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Abstract: Item response theory provides various important advantages for exams 

carried out or to be carried out digitally. For computerized adaptive tests to be able 

to make valid and reliable predictions supported by IRT, good quality item pools 

should be used. This study examines how adaptive test applications vary in item 

pools which consist of items with varying difficulty levels. Within the scope of the 

study, the impact of items was examined where the parameter b differentiates while 

the parameters a and c are kept in fixed range. To this end, eight different 2000-

people item pools were designed in simulation which consist of 500 items with 

ability scores and varying difficulty levels. As a result of CAT simulations, RMSD, 

BIAS and test lengths were examined. At the end of the study, it was found that 

tests run by item pools with parameter b in the range that matches the ability level 

end up with fewer items and have a more accurate stimation. When parameter b 

takes value in a narrower range, estimation of ability for extreme ability values that 

are not consistent with parameter b required more items. It was difficult to make 

accurate estimations for individuals with high ability levels especially in test 

applications conducted with an item pool that consists of easy items, and for 

individuals with low ability levels in test applications conducted with an item pool 

consisting of difficult items. 

1. INTRODUCTION 

The measurement and evaluation process plays a critical role in determining whether the 

qualities targeted to be acquired in education are realized or not. Change has undoubtedly been 

inevitable in measurement and evaluation just like it has been in every field throughout history. 

Although paper and pencil tests, which were based on the classical test theory, have been an 

important part of measurement and evaluation, they have certain important limitations and 

disadvantages. Item difficulty parameter and item discrimination parameter vary depending on 

the group from which data were collected; in other words, it varies according to sampling (Lord 

& Novick, 1968). Another limitation is that individuals’ ability levels depend on item 

parameters. Individuals receive different scores in test batteries with different difficulty levels. 

One’s ability may seem high in an easy test and low in a difficult test. Due to this important 

limitation, problems may arise in comparing the individual. Even when they could be compared, 
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because their ability levels are different, their ability scores could cause errors in different sizes 

(Hambleton, Swaminathan & Rogers, 1991). Tests developed according to traditional 

approaches and classical test theory usually work better with the individuals with intermediate 

ability levels (Crocker & Algina, 1986). When few items were designed for individuals with 

very low- and very high-level abilities, the test ceases to be distinctive for these ability levels, 

and reliable predictions cannot be made for these extreme ability levels. With existing test 

designs, it is not possible to know how an individual would perform with a given item set. The 

limitations of the theory put forth by Spearman in 1905 pioneered the formation of a new theory 

in 1930s. Item Response Theory (IRT) ties to eliminate limitations due to its strong assumptions 

(unidimensionality, local independence, model-data fit) and differences in the test algorithm. 

IRT is also called Latent Trait Theory (Crocker & Algina, 1986). This theory explains with a 

mathematical function the relationship between an individual’s ability level related to the 

measured characteristic and the answers they give (Embretson & Reise, 2000; Hambleton & 

Swaminathan, 1989).  

The most common item parameters in Item Response Theory are difficulty (b), discrimination 

(a), and chance (c). Parameter b is the ability (θ) level that corresponds to the point where the 

individual answers an item correctly with a 50% probability. It is also shown on the same scale 

as θ (Lord & Novick, 1968). Although it may theoretically take a value between -∞ and +∞, it 

usually takes in practice a value in the -3 and +3 range. An increase in b denotes that the item 

is getting more difficult and a decrease indicates that it is getting easier. When parameter b is 

0, it denotes a medium-level difficulty. Item discrimination (a) parameter corresponds to the 

curve on the θ=bi point. Theoretically, ranges from -∞ to +∞, however in practice it usually 

takes a value between 0 and 2. Parameter a can take a negative value, albeit rarely, and this 

indicates that the item works in the opposite direction. Parameter c denotes the probability of 

individuals giving a correct answer by guessing. 

An important advantage of tem Response Theory is that item and test information functions can 

be obtained. Item information function shows how much information an item gives of its 

measured characteristic. Item information is inversely proportional to item error variant (Reid, 

Kolakowsky-Hayner, Lewis & Armstrong, 2007). A function that takes up a different value in 

every point of θ is calculated by the equation given below (Baker & Kim, 2004; Hambleton, 

Swaminathan & Rogers, 1991). 

 

 

 

For a three-parameter logistic model, this equation is expressed as follows with item 

parameters: 

 

 

 

As parameter a increases and parameter b gets closer to zero, I(θ) value increases as well. 

Parameter b getting closer to θ is increases I(θ). The total of item information functions gives 

the test information function that shows how much the test gives information about the 

measured characteristic (Hambleton, Swaminathan & Rogers, 1991; Reid et al., 2007). 

 

 

 



Kezer  

 147 

 

 

 

Given the item and test information functions, item characteristics in forming a test is important 

to be able to have a valid and reliable measuring. IRT provides significant support to measuring 

processes with its mathematical basis. The invariance characteristic of IRT enables item and 

test parameters to be independent from the group, and it enables predicted ability levels to be 

independent from the test. As such, it is possible to compare measuring results of different 

groups. Being able to calculate the reliability not for a single item but for each of them and for 

each ability level separately, and also being able to calculate errors separately for each 

individual enables a shorter test with quality items (Adams, 2005; Crocker & Algina, 1986; 

Embretson & Reise, 2000; Magnussson, 1966). With its strong mathematical structure, IRT is 

convenient for various applications. The most important of these are test design, item mapping, 

test equating, test and item bias studies and computerized adaptive test applications.  

In classical tests, a fixed number of items are designed to be applied to all individuals. Adaptive 

tests, on the other hand, are based on the principle that items appropriate to an individual’s 

ability are used. Thus, the test is cleared of inappropriate items so that it becomes both shorter 

and more reliable. With the advancement of technology, adaptive tests have begun to be applied 

more, and computerized adaptive tests (CAT) have gained more importance. In the application 

of CAT to individuals by selecting items from a large item pool, there are different methods 

(two-stage testing, self-selecting testing, pyramidal multistage testing, alternating testing, 

stradaptive testing, multilevel format) (Glas & Linden, 2003; Hambleton & Swaminathan, 

1989; Thompson & Weiss, 1980; Vale & Weiss, 1975; Weiss, 1985). Adaptive test strategies 

are designed to use item information obtained through item information function (Brown & 

Weiss, 1977; Maurelli & Weiss, 1981; Weiss & Kinsbury, 1984). 

The main aim of CAT is to apply the item cluster that gives most information for each 

individual. To this end, individuals are given different item sets, and based on the answers given 

to these item sets, an ability estimation is done. Contrary to CTT, CAT is based on IRT and 

CAT’s test logic is based on large item pools item parameters which are known beforehand. 

Item pool can consist of different item types (Embretson & Reise, 2000; Sukamolson, 2002; 

Wainer et al., 2000). This testing method requires an item pool which is comprised of items 

that have high discrimination and that are distributed in a balanced manner on the difficulty-

ability level (b-θ) so that it can make estimations for individuals at different ability levels 

(Geordiadou, Triantafillou & Economides, 2006; Veldkamp & Linden, 2010; Weiss, 1985, 

2011). In practice, it is not that easy to form an item pool whose item parameters take value in 

a large range. In this study, it was examined how estimation of ability changes when item pools 

consist of items with different characteristics, what kind of differences in the testing would 

application changing parameter b providing parameters a and c remain in the same range make. 

Moreover, it examined how estimations of ability changes by creating conditions in which 

parameter b takes value between narrow and wide ranges and where there is conglomeration at 

different points from easy to difficult. 

2. METHOD 

This study is designed as a basic research model in which the psychometric qualities of 

application results of computerized adaptive tests with items culled from item pools with 

different difficulty levels, are examined. Basic research refers to those studies that are 

conducted based on theories, by developing assumptions, testing them, and scientifically 

interpreting their results (Karasar, 2016).  
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2.1. Simulation Design  

In line with the aim of the study, data were generated in simulation with SIMULCAT Monte-

Carlo simulation to compare different item pools. Developed by Kyung T. Han in 2020, 

SimulCAT is a software to carry out simulated adaptive test applications. When algorithms and 

codes of practice of adaptive tests are considered, one needs large item pools developed 

according to item response theory as well as estimated ability parameters from large groups. In 

this respect, simulative data that could represent each special condition were used in this study. 

The study was conducted based on a three-parameter model. First, ability parameters were 

estimated so that they represent a 2000-people group. To estimate the ability, θ (theta) was 

defined within the -3 and +3 range. Descriptive statistics for estimated ability parameters are 

presented in Table 1.  

Table 1. Descriptive statistics of ability scores. 

Statistics Value 

N            2000 

Mean -0.073 

Median -0.148 

Minimum -3.000 

Maximum 3.000 

Range 6.000 

Standard Deviation 1.728 

Variance 2.985 

Skewness 0.091 

Std. Error of Skewness 0.055 

Kurtosis -1.188 

Std. Error of Kurtosis 0.109 

 

As can be seen in Table 1, mean of the ability parameters generated at (-3, +3) range was found 

to be -0.073, and its standard deviation 1.718. The same ability parameters (2000-people) were 

used for all conditions. Distribution related to estimated ability parameters are presented in 

Figure 1.  

Figure 1. Distribution of ability parameters. 
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Eight different conditions were formulated to be able to examine estimated parameters from 

item pools with different difficulty levels. There are 500 items in each item pool. To see the 

effect of average difficulty levels, discrimination (a) and chance (c) parameters were defined 

within the same range so that other conditions remain the same. Parameter a was kept within 

0.25 and 2.00, and parameter c within 0.00 and 0.20. Difficulty parameter (b) was defined as a 

range for each 3 conditions: it was between -3 and +3 for the first condition, -2 and +2 for the 

second condition and was between -1 and +1 for the third condition. Other than the three ranges, 

five different conditions were also determined according to average difficulty. In these five 

different conditions, parameter b was defined as -2.5, -1.5, 0.0, 1.5, and 2.5, respectively, 

keeping standard deviation as 1.5. Item parameters related to these eight conditions are 

summarized in Table 2.  

Table 2. Item parameters (defined/generated) for eight different conditons. 

 Defined Generated 

b a c 
 b a c 

�̅� Sd �̅� Sd �̅� Sd 

1st Condition (-3.0,+3.0) 

(0.25,2.0) (0.0,0.2) 

0.017 1.763 1.121 0.498 0.100 0.058 

2nd Condition (-2.0,+2.0) 0.013 1.173 1.139 0.502 0.100 0.058 

3rd Condition (-1.0,+1.0) 0.026 0.594 1.150 0.504 0.101 0.058 

4th Condition �̅�=2.5  Sd=1.5 2.373 1.567 1.098 0.498 0.098 0.058 

5th Condition �̅�=1.5  Sd=1.5 1.417 1.536 1.124 0.524 0.101 0.059 

6th Condition �̅�=0.0  Sd=1.5 0.023 1.406 1.139 0.495 0.102 0.057 

7th Condition �̅�=-1.5 Sd=1.5 -1.599 1.494 1.138 0.503 0.103 0.057 

8th Condition �̅�=-2.5 Sd=1.5 -2.577 1.514 1.122 0.522 0.096 0.059 

 

In the adaptive test application design, Maximum Fisher Information (MFI) was used, which is 

the most common method for item selection management. As initial ability parameter, (-0.5, 

+0.5) range was determined. Maximum Likelihood Method (MLE) was selected for all 

conditions as the estimation of ability method. Maximum Likelihood Method is based on 

selecting the item that gives out most information about an individual. As the termination rule, 

a common rule was likewise selected for the eight conditions. Standard error which is smaller 

than 0.30 was determined as the test termination rule. Half the amount of the item pool – 250 

items – was decided to be an upper termination rule because too many items would be needed 

for the estimation of ability if item pool is not appropriate. While conducting the test in 

inappropriate item pools, the test was stopped when half of the pool is reached. 25 repetitions 

were made for estimations. 

2.2. Data Analysis  

In the evaluation of test findings, Root Mean Squared Difference (RMSD) and BIAS values 

were used. RMSD is a statistic that denotes the difference between estimations of ability (Boyd, 

Dodd & Fitzpatrick, 2013). BIAS is a difference statistic between the ability parameter average 

value and its real value. RMSD and BIAS are calculated by using the following formula: 

 

 

 

Moreover, test lengths were also checked in the ability parameter ranges for eight different 

conditions. The aim was to have a detailed examination of how long the test would take for 

individuals at different ability levels in the response cluster. Therefore, RMSD and BIAS values 

at ability ranges were examined.  
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3. RESULT / FINDINGS 

In line with the aim of this study, RMSD and BIAS values for ability parameters obtained from 

adaptive tests, which were conducted with item pools with different difficulty levels, were 

calculated and presented in Table 3.  

Table 3. RMSD and BIAS values concerning estimation of ability. 

Condition b RMSD BIAS 

1st Condition (-3.0,+3.0) 0.259 -0.007 

2nd Condition (-2.0,+2.0) 0.283 0.004 

3rd Condition (-1.0,+1.0) 0.338 -0.009 

4th Condition �̅�=2.5  Sd=1.5 0.798 -0.052 

5th Condition �̅�=1.5  Sd=1.5 0.271 -8X10-5 

6th Condition �̅�=0.0  Sd=1.5 0.281 0.014 

7th Condition �̅�=-1.5 Sd=1.5 0.275 0.013 

8th Condition �̅�=-2.5 Sd=1.5 0.330 0.030 

 

Since 25 repetitions were done in estimations of parameter, obtained results were turned into a 

report by taking their average. As can be seen in Table 3, RMSD values vary between 0.259 

and 0.798. Except for the 4th condition, RMSD values were in a narrower range (0.259-0.338). 

The lowest RMSD value was obtained, as expected, from the condition in which the difficulty 

parameters of items in the item pool were between -3 and +3. This value increased when the 

range of parameter b comparatively narrowed. Apart from when the average was 2.5 in item 

pools which were formed by considering, the averages of parameter b, no significant difference 

was detected. Distribution related to RMSD and BIAS values are shown in Figure 2.  

Figure 2. Distribution of RMSD and BIAS values concerning estimations of ability. 

 

 

The array of RMSD values according to their size were found to be RMSDCnd.1< RMSDCnd.5< 

RMSDCnd.7< RMSDCnd.6< RMSDCnd.2< RMSDCnd.8< RMSDCnd.3< RMSDCnd.4. Similarly, BIAS 

values concerning different conditions varied absolutely between 0.00008-0.052. Lengths of 

the simulated adaptive tests were considered separately in θ ranges. Distribution concerning the 

test lengths are given in Table 4. 
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Table 4. Lengths of the simulated adaptive tests. 

θ   N 1st Cnd. 2nd Cnd. 3rd Cnd. 4th Cnd. 5th Cnd. 6th Cnd. 7th Cnd. 8th Cnd. 

-3.0<θ<-2.5 170 13.01 55.06 250.00 250.00 147.55 13.57 12.42 11.19 

-2.5<θ<-2.0 170 11.91 15.84 182.84 250.00 22.84 12.78 12.56 10.38 

-2.0<θ<-1.5 190 11.58 10.91 46.72 134.38 13.39 12.23 12.55 10.58 

-1.5<θ<-1.0 159 11.36 11.20 16.42 17.58 13.69 12.08 11.66 11.05 

-1.0<θ<-0.5 194 11.23 11.36 11.10 14.29 12.70 12.11 11.45 10.89 

-0.5<θ<0.0 177 10.97 11.01 10.89 14.33 12.10 12.58 11.84 11.64 

0.0<θ<0.5 158 11.69 10.57 10.65 13.39 11.53 11.73 11.61 14.15 

0.5<θ<1.0 153 11.35 10.23 9.88 12.85 11.58 11.30 12.73 17.97 

1.0<θ<1.5 156 11.27 11.09 12.97 11.82 11.19 11.21 14.06 27.53 

1.5<θ<2.0 149 11.12 10.82 26.77 11.25 11.51 12.67 20.33 138.72 

2.0<θ<2.5 160 12.86 15.68 76.79 11.25 11.56 12.46 61.95 250.00 

2.5<θ<3.0 164 12.44 35.32 198.61 11.40 11.31 13.12 238.54 250.00 

 

Likewise, RMSD and BIAS values calculated for different conditions for each ability range are 

given in Table 5.  

Table 5. RMSD and BIAS values according to ability ranges. 

 θ Area -3.0 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 

 N 170 170 190 159 194 177 158 153 156 149 160 164 

1st Cnd. 
Bias -0.02 -0.03 0.00 0.03 -0.03 0.00 -0.01 -0.01 -0.03 -0.02 -0.02 0.06 

RMSD 0.30 0.27 0.25 0.25 0.26 0.27 0.23 0.27 0.26 0.25 0.25 0.26 

2nd Cnd. 
Bias -0.08 -0.03 0.00 0.02 -0.01 -0.01 0.00 0.00 -0.01 -0.01 0.09 0.09 

RMSD 0.36 0.31 0.31 0.25 0.24 0.25 0.27 0.23 0.24 0.25 0.35 0.30 

3rd Cnd. 
Bias -0.12 -0.05 -0.07 -0.05 -0.03 -0.01 0.01 0.02 0.06 0.08 0.01 0.09 

RMSD 0.60 0.36 0.31 0.28 0.26 0.25 0.26 0.26 0.33 0.32 0.27 0.41 

4th Cnd. 
Bias -0.41 -0.08 -0.15 0.00 0.01 -0.02 0.04 0.02 0.01 -0.01 0.02 -0.01 

RMSD 2.03 0.83 1.36 0.30 0.25 0.25 0.25 0.29 0.26 0.25 0.25 0.25 

5th Cnd. 
Bias -0.06 0.00 0.02 -0.01 0.01 0.02 0.01 0.01 0.00 0.00 -0.02 0.01 

RMSD 0.40 0.27 0.26 0.26 0.26 0.27 0.25 0.24 0.25 0.26 0.24 0.26 

6th Cnd. 
Bias -0.06 0.05 0.02 0.02 -0.03 0.02 0.01 0.05 -0.03 0.01 0.06 0.05 

RMSD 0.46 0.28 0.24 0.25 0.26 0.25 0.25 0.24 0.26 0.24 0.25 0.32 

7th Cnd. 
Bias 0.00 0.01 0.00 0.02 -0.01 0.02 0.02 0.03 0.01 0.00 0.03 0.03 

RMSD 0.25 0.28 0.26 0.25 0.24 0.24 0.26 0.28 0.27 0.32 0.33 0.32 

8th Cnd. 
Bias -0.02 0.02 -0.03 0.03 0.00 0.03 0.05 0.00 0.01 0.05 0.06 0.20 

RMSD 0.26 0.23 0.25 0.25 0.25 0.26 0.29 0.31 0.30 0.32 0.43 0.64 

When Table 3 and Table 4 are examined, it can be seen in which ability range item pools with 

different characters would work more ideally. In the item pool where parameter b is between -

3.0 and +3.0 (1st condition), the test was completed, as expected, at a more reasonable time. 

RMSD and BIAS values were similar and low in each range. In the 6th condition, it was seen 

that the test length was reasonable for every ability level when parameter b was heaped up 

around the intermediate difficulty level (�̅�=0.0, Sd=1.5). Keeping in mind the ability (θ)-

difficulty (b) relationship of IRT, it can be said that when difficulty was kept at moderate level, 

more decisive estimations are done for a large ability range. In the 2nd and 3rd condition in which 

parameter b was kept within a limited range, it was seen that more items were needed to 

decisively estimate ability as one moves towards the ends where ability level is high or low. In 

the 2nd condition, number of items needed at extreme ability levels moved up to 55. In the 

adaptive test simulation ran in the item pool with parameter b at the (-1.0, +1.0) range, which 
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is a more limited range, (3rd condition), test lengths went outside of acceptable limits in extreme 

ability levels. The second termination rule of the study – stopping the test when half of the item 

pool is reached – worked in these three extreme ability levels, and the test was stopped before 

it could become consistent. This was reflected in RMSD and BIAS values. RMSD value 

increased to 0.60 in the (-3.0, -2.5) ability range. There was a similar case in item pools which 

were formed as normal distribution within a certain parameter b. Except for the 6th condition 

(�̅�=0.0 Sd=1.5), more items were needed in ranges where parameters b do not correspond to 

ability levels. As can be seen Table 4, 5th condition 7th condition or 4th condition -8th condition 

worked adversely and were more decisive in different ability levels. In item pools which were 

designed by determining parameter b approximately as �̅�=2.5, the test was stopped by reaching 

the defined maximum item number without the estimation falling below the standard error value 

at the -3<θ<-2 range. Similarly, in the 8th condition, the test was stopped as maximum item 

number was reached at 2<θ<3 range. It was observed that RMSD and BIAS values increased 

in inappropriate ability levels in parallel to test length.  

4. DISCUSSION and CONCLUSION 

Although classical paper and pencil tests are prevalently used in education and psychology, 

they give way to electronic exams with the advancements in technology and assessment 

theories. Item response theory (IRT) provides various important advantages for exams carried 

out or to be carried out digitally. For computerized adaptive tests to be able to make valid and 

reliable predictions supported by IRT, good quality item pools should be used (Hambleton, 

Swaminathan & Rogers, 1991; Weiss, 1985). In adaptive test designs, from 50% to 80% could 

be saved in test length (Bulut & Kan, 2012; Comert, 2008; Iseri, 2002; Kalender, 2011; Kaptan, 

1993; Kezer, 2013; McDonald, 2002; McBride & Martin, 1983; Olsen, Maynes, Slavvson & 

Ho, 1989; Oztuna, 2008; Scullard, 2007; Smits, Cuijper & Straten, 2011). With CAT, each 

individual can get a test appropriate for his or her ability level. Moreover, the speed of the test 

can be adaptive for the individual. Because it is computerized, individuals can take the test at 

different times where as classical paper and pencil tests everyone should sit in at the same time. 

Different question formats can be easily used within a test. Test results can be assessed 

immediately, and test standardization is easier. As an important point, a test that works 

effectively and properly at every ability level is designed from test that bespeaks to 

intermediate-level individuals. In order to do a computerized adaptive test that has these 

advantages, one needs large item pools of which item parameters are estimated beforehand. It 

is not always easy to write items that has these qualities. Quality of the pool is an important 

factor that affects efficiency of application. This study examined what kind of results one would 

get in CAT applications of item pools which have items with different characteristics. Within 

the scope of the study, the impact of items was examined where the parameter b differentiates 

while keeping the parameters a and c are kept in fixed range. At the end of the study, it was 

seen that tests run by item pools with parameter b in the range that matches the ability level end 

up with fewer items and have a more decisive prediction. Similar studies in literature also 

underscore when the θ-b relationship is high, more effective CAT applications are carried out 

(Chang, 2014; Eggen & Verschoor, 2006; Dodd, Koch & Ayala, 1993). When parameter b takes 

value in a narrower range, estimation of ability for extreme ability values that are not compatible 

with parameter b required more items. What is more, accurate estimations could not be done 

with a decent number of items for extreme ability values in much narrower ranges (-1<b<+1). 

Since one could not go below the desired standard deviation, it was difficult to make accurate 

estimations for individuals with high ability levels especially in test applications conducted with 

an item pool that consists of easy items, and for individuals with low ability levels in test 

applications conducted with an item pool consisting of difficult items. These results underline 

that when generating an item pool in adaptive test applications, one should be incredibly careful. 
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To make CAT more effective and functional, it can be said that the dimension of the item pool 

should be as such that would cover all values of b (Chang, 2014). Using items with 

inappropriate difficulty levels without considering the characteristics of the target group would 

put adaptive test applications in jeopardy from test length to estimation of ability. The effect of 

items’ levels of difficulty on adaptive test applications can be tested by different item 

discrimination values at different ability ranges. To this end, examining item parameters would 

guide teachers and test designers when they form item pools. Moreover, knowing the 

characteristics of the item pool and its effects could help test designers in constructing correct 

control mechanisms in test algorithm.  
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