 

results for 10% of the time. However, under the same condition when the skewness was 

increased to 1.5 the difference was increased to 30%. 

 

 

Figure 1. Discrepancy between t-test and U-test for One-Sample tests 

The discrepancies were also dependent to sample sizes. As the sample size was increased the 

differences between t-test and U-test also increased for skewed data sets. For example, under 

the skewness of 1, when the sample size was increased from 100 to 300, the difference between 

the tests was increased from 10% to 31%. 

When the data sets were normal the discrepancies between the tests were just about 1%. That 

is, when the data were normal, regardless of sample size, t-test and U-test gave the same results 

for 99% of the times. Figure 1 also shows the results for skewness equal to two times of its 

standard error (2*SES). Under this condition, the t-test and U-test were given the same results 

for 95% of the time on average. Table 2 gives the results of one sample tests in detail. For 

example, when sample size was 60 and skewness was 1.75 the discrepancy between t-test and U-

test was 19%. As it is seen from the Table 2, for skewed data 2*SES rule gave the least discrepancies 

where the values were between 3 and 5 percents.  

Table 2. Discrepancy Values (%) between t-test and U-test for One Sample Tests 

Sample Size 
  Skewed Data 

Normal  2*SES 1 1.5 1.75 

60 1  5 9 17 19 

100 1  3 10 30 34 

300 1  5 31 67 71 

1000 1  4 74 97 95 
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3.2. Independent Sample Test Results 

Two independent groups were compared under this simulation study. Based on the results, 

sample size had an effect on the p-values for skewed data only as it was the case for one-sample 

test results. As the sample size was increased discrepancy between the p-values of tests also 

increased for skewed data. For example, under 25% of non-normal and skewness was 1, as the 

sample size was increased from 100 to 1000 the dissimilarity on the p-values increased from 

4% to 20%. Left panel of Figure 2 shows the result for 25% of non-normal data while right 

panel shows the result for 50% (balanced) of non-normal data. Based on the results, under 

normally distributed data the p-values did not change much and the discrepancy was 2% at 

maximum. Thus, when the data were normal, regardless of sample size, t-test and U-test gave 

the same results for more than 98% of the times. Figure 2 also shows the results for skewness 

equal to two times of standard error of skewness (2*SES). Under this condition, the t-test and 

U-test gave the same results for more than 97% of the times in terms of p-values. Sample size 

did not affect the results under this condition. For example, as shown at left side of Figure 2, 

discrepancies for the p-values of the tests were about 3% for both sample sizes of 100 and 1000.  

  

Figure 2. Discrepancy between t-test and U-test for 25% and 50% (balanced) of non-normal data  

On the other hand, skewness also had effect on the p-values. As skewness was increased the 

difference between the p-values also increased. For example, on the left panel of Figure 2, as 

skewness was increased from 1 to 1.75 the difference between the p-values increased from 6% 

to 18%, under sample size of 300. Also, as sample size was increased the range of p-values also 

increased for skewed data. For example, the range was about 3% for sample size of 100 but 

12% for 300 and 28% for 1000. 

Percent of skewed data has also affected the results of t and U tests. Figure 3 shows the percent 

effects for sample sizes of 60 and 1000.  When the sample size was small (60) the results of 

25%, 50% and 75% non-normal data did not change much. Under these conditions, the 

discrepancies between the p-values were between 3% and 9%. However, as the sample size was 

increased, the effect of the percentages became more prominent. Interestingly, discrepancies 

between 25% and 75% of non-normality were similar. However, 50% of non-normality showed 

different and larger discrepancy as sample size was increased. On the other hand, when 

skewness was equal to two times its standard error (2*SES), percent of skewed data did not 

affect the results and discrepancies were between %1 and 3%. The results for independent tests 

were given at Table 3 in detail.  



Int. J. Asst. Tools in Educ., Vol. 7, No. 2, (2020) pp. 255–265 

 261 

  

Figure 3. Discrepancy between t-test and U-test for sample sizes of 60 and 1000 

Based on the results it was obvious that under skewed data sets t-test and U-test gave different 

results in terms of the p-values. The differences get clear as sample size and skewness of data 

were increased. However, under the 1.96 standard error rule, neither the sample size nor the 

percent of skewness were effective. Therefore, the results of this condition were investigated in 

detail.  

Table 3. Discrepancy Values (%) between t-test and U-test for Independent Sample Tests 

Sample Size % of Skewness 
  Skewed Data  

Normal  2*SES 1 1.5 1.75 

60 

25 1  3 4 3 5 

50 2  2 4 4 9 

75 2  2 3 6 5 

100 

25 1  3 4 5 7 

50 0  3 5 8 11 

75 1  2 2 7 13 

300 

25 1  1 6 13 18 

50 2  2 11 20 22 

75 1  3 8 15 15 

1000 

25 2  3 20 37 48 

50 1  2 25 47 58 

75 1  2 19 39 42 

Table 4 shows average values of discrepancies between t-test and U-test with respect to SW 

tests. When the sample size was 60 about 92.8% of data was normal based on SW tests. Under 

this condition, when t-test was supposed to be used, 97.5% (90.5/92.8) of the U-test and when 

U-test was supposed to be used, 98.6% (7.1/7.2) of the t-test gave the same results. Even though 

SW tests results were different percent of similarities were alike across the sample sizes. For 

example, under sample size of 1000, when t-test was supposed to be used 97.5% (83.5/85.6) of 

the U-tests gave the same result in terms of p-values. 

4. DISCUSSION and CONCLUSION 

Checking the normality assumption is one of the critical steps for mean competition studies. 

Based on the results either parametric or non-parametric tests were considered to test mean 

differences. Literature suggests different approaches to check the assumption. Some of which 

are Kolmogorov-Smirnov test, Shapiro-Wilk test, checking skewness and kurtosis values or 
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basically looking the histogram of the dependent variables. Based on the test chosen the results 

of normality test might be different (Razali & Wah, 2011).  

Table 4. Discrepancy Average Discrepancy Values (%) for 2*SE Rule 

SW test Results  
 

Sample Size 

60 100 300 1000 

Normal 
Same  90.5 92.3 91.7 83.5 

Different 2.3 2.5 2.0 2.1 

Non-normal 
Same  7.1 5.0 6.3 14.3 

Different .1 .1 .0 .1 

Total of the Same 97.6 97.3 98.0 97.8 

The use of skewness and kurtosis values to check normality is common in practice. Some 

suggest that the values can be up to as large as 2 in absolute values.  On the other hand, standard 

errors of skewness and kurtosis were also used for normality tests. It was suggested that 

skewness and kurtosis values smaller than 1.96 times of their standard errors indicates normality 

(Kim, 2013; Field, 2009). However, there is no agreement on the values which indicate 

normality of a dataset. Therefore, this current study simulated different conditions to check the 

effect of skewness and kurtosis values on the decision made for mean comparison tests (a.k.a., 

t-test and U-test).  

Based on the one-sample test results (see Table 2) when the data were normal or Sk < 1.96*SES, 

t-tests and U-tests were showed similar results with respect to p-values. Therefore, under these 

conditions, t-test can be used without any concerns. The results for normally distributed data 

were as expected. Nevertheless, under Sk < 1.96*SES condition, p-values of t-tests and U-tests 

were worth to point again. When skewness is smaller than its 1.96 standard error, t-tests and U-

tests indicated the same results. Therefore, if Sk < 1.96*SES, t-tests can be used to test mean 

differences. However, when skewness is around 1 or larger, the t-tests and U-tests pointed 

different conclusions. Therefore, test of normality has to be considered carefully. There needs 

to be other evidences to show normality of data. If no evidence is found for normality and 

skewness is around or larger than 1, given the limitation of this study, U-tests should be used 

to test mean differences. 

Similar results were obtained for two-sample tests as well. That is, when the data were normal 

or Sk < 1.96*SES, t-tests and U-tests were showed similar results with respect to p-values. 

Therefore, if Sk < 1.96*SES, t-tests can be used to test mean differences. However, if no other 

evidence found and skewness is around or larger than 1, U-tests should be used to test mean 

differences. This suggestion especially important for larger sample sizes. As the sample size 

was increased the effect of skewness become clear and the discrepancies between t-test and U-

test increased.  

On the other hand, a more detailed results for the 1.96*SE rule were given at Table 4.  Based 

on the table, when SW test indicated that the data was normal, on average 97.6% of the t-test 

and U-test were the same in terms of p-values. Similarly, when SW test indicated that the data 

was not normal, on average 99.0% of the tests were the same in terms of p-values. Therefore, 

in order to use t-test for mean comparison the 1.96*SE rule can be used. Regardless of SW test 

results, if skewness and kurtosis of a given dataset are smaller than their 1.96 standard errors 

(about 2 standard errors), t-test can be preferred over U-test. However, based on the results of 

the simulation, when skewness and kurtosis of a given dataset are larger than 1 another proof 

to show normality (e.g., Shapiro-Wilk) is needed. Therefore, if no other proof is granted non-

parametric U-test should be used for mean comparison. In other words, “skewness around and 

larger than 1” rules should not be used to decide between t-test and U-test.  
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For example, let’s say that, a researcher wanted to test if there is difference on math 

achievement scores between male and female students. For this purpose, about 300 student’s 

scores were collected in a data set. The researcher tested normality of the scores for each gender 

groups by Shapiro Wilk test. Let’s say that, the test indicated that the data were non-normal. 

After the test, the researcher checked the skewness and kurtosis values. The values were about 

1.5. Since the values were smaller than 2, the researcher decided to use the parametric test (e.g., 

t-test). In this case, there is 16% of chance (average of 13%, 20%, 15%) that the results of the 

t-test were different than U-test. Therefore, using only the skewness and kurtosis values to 

decide about the normality of a data set is too risky. That means that if only skewness and 

kurtosis values are used for normality it is possible that researchers may decide to use a wrong 

method to test their hypotheses. For example, they may decide to use t-test when U-test is 

supposed to be used. Regarding that, as far as this study showed, as skewness and sample size 

increased t-test and U-tests gave different conclusions in term of rejecting H0. Therefore, it can 

be concluded that skewness and kurtosis values alone should not be used. 

The literature also says that violation of normally assumption may not have serious effects on 

the results (Glass, Peckham, & Sanders, 1972, Blanca, Alarcon, Arnua, et al., 2017). However, 

uses of non-parametric tests are still very common in practice. Therefore, test of normally is 

still checked before mean comparison tests. The current study showed that the results changes 

based on the test chosen. The results of this study are limited with comparison of two means 

and predefined simulation conditions. Therefore, the results are limited to the conditions used 

within the study.  For example, Ghasemi and Zahediasl (2012) and Kim (2013) and suggested 

the use of 2.58*SE or 3.29*SE rules under large sample size. Another study which simulated 

these conditions may also be useful. Under this study only the normality assumption was 

examined. Besides this, a simulation study where data are normal but equal variance assumption 

is violated can be informative as well.  
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