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Abstract 

The SSIR-PACS is a group identification and a model-free variable selection method under 

sufficient dimension reduction (SDR) settings. It combined the Pairwise Absolute Clustering and 

Sparsity (PACS) with sliced inverse regression (SIR) methods to produce solutions with sparsity 

and the ability of group identification. However, the SSIR-PACS depends on classical estimates 

for dispersion and location, squared loss function, and non-robust weights for outliers. In this 

paper, a robust version of SSIR-PACS (RSSIR-PACS) is proposed. We replaced the squared loss 

by the criterion of Tukey's biweight. Also, the non-robust weights to outliers, which depend on 

Pearson’s correlations, are substituted with robust weights based on recently developed ball 

correlation. Moreover, the estimates of the mean and covariance matrix are substituted by the 

median and ball covariance, respectively. The RSSIR-PACS is robust to outliers in both the 

response and covariates. According to the results of simulations, RSSIR-PACS produces very 

good results. If the outliers are existing, the efficacy of RSSIR-PACS is considerably better than 

the efficacy of the competitors. In addition, a robust criteria to  estimate the structural dimension 

𝑑 is proposed. The RSSIR-PACS makes SSIR-PACS practically feasible. Also, we employed real 

data to demonstrate the utility of RSSIR-PACS. 
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1. INTRODUCTION 

 

In regressions problems, a huge interest is gone to SDR in the last years [1-9]. Let 𝑌 and X = (x1, … , x𝑝)
𝑇
 

are the outcome and the vector of covariates, respectively. The aim of SDR is to substitute X with orthogonal 

projection 𝑃𝑠X on to S of 𝑑-dimension , where 𝑑 < 𝑝, without losing any information on 𝑌|X. SDR methods 

are searching for S𝑌|X , where S𝑌|X  is the intersection of all subspaces S such as 𝑌 ╨X|𝑃𝑠X and ╨ is the 

independency. Thus,  𝑃𝛽X  summaries the information of X on 𝑌 and 𝛽 is a basis of S𝑌|X  [2].  

 

A lot of methods are proposed to estimate S𝑌|X . The SIR method is one of them [1]. It is applied in diverse 

areas like economics, informatics and finance. However, SIR produces linear combinations of all the 

original predictors and this makes difficulty in interpreting the results. To obtain better interpretability, the 

reduction of nonzero coefficients number in the SIR directions is very important. 

 

Under least squares, many methods are proposed for better understanding. For examples, Lasso [10], SCAD 

[11], Elastic Net [12], group Lasso [13], adaptive Lasso [14], OSCAR [15], MCP [16] and PACS [17]. 

 

Under SIR framework, the thoughts of SIR were merged with the concepts of regularisation methods. For 

example, model-selection method for single-index models was proposed by [18]. Similarly, a method for 
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determining the variables contribution is suggested by [4]. Furthermore, the Lasso is combined with SIR 

by [5] to obtain shrinkage SIR (SSIR).  [6] proposed sparse SIR (SPSIR) via merging Lasso and LARS into 

SIR.  [7] combined some of SDR methods with the idea of shrinkage estimation. To improve SIR ability to 

work when the covariates are highly correlated and 𝑝 > 𝑛 where 𝑛 is the sample size, a regularised SIR 

(RSIR) method is proposed by [19]. Lasso-SIR method is proposed by [9] for multiple index model and 

under 𝑝 > 𝑛 settings. The authors have shown that Lasso-SIR estimates achieve optimal consistency rate. 

[20] proposed SSIR-PACS method. The author showed that the SSIR-PACS has advantages over the 

existing sparse SIR methods in its ability on group identification and variable selection(GIVS). However, 

the criterion of squared loss was employed between X and 𝑌 in SSIR-PACS. Also, the traditional estimates 

of the mean (𝜇) and covariance matrix of 𝑋 (𝛴𝑥) were used inside the squared loss. Moreover, the weighted 

penalty contains weights depend on Pearson’s correlation (PC). It is known that the squared loss, the 

traditional estimates for 𝜇 and 𝛴𝑥, and PC are not robust to outliers.  

 

The limitations of SSIR-PACS motivate us to propose RSSIR-PACS. The squared loss is substituted by the 

criterion of Tukey's biweight (T.B). Furthermore, the non-robust weights to outliers that depend on Pearson 

correlations are replaced with robust weights based on a recently developed ball correlation. Moreover, the 

estimates of 𝜇 and 𝛴𝑥 are subsituted by the median and ball covariance(BCov), respectively.  The RSSIR-

PACS is robust to outliers in the response and covariates. 

 

The rest of this paper is as follows. In Section 2, we give a summary of SIR and SSIR-PACS. RSSIR-PACS 

and a modification of [8] criteria for estimating the dimension are proposed in Sections 3. Simulations were 

carried out in Section 4. In Section 5, real data were analysed through the considered methods. In Section 

6, the conclusions are given. 

 

2. SIR AND SSIR-PACS METHODS 

For estimating S𝑌|X,  [2] proposed SIR method. It requires 𝑍 = 𝛴−
1

2  (𝑋 − 𝐸(𝑋)) that satisfies 𝐸(Z|𝑃𝑠Z) =

𝑃𝑠Z, where 𝛴𝑥 = 𝐶𝑜𝑣(𝑋) and 𝑠 is a basis for S𝑌|Z . This condition links S𝑌|Z  and the inverse regression of 

𝑍 on 𝑌. The kernel matrix of SIR is 𝑀 = 𝐶𝑜𝑣 [𝐸(𝑍|𝑌)] and 𝑆𝑝𝑎𝑛(𝑀) ⊆ S𝑌|Z . 

 

Let �̅� is the estimated mean of 𝑋. Also, let  �̂� = �̂�−
1

2  (𝑋 − �̅�)  is the estimate of 𝑍, where �̂� is the 

estimated 𝛴𝑥. Let ℎ and 𝑛𝑦 are the numbers of slices and observations in 𝑦𝑡ℎ slice, respectively. Thus, �̂� =

∑ 𝑓𝑦
ℎ
𝑦=1 �̂�𝑦�̂�𝑦

𝑇 is the estimated 𝑀, where  𝑓𝑦 = 𝑛𝑦 𝑛⁄  and �̂�𝑦 is the average of 𝑍 in slice 𝑦. Let δ̂1 > δ̂2 >

⋯ > δ𝑝 ≥ 0 are the eigenvalues and 𝑣1, 𝑣2, … . . , 𝑣𝑝 are the corresponding eigenvectors of �̂�. If the 

dimension 𝑑 of S𝑌|Z is known, 𝑠𝑝𝑎𝑛(�̂�) = 𝑠𝑝𝑎𝑛(�̂�1, �̂�2, … , �̂�𝑑) is a consistent estimator of  S𝑌|X, where  

 

�̂�𝑖 = �̂�−
1

2 �̂�𝑖.    

 

 

The SIR gives an estimator 𝑠𝑝𝑎𝑛(�̂�) of S𝑌|X. Usually, �̂� ∈ ℝ𝑝⨉𝑑 is vector of nonzero coefficients. If there 

are a huge number of predictors, only the significant predictors are needed to obtain the ‘sufficient 

predictors’. To this end, we need to combine the SIR with the regularisation techniques to make some 

coefficients of �̂� going to 0’s. 

 

For the best understanding, SIR is formulated by [4] as a regression problem as  

𝐹(𝐴, 𝐶) = ∑ ‖𝑓𝑦
1/2

�̂�𝑦 − 𝐴𝐶𝑦‖
2

,ℎ
𝑦=1                                                                                                            (1) 

over  𝐴 ∈ ℝ𝑝⨉𝑑  and 𝐶𝑦 ∈ ℝ𝑑, with  𝐶 = (𝐶1, … . , 𝐶ℎ). Let �̂� and �̂� are 𝐴 and 𝐶 values that minimise 𝐹, 

respectively. Then 𝑠𝑝𝑎𝑛(�̂�) is the space spanned by 𝑑 largest eigenvectors of 𝑀.  [5] rewrite F(A, C) as 

 

𝐺(𝐵, 𝐶) = ∑ (𝑓𝑦
1/2

�̂�−
1

2�̂�𝑦 − 𝐵𝐶𝑦)
𝑇

�̂�ℎ
𝑦=1 (𝑓𝑦

1/2
�̂�−

1

2�̂�𝑦 − 𝐵𝐶𝑦),                                                                 (2) 
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where 𝐵 ∈ ℝ𝑝⨉𝑑,  �̂� is 𝐵 value which minimises (2) and 𝑠𝑝𝑎𝑛(�̂�) = 𝑠𝑝𝑎𝑛 (�̂�−
1

2 �̂�) is the estimator of S𝑌|X. 

After that, SSIR estimator of S𝑌|X is proposed by [5] as a 𝑠𝑝𝑎𝑛(𝑑𝑖𝑎𝑔(�̃�)�̂�), where �̃� = (�̃�1, … , �̃�𝑝)𝑇 ∈

ℝ𝑝 are determined through minimizing 

 

∑ ‖𝑓𝑦
1/2

�̂�𝑦 − �̂�
1

2 𝑑𝑖𝑎𝑔(�̂��̂�𝑦)𝛼‖
2

+ 𝜆 ∑ |𝛼𝑖|𝑝
𝑖=1

ℎ
𝑦=1  ,                                                                                     (3) 

 

where �̂� and �̂� = (�̂�1, … . , �̂�ℎ) minimise (2). 

 

The minimisation of (3) can be done according to algorithm of standard Lasso. Let 

 

 �̃� = 𝑣𝑒𝑐(𝑓1
1/2

�̂�1, … , 𝑓ℎ
1/2

�̂�ℎ) ∈ ℝ𝑝ℎ and �̃� = (𝑑𝑖𝑎𝑔(�̂��̂�1)�̂�
1

2 , … , 𝑑𝑖𝑎𝑔(�̂��̂�ℎ)�̂�
1

2)
𝑇

∈ ℝ𝑝ℎ⨉𝑝, 

 

where 𝑣𝑒𝑐(. ) is an operator of matrix that stacks the columns of that matrix to a vector. The vector 𝛼 is the 

Lasso estimator for regression �̃� on �̃�. 

 

[17] proposed PACS for GIVS. The authors have explained the concept of "group identification" through 

the following lines " if the coefficients of two covariates are truly equal in magnitude, we would combine 

these two columns of the design matrix by their sum and if a coefficient were truly zero, we would exclude 

the corresponding covariates ". 

 

The failure of the existing shrinkage SIR methods to do group identification, motivates [20] to incorporate 

PACS penalty into SIR to propose SSIR-PACS method.  [20] proposes SSIR-PACS for GIVS under SDR 

settings. The SSIR-PACS is proposed as a solution of the following minimisation 

 

∑ ‖𝑓𝑦
1/2

�̂�𝑦 − �̂�
1

2 𝑑𝑖𝑎𝑔(�̂��̂�𝑦)𝛼‖
2

ℎ
𝑦=1 + 𝜆{∑ 𝜔𝑖|𝛼𝑖|𝑝

𝑖=1 + ∑ 𝜔𝑗𝑘(−)|𝛼𝑘 − 𝛼𝑖|1≤𝑖<𝑘≤𝑝 +

                                                                                      ∑ 𝜔𝑖𝑘(+)|𝛼𝑘 + 𝛼𝑖|1≤𝑖<𝑘≤𝑝 },                                              (4) 

 

where 𝜔𝑖 are non-negative weights. 

 

The minimisation of (4) contains two parts. The first is the SIR loss function. The second is PACS penalty, 

which consists of 𝜆{∑ 𝜔𝑖|𝛼𝑖|𝑝
𝑖=1 } that enables sparseness,  𝜆{∑ 𝜔𝑗𝑘(−)|𝛼𝑘 − 𝛼𝑖|1≤𝑖<𝑘≤𝑝 } that enables the 

coefficients with similar signs to be set as equal and 𝜆{∑ 𝜔𝑖𝑘(+)|𝛼𝑘 + 𝛼𝑖|1≤𝑖<𝑘≤𝑝 } that enables the 

coefficients of different signs to be set as equal in magnitude.  

 

The optimisation of (4) can be done through a standard PACS algorithm. The vector α is the PACS estimator 

for the regression of �̃� on �̃�. Optimal 𝜆  can be selected via cross-validation (C.V) or AIC or BIC. 

 

In summary, the SSIR-PACS is a two-step procedure. Firstly, SIR can be applied to obtain 𝑑, �̃� and �̃�. 

Secondly, compute 𝛼 via PACS. 

 

Choosing adaptive weights is an important issue in SSIR-PACS. The suitable weights can help SSIR-PACS 

to be an efficient procedure. In SSIR-PACS method, [20] used the adaptive weights, which were proposed 

in [17] as: 

 

𝜔𝑖 = |�̃�𝑖|−1, 𝜔𝑖𝑘(−) = (1 − 𝑟𝑖𝑘)−1|�̃�𝑘 − �̃�𝑖|−1 and 𝜔𝑖𝑘(+) = (1 + 𝑟𝑖𝑘)−1|�̃�𝑘 + �̃�𝑖|−1 for 1 ≤ 𝑖 < 𝑘 ≤ 𝑝,  

(5) 

 

where 𝛼 ̃is a √𝑛 consistent estimator of 𝛼, such as SIR estimates or other shrinkage 𝛼 estimates, and 𝑟𝑖𝑘 is 

PC. 
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3. THE PROPOSED ROBUST SSIR-PACS (RSSIR-PACS) 

3.1. Methodology of RSSIR-PACS 

 

SSIR-PACS method is proposed through combining PACS and SIR by [20].  The SIR method depends on 

the first and second moments estimators, which are not robust to outliers. A robust versions of SIR were 

proposed by [21, 22]. Moreover, on one side, the influence function of SIR was studied by [23]. On other 

side, [24] show that PACS is very sensitive to outliers. Although the nice behavior of SSIR-PACS was 

demonstrated by [20] under normal errors, the main drawback of SSIR-PACS is its high sensitivity to 

outliers. This encourages us to introduce RSSIR-PACS in this article. 

In (4), the squared loss links the covariates with the response. Also, the traditional estimators of 𝜇 and 𝛴𝑥 

are used. Moreover, the weighted penalty contains weights that employ PC in their calculations. The 

criterion of least-squares, the traditional estimators of 𝜇 and 𝛴𝑥, and PC are very sensitive to outliers [24].     

[25] showed that the loss function is robust to outliers in 𝑌 and X if its derivative is redescending. T.B 

function achieves this condition [26]. In this article, the squared loss is substituted by T.B  function to obtain 

the robustness in 𝑌 and X and to choose the important predictors in robust way. Also, the estimator of 𝜇 is 

substituted by a robust estimator which is the median. The traditional estimator of 𝛴𝑥 is substituted by BCov 

as a robust estimator.  Moreover, the non-robust weights are replaced with robust weights that employ 

robust versions of correlations such as ball correlation. The proposed RSSIR-PACS minimise the following: 

 

∑ 𝜌 (
𝑓𝑦

1/2
𝑅𝑜�̂�𝑦 − 𝑅𝑜�̂�

1

2 𝑑𝑖𝑎𝑔(�̂��̂�𝑦)𝛼

σ̂
)

ℎ

𝑦=1

+ 𝜆 {∑ 𝑅𝑜𝜔𝑖|𝛼𝑖|

𝑝

𝑖=1

+ ∑ 𝑅𝑜𝜔𝑖𝑘(−)|𝛼𝑘 − 𝛼𝑖|

1≤𝑖<𝑘≤𝑝

+ ∑ 𝑅𝑜𝜔𝑖𝑘(+)|𝛼𝑘 + 𝛼𝑖|

1≤𝑖<𝑘≤𝑝

},       (6) 

 

where 𝜆 ≥ 0  is the tunning parameter and 𝑅𝑜𝜔 is robust version of non-negative weights in (5). The  𝑅𝑜�̂�𝑦  

and 𝑅𝑜�̂�
1

2  are non-sensitive versions to outliers of  �̂�𝑦 and �̂�
1

2, respectively. Also, 𝜌 refers to T.B function 

and σ̂ is a robust version of σ. In this article, the median absolute deviation (MAD) is employed as an 

estimate for σ.  

 

The function of T.B is as follows: 

 

𝜌𝑐(𝑢) = {
(

𝑐2

6
) {1 − [1 − (

𝑢

𝑐
)

2
]

3

} 𝑖𝑓 |𝑢| ≤ 𝑐

𝑐2

6
𝑖𝑓 |𝑢| ≤ 𝑐

},                                                                                    (7) 

 

where 𝑐 controls the robustness.  

 

3.2. Robust Measures for Location and Dispersion 

SIR depends on first and second moments estimators, which are not robust to outliers. In this article, non-

sensitive  versions to outliers of 𝜇 and 𝛴𝑥 were employed inside SIR algorithm. As non-sensitive measures 

to outliers for location and dispersion, the median and BCov were employed, respectively. As a robust 

measure for dependency between two random vectors, the BCov was proposed by [27] as follows: 
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Let {𝑈𝑘 , 𝑉𝑘}𝑘=1
𝑛  be i.i.d. sample of (𝑈, 𝑉). Define 𝛿𝑖𝑗,𝑘

𝑈 = 𝐼{𝑈𝑘 ∈ �̅�𝜉𝑈(𝑈𝑖 , 𝑈𝑗)}, where 𝐼(. ) is an indicator 

function, 𝛿𝑖𝑗,𝑘𝑙
𝑈 =  𝛿𝑖𝑗,𝑘

𝑈 𝛿𝑖𝑗,𝑙
𝑈  and 𝜉𝑖𝑗,𝑘𝑙𝑠𝑡

𝑈 = (𝛿𝑖𝑗,𝑘𝑙
𝑈 + 𝛿𝑖𝑗,𝑠𝑡

𝑈 − 𝛿𝑖𝑗,𝑘𝑠
𝑈 − 𝛿𝑖𝑗,𝑙𝑡

𝑈 )/2. 𝜉𝑖𝑗,𝑘𝑙𝑠𝑡
𝑉  is defined similar to 

𝜉𝑖𝑗,𝑘𝑙𝑠𝑡
𝑈 . The empirical BCov is as follows 

 

BCov𝑛(𝑈, 𝑉) = (
1

𝑛6
∑ 𝜉𝑖𝑗,𝑘𝑙𝑠𝑡

𝑈  𝜉𝑖𝑗,𝑘𝑙𝑠𝑡
𝑉𝑛

𝑖,𝑗,𝑘,𝑙,𝑠,𝑡=1 )
1/2

 .                                                                                    (8) 

Then, the ball correlation 

BCor(𝑿, 𝑌) =
BCov(𝑿,𝑌)

BCov1/2(𝑿,𝑿)×BCov1/2(𝑌,𝑌)
                                                                                                       (9)  

and the sample ball correlation 

BCor(𝑿, 𝑌) =
BCov𝑛(𝑿,𝑌)

BCov𝑛
1/2(𝑿,𝑿)×BCov𝑛

1/2(𝑌,𝑌)
    .                                                                                                    (10) 

For more details about BCov see [27, 28]. 

 

3.3. Choosing the Robust Weights  

Choosing the suitable weights is substantial to PACS to be oracle procedure [17]. In their calculations, the 

weights in (5) employ PC. PC is very sensitive to outliers and thus the weights in (5) give unreliable results 

if certain types of outliers present. Consequently, PC should be replaced with robust correlation measure to 

obtain robust weights, which is an important issue.  

 

In this article, the ball correlation is employed instead of PC as a robust correlation to get robust weights as 

follow: 

 

𝑅𝑜𝜔𝑖 = |�̃�𝑖|−1, 𝑅𝑜𝜔𝑖𝑘(−) = (1 − BCor𝑖𝑘)−1|�̃�𝑘 − �̃�𝑖|−1 and 𝑅𝑜𝜔𝑖𝑘(+) = (1 + BCor𝑖𝑘)−1|�̃�𝑘 + �̃�𝑖|−1 

 for 1 ≤ 𝑖 < 𝑘 ≤ 𝑝,                                                                                                                                      (11)  

 

where BCor is the ball correlation.  �̃� is a robust initial estimate for 𝛼. Practically, it can be obtained through 

robust SIR or other robust shrinkage SDR methods estimates such as robust sparse MAVE (RSMAVE) 

[29].  

3.4. Determination of 𝒅 

 

In the estimation procedure of the proposed RSSIR-PACS, 𝑑 = dim(𝑆𝑌|𝑋 ) is assumed as known. In 

practice, we need to estimate 𝑑 through data. Many methods are proposed to determine 𝑑. See, for example, 

[1], [30-32] and [8]. [19] adopted a criterion suggested by [8]. [8] proposed to determine 𝑑 through the 

nonzero eigenvalues number of 𝐶𝑜𝑣 [𝐸(𝑋|𝑌)] matrix, or equivalently, number of eigenvalues of the 

matrix Ω = 𝐶𝑜𝑣 [𝐸(𝑋|𝑌)] + 𝐼𝑝 that are greater than 1, where 𝐼𝑝 refers to a identity matrix of  𝑝-dimension. 

Let Ω̂ is the estimated version of Ω and δ̂1, … , δ̂𝑝 are the eigenvalues of it, 𝑘 is the number of δ̂𝑖 > 1, 

and 𝐶𝑛
∗  is a constant. [8] suggested the following estimator of 𝑑, 

 

�̂� = 𝑎𝑟𝑔 max
𝑚∈{0,1,…,𝑝−1}

{
𝑛

2
∑ (𝑙𝑜𝑔(δ̂𝑖) + 1 − δ̂𝑖) −

𝐶𝑛
∗ 𝑚(2𝑝−𝑚+1)

2

𝑝
𝑖=1+min (𝑘,𝑚) }                                            (12)   

 

Several forms are recommended for 𝐶𝑛
∗ by the authors. [19] suggested  𝐶𝑛

∗ = log(𝑛) ℎ/𝑛 in their 

simulations. 
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In this article, a robust version of �̂� in (12) is proposed as the following: 

Under 𝑍-scale and without losing of generality because of S𝑌|X = 𝛴−
1

2 S𝑌|Z, we estimates 𝑑 through the 

number of eigenvalues of robust matrix  RoΩ = 𝑅𝑜𝑀 + 𝐼𝑝 that are greater than 1, where 𝑅𝑜𝑀 is a robust 

estimate of 𝑀 as follows: 

 

𝑅𝑜�̂� = ∑ 𝑓𝑦
ℎ
𝑦=1 𝑅𝑜�̂�𝑦𝑅𝑜�̂�𝑦

𝑇
,                                                                                                                      (13)                          

 

where 

 

𝑅𝑜�̂�𝑦 = BCov𝑛
̂ −

1

2  (𝑋 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋))                                                                                                      (14) 

 

Let RoΩ̂ is a robust version of RoΩ and γ̂1, … , γ̂𝑝 are the eigenvalues of it, 𝑘 is the number of γ̂𝑖 > 1. We 

suggest the following formula to estimate 𝑑, 

 

�̂� = 𝑎𝑟𝑔 max
𝑚∈{0,1,…,𝑝−1}

{
𝑛

2
∑ (𝑙𝑜𝑔(γ̂𝑖) + 1 − γ̂𝑖) −

𝐶𝑛
∗ 𝑚(2𝑝−𝑚+1)

2

𝑝
𝑖=1+min (𝑘,𝑚) }                                            (15) 

 

In the simulation section, we used the formula of 𝐶𝑛
∗ which is proposed by [19] . 

 

4. SIMULATION STUDY 

In this section, we compared RSSIR -PACS with SSIR -PACS [20] and RSMAVE [29] through four 

examples.  

For measuring the prediction accuracy, the trace correlation 𝑟∗[33] is employed. Let 𝑆(𝐴) and 𝑆(𝐵) refer 

to column space spanned by two 𝑝 × 𝑑  full column rank matrices. Let 𝑃𝐴 = 𝐴(𝐴𝑇𝐴)−1𝐴𝑇 and 𝑃𝐵 =

𝐵(𝐵𝑇𝐵)−1𝐵𝑇 are projection matrices onto 𝑆(𝐴) and 𝑆(𝐵), respectively. Thus, 𝑟∗ = √
1

𝑑
𝑡𝑟(𝑃𝐴𝑃𝐵), where, 

0 ≤ 𝑟∗ ≤ 1. If  𝑟∗ is close to 1, and 𝑆(𝐴) is close to 𝑆(𝐵).      

To evaluate the ability of selection the variables accurately, the true and false positive rates which are 

denoted by TPR and FPR are used, respectively. TPR is the proportion of predictors which are correctly 

identified as active to the predictors which are truly active. FPR is the proportion of predictors which are 

falsely identified as active to inactive predictors. The best method according to variable selection concept 

is the method that has closer TPR to 1 and closer FPR to 0. In PACS, λ can be chosen via tenfold Cross-

validation. 

 

4.1. Direction Estimation and Variable Selection 

 

The data is generated according to the settings in the following examples: 

 

Example 1: 200 datasets contain 𝑛 = 100 and 200 observations are simulated from 𝑌 = 2x1 + 2x2 +
2x3 + 𝜀. The 𝛽 = (2,2,2,0,0,0,0,0,0,0)𝑇 and 𝑋 ∈ ℝ10 with 𝑑 = 1. The covariates x1, x2 and x3 are 

correlated with pairwise correlation 𝑟 = 0.75.  The covariates x4, x5, x6, x7, x8, x9 and  x10 are 

uncorrelated.  

 

Example 2: 200 datasets contain 𝑛 = 100 and 200 observations are simulated from  𝑌 = exp(x1 + x2 +
x3 + 0.5x4 + x5 + 2x6) +  𝜀, where 𝛽 = (1,1,1,0.5,1,2,0,0,0,0)𝑇and 𝑋 ∈ ℝ10 with 𝑑 = 1. The covariates 

x1, x2 and x3 are pairwise correlated with 𝑟 = 0.35, while the covariates x4, x5 and x6 are pairwise 

correlated with 𝑟 = 0.75. The covariates x7, x8, x9 and  x10 are uncorrelated.  

 

Example 3: 200 datasets contain 𝑛 = 100 and 200 observations are simulated from 𝑌 = 5 cos(2x1 +
2x2 + 2x3 + x4 + x5) + exp(−(2x1 + 2x2 + 2x3 + x4 + x5)2) + 𝜀, where  𝛽 =
(2,2,2,1,1,0,0,0,0,0)𝑇 and  𝑋 ∈ ℝ10 with 𝑑 = 1. The covariates x1, x2 and x3 are highly pairwise 
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correlated with 𝑟 = 0.75. Also,  the covariates x4 and x5 are highly pairwise correlated with 𝑟 = 0.75. The 

covariates  x6, x7, x8, x9 and  x10 are uncorrelated.  

 

Example 4: 200 datasets contain 𝑛 = 100 and 200 observations are simulated from the model  𝑌 =
2x1+2x2+2x3

𝟎.𝟓+(𝟏.𝟓+2x6+2x7+2x8)
+ 𝜀, where 𝛽1 = (2,2,2,0,0,0,0,0)𝑇, 𝛽2 = (0,0,0,0,0,2,2,2)𝑇and 𝑋 ∈ ℝ8 with 𝑑 = 2. 

For 𝛽1, the covariates x1, x2 and x3 are highly pairwise correlated with 𝑟 = 0.75, while the rest covariates 

are uncorrelated. For 𝛽2, the first five covariates are uncorrelated, while the covariates x6, x7 and x8 are 

highly pairwise correlated with 𝑟 = 0.75. 

 

For the above examples, four sampling distributions for x𝑖  and 𝜀 are assumed: 

1. 𝑁(0,1), standard normal. 

2. 𝑡3 √3⁄ , t-distribution with 3 degree of freedom. 

3.  0.95 𝑁(0,1) + 0.05 𝑁(0, 102).  

4.  0.95 𝑁(0,1) + 0.05U(−50, 50), 95% from 𝑁(0,1) and 5% from uniform distribution.  

 

Table 1. 𝑟∗, TPR and FPR for Example 1 
Dist. 

n Criterion SSIR-PACS RSMAVE 
RSSIR - 

PACS 

Dist.1 

100 

𝑟∗Mean (s.e) 0.849(0.148) 0.827(0.168) 0.839(0.160) 

TPR 
0.846 0.813 0.829 

FPR 
0.129 0.150 0.135 

200 

𝑟∗  Mean (s.e) 0.948 (0.087) 0.933(0.101) 0.941(0.097) 

TPR 
0.957 0.942 0.954 

FPR 0.075 0.095 0.088 

Dist.2 

100 

𝑟∗  Mean (s.e) 0.816(0.160) 0.873(0.135) 0.894(0.132) 

TPR 
0.822 0.879 0.900 

FPR 0.189 0.173 0.157 

200 

𝑟∗ Mean (s.e) 0.907(0.095) 0.966(0.039) 0.985(0.031) 

TPR 
0.894 0.979 0.998 

FPR 0.114 0.100 0.094 

Dist.3 

100 

𝑟∗  Mean (s.e) 0.629(0.241) 0.844(0.148) 0.878(0.140) 

TPR 0.727 0.802 0.856 

FPR 0.413 0.179 0.149 

200 

𝑟∗  Mean (s.e) 0.656(0.216) 0.932(0.100) 0.969(0.096) 

TPR 0.698 0.939 0.967 

FPR 0.383 0.087 0.070 

Dist.4 

100 

𝑟∗ Mean (s.e) 0.421(0.273) 0.821(0.167) 0.859(0.157) 

TPR 0.672 0.791 0.806 

FPR 0.638 0.182 0.155 

200 𝑟∗  Mean (s.e) 0.366(0.287) 0.929(0.114) 0.954(0.109) 
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TPR 0.590 0.921 0.943 

FPR 0.540 0.099 0.083 

 

 

Table 2.  𝑟∗, TPR and FPR for Example 2 

Dist. 
n Criterion SSIR-PACS RSMAVE 

RSSIR - 

PACS 

Dist.1 

100 

𝑟∗  Mean (s.e) 0.829(0.157) 0.780(0.178) 0.818(0.169) 

TPR 0.830 0.795 0.795 

FPR 0.139 0.155 0.142 

200 

𝑟∗  Mean (s.e) 0.930(0.087) 0.912(0.107) 0.929(0.095) 

TPR 0.949 0.929 0.944 

FPR 0.075 0.099 0.095 

Dist.2 

100 

𝑟∗  Mean (s.e) 0.848(0.162) 0.872(0.138) 0.895(0.128) 

TPR 0.855 0.870 0.895 

FPR 0.189 0.180 0.161 

200 

𝑟∗  Mean (s.e) 0.930(0.109) 0.965(0.048) 0.991(0.038) 

TPR 0.940 0.969 0.994 

FPR 0.130 0.112 0.097 

Dist.3 

100 

𝑟∗  Mean (s.e) 0.635(0.246) 0.839(0.150) 0.857(0.145) 

TPR 0.715 0.789 0.820 

FPR 0.425 0.174 0.151 

200 

𝑟∗  Mean (s.e) 0.659(0.226) 0.931(0.107) 0.954(0.098) 

TPR 0.690 0.951 0.949 

FPR 0.392 0.095 0.077 

Dist.4 

100 

𝑟∗  Mean (s.e) 0.427(0.278) 0.814(0.162) 0.844(0.157) 

TPR 0.666 0.780 0.798 

FPR 0.649 0.176 0.160 

200 

𝑟∗  Mean (s.e) 0.361(0.296) 0.924(0.120) 0.940(0.114) 

TPR 0.570 0.914 0.930 

FPR 0.559 0.110 0.090 
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Table 3.  r∗, TPR and FPR for Example 3 
Dist. 

n Criterion SSIR-PACS RSMAVE 
RSSIR - 

PACS 

Dist.1 

100 

𝑟∗  Mean (s.e) 0.796(0.190) 0.761(0.204) 0.779(0.193) 

TPR 0.801 0.760 0.786 

FPR 0.160 0.180 0.167 

200 

𝑟∗  Mean (s.e) 0.896(0.094) 0.871(0.107) 0.904(0.099) 

TPR 0.925 0.903 0.926 

FPR 0.093 0.150 0.100 

Dist.2 

100 

𝑟∗  Mean (s.e) 0.807(0.183) 0.832(0.154) 0.866(0.140) 

TPR 0.836 0.847 0.880 

FPR 0.207 0.193 0.172 

200 

𝑟∗  Mean (s.e) 0.900(0.118) 0.928(0.057) 0.960(0.045) 

TPR 0.922 0.955 0.979 

FPR 0.144 0.127 0.104 

Dist.3 

100 

𝑟∗  Mean (s.e) 0.599(0.262) 0.785(0.169) 0.820(0.155) 

TPR 0.698 0.769 0.799 

FPR 0.435 0.188 0.168 

200 

𝑟∗  Mean (s.e) 0.630(0.240) 0.909(0.121) 0.930(0.108) 

TPR 0.664 0.916 0.934 

FPR 0.405 0.112 0.091 

Dist.4 

100 

𝑟∗  Mean (s.e) 0.398(0.285) 0.779(0.168) 0.805(0.168) 

TPR 0.648 0.766 0.786 

FPR 0.661 0.194 0.172 

200 

𝑟∗  Mean (s.e) 0.330(0.305) 0.889(0.136) 0.910(0.127) 

TPR 0.559 0.890 0.915 

FPR 0.569 0.124 0.103 
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Table 4.  𝑟∗, TPR and FPR for Example 4 

Dist. 
n Criterion SSIR-PACS RSMAVE 

RSSIR - 

PACS 

Dist.1 

100 

𝑟∗  Mean (s.e) 0.789(0.144) 0.764(0.150) 0.786(0.146) 

TPR 0.787 0.768 0.783 

FPR 0.173 0.210 0.181 

200 

𝑟∗  Mean (s.e) 0.900(0.127) 0.859(0.140) 0.883(0.133) 

TPR 0.930 0.879 0.897  

FPR 0.090 0.140 0.120 

Dist.2 

100 

𝑟∗  Mean (s.e) 
0.800(0.160) 0.827(0.148) 0.849(0.140) 

TPR 0.841 0.873 0.890 

FPR 0.273 0.254 0.230 

200 

𝑟∗  Mean (s.e) 0.886(0.129) 0.926(0.103) 0.940(0.097) 

TPR 0.900  0.967  0.972 

FPR 0.180 0.165 0.148 

Dist.3 

100 

𝑟∗  Mean (s.e) 0.610(0.260) 0.759(0.148) 0.795(0.132) 

TPR 0.677  0.742 0.779 

FPR 0.375 0.210 0.198 

200 

𝑟∗  Mean (s.e) 0.650(0.179) 0.862(0.130) 0.897(0.123) 

TPR 0.680 0.907 0.925 

FPR 0.339 0.160 0.140 

Dist.4 

100 

𝑟∗  Mean (s.e) 0.420(0.287) 0.766(0.147) 0.790(0.140) 

TPR 0.670  0.760 0.775 

FPR 0.621 0.230 0.201 

200 

𝑟∗  Mean (s.e) 0.395(0.299) 0.856(0.138) 0.875(0.130) 

TPR 0.561  0.890 0.909  

FPR 0.517 0.165 0.148 

 
From Tables 1, 2, 3 and 4, we can notice the following: 

1. In case of Dist.1, the performance of SSIR-PACS exceeds the performance of RSSIR-PACS and 

RSMAVE methods. 

2. For the rest cases, the performance of SSIR-PACS is negatively affected while the RSSIR-PACS and 

RSMAVE methods have good and stable performance. Also, the RSSIR-PACS has the best performance 

for all the samples size.  

3. For RSSIR-PACS estimates and under different settings, the variations in the comparative criteria values 

are close. While, the variations are big for the SSIR-PACS estimates under different considered settings. 
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Table 5. The computing time for different methods (in seconds) for 200 datasets under the settings of 

example 1 with 𝑛 = 200 
Dist. 

Dist.1 Dist.2 Dist.3 Dist.4 

SSIR-PACS 
39 42 45 46 

RSMAVE 64 
66 66 67 

RSSIR -PACS 39 41 45 46 

 

Table 6. The computing time for different methods (in seconds) for 200 datasets under the settings of 

example 2 with 𝑛 = 200 
Dist. 

Dist.1 Dist.2 Dist.3 Dist.4 

SSIR-PACS 
40 42 45 47 

RSMAVE 66 
67 66 67 

RSSIR -PACS 40 42 46 47 

 

Table 7. The computing time for different methods (in seconds) for 200 datasets under the settings of 

example 3 with 𝑛 = 200 
Dist. 

Dist.1 Dist.2 Dist.3 Dist.4 

SSIR-PACS 
41 43 45 46 

RSMAVE 66 
67 67 67 

RSSIR -PACS 41 43 45 46 

 

Table 8. The computing time for different methods (in seconds) for 200 datasets under the settings of 

example 4 with 𝑛 = 200 

 

 

 

Dist. 
Dist.1 Dist.2 Dist.3 Dist.4 

SSIR-PACS 
42 44 47 47 

RSMAVE 67 
67 67 67 

RSSIR -PACS 41 44 47 47 
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Figure 1. The computing time for different methods (in seconds) under the settings of example 1 

 

 
Figure 2. The computing time for different methods (in seconds) under the settings of example 2  

 

 
Figure 3. The computing time for different methods (in seconds)under the settings of example 3  

 

 
          Figure 4. The computing time for different methods (in seconds) under the settings of example 4 
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Later, the computation time was taken into account. Tables 5, 6, 7, 8 and Figures 1, 2, 3 and 4 show the 

computation time for different methods ( in second) under the settings of examples 1, 2, 3 and 4, 

respectively. From these tables and figures, the computing time for RSSIR -PACS and SSIR -PACS 

methods is significantly lower than that of RSMAVE method. Moreover, it is obvious that the RSMAVE 

is time consuming. 

 

4.2. Estimation of 𝒅  

 

In this section, the ability of proposed robust formula in (15) to estimate 𝑑 is checked. We generate the data 

as in Example 4 Settings according to the above mentioned four sampling distributions with 𝑛 =
100 𝑎𝑛𝑑 200, where 𝑑 = 2. For each sample size, 200 datasets are generated. Table 9 reports the frequency 

of �̂� out of 200 datasets. For the sake of comparison, the results according to [8]'s formula are also reported. 

It is clear that our proposed robust method gives very consistent estimation for all settings. It does well 

under Dist2, Dist3 and Dist4 settings although a bit worse than those under Dist1. The proposed robust 

method in (15) significantly exceeds the method of [8] for Dist3 and Dist4 according to the frequency of 

�̂�. 

 

Table 9. Frequency of �̂� out of 200 datasets 

Dist. 

𝑛 

Frequency of �̂�  according to proposed robust 

method 
Frequency of �̂�  according to [8] method 

𝑑 = 1 
𝑑 = 2 
   

𝑑 = 3 
 

𝑑 = 4 
 

𝑑 ≥ 5 

 
𝑑 = 1 𝑑 = 2 𝑑 = 3 𝑑 = 4 𝑑 ≥ 5    

Dist.1 100 9 160 30 1 0 12 160 28 0 0 

200 1 185 13 1 0 2 185 12 1 0 

Dist.2 
100 

 

12 

 

153 

 

33 

 

2 

 

0 
7 144 45 4 0 

200 
 

1 

 

179 

 

19 

 

1 

 

0 
7 175 17 1 0 

Dist.3 

100 29 105 45 15 6 

 

 

45 

 

 

89 

 

 

44 

 

 

18 

 

 

4 

200 2 140 47 10 1 

 

 

14 

 

 

120 

 

 

50 

 

 

11 

 

 

5 

Dist.4 

100 41 104 30 8 17 

 

 

49 

 

 

89 

 

 

45 

 

 

11 

 

 

6 

200 15 138 25 8 14 

 

 

21 

 

 

120 

 

 

31 

 

 

21 

 

 

7 

 

 

5. REAL DATA  

 

The compared methods are applied to pollution data(PD). The PD [34] is analysed through the compared 

methods. 

 

We centered 𝑦 and standardised the predictors. The performance of RSSIR -PACS is checked through 

analysing the PD after including some outliers in 𝑌 and 𝑋. The data are contaminated with (5%, 10%, 15%, 

and 20%) of the observations that come from multivariate 𝑡3. 

 

To check the estimation precision of RSSIR-PACS, the correlation between each estimated direction is 

computed through the considered methods and the estimated directions of SSIR-PACS without outliers. 
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We refer to it as 𝐶𝑜𝑟𝑟(𝛽,̂ �̂�SSIR−PACS,0). Also, the effective model size (EMS) after accounting for equality 

of absolute coefficient estimates is reported. 

 

Pollution data (P.D) 

 

The data is collected by [34] to study the effects of the weather, socioeconomic and pollution indicators on 

mortality rate. The P.D are available at (http://www4.stat.ncsu.edu/~boos/var.select/pollution.html). The 

P.D consists of 𝑛 = 60 observations and 𝑝 = 15. The 𝑦 is the mortality rate. The covariates are (x1 =
Avar. annual precipitation), (x2 = Avar.  temperature − January), (x3 = Avar.  temperature − July), 

(x4 = Percent of age ≥  65 years ), (x5 = 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 population / household  ), (x6 = school years ), 
(x7 = Percent of facilated housing), (x8 = Ratio of population / mile ), (x9 = Percent of non −
white  ), (x10 = % of employment ), (x11 = % of families with income ≤ 3000), (x12 =
% of hydrocarbons ), (x13 = % of oxides of nitrogen), (x14 = % of sulfur dioxide ) and (x15 =
% of humidity). 

 

Table 10. The 𝐶𝑜𝑟𝑟(𝛽,̂ �̂�𝑆𝑆𝐼𝑅−𝑃𝐴𝐶𝑆,0) and EMS based on the pollution data 

Methods 
Outliers % 

0 5 10 15 20 

𝐶𝑜𝑟𝑟(𝛽,̂ �̂�SSIR−PACS,0) 

SSIR-PACS 1 0.9065 0.8079 0.6811 0.5743 

RSMAVE 0.9687 0.9676 0.9167 0.8057 0.7137 

RSSIR-PACS 0.9739 0.9722 0.9615 0.9395 0.9081 

EMS 

SSIR-PACS 5 6 7 9 9 

RSMAVE 5 5 6 7 7 

RSSIR-PRMVN 5 5 5 5 5 

 

From Table 10 and according to the results of the 𝐶𝑜𝑟𝑟(𝛽,̂ �̂�SSIR−PACS,0) and EMS, the following findings 

are noted:  

 

1. In case of no outliers, the RSSIR-PACS's performance is close to SSIR-PACS's performance. In addition, 

the performance of RSMAVE is worse than the performance of RSSIR-PACS according to the comparative 

criteria. 

2. In case of there are outliers, SSIR-PACS's performance is negatively affected. The high sensitivity of 

SSIR-PACS to outliers is obvious, and Table 6 confirms this fact. From other side, RSSIR-PACS produces 

consistent and stable results, even with 20% of contamination. The performance of RSMAVE is less 

efficient than the performance of RSSIR-PACS for all the contamination percentages. The robustness of 

RSMAVE is less than the robustness of RSSIR-PACS because it is robust to outliers in 𝑌 only. The 

performance of RSMAVE worsens as the percentage of contamination increases beyond 0.10 while the 

performance of RSSIR-PACS is still the best for all the percentages of contamination.  

 

6. CONCLUSION  

 

In this article, we propose RSSIR-PACS method. Under SDR settings, it is a robust group identification 

and model-free variable selection method. Numerically, the preference of RSSIR -PACS has confirmed 

through the results of simulations when the outliers are exist in both 𝑌 and 𝑋. Also, Also, RSSIR-PACS is 

good competitor to SSIR-PACS in case of no contamination. Simulations and PD analysis show that 

RSSIR -PACS has high predictive accuracy and high ability for identifying relevant groups. In addition, a 

robust modification of [8] criteria to  estimate the structural dimension 𝑑 is proposed. The RSSIR-PACS 

idea can be extended to another SDR methods such as MAVE [3]. Also, we can extend the idea to models 

where 𝑦 takes discrete values. 
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