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Abstract
In the current paper, the steady flow of an incompressible electrically conducting fluid and
heat transfer are studied. In these, we consider the Hall effect over an infinite stretching
rotating disk in presence of a magnetic field. Navier-Stokes equations, Maxwell equation
and energy equation have been modified in the presence of the Hall impact. Moreover, the
uniform magnetic field, and the radial electric field are applied. With the help of the usual
similarity transformations, these modified equations are simplified to a set of nonlinear
ordinary differantial equations. Numerical solutions of the equations are obtained by
using the Chebyshev collocation technique for different values of the entire of the physical
parameters. The accuracy of the method is verified by comparing with the results in
the literature. The influences of Hall parameter in these equations system are depicted
graphically and analyzed.
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1. Introduction
In the literature, the investigation of MHD fluid flow and heat transfer over a rotating

disk flow has been placed great importance, thus having been investigated experimentally,
numerically as well as theoretically. The flow is the rotating disk flow and also, using ap-
paratus in machine similar to disk shape, because of these the hydrodynamic flow depends
on a stretchable disk directly or indirectly. In these respects, stretchable disks are signifi-
cant in many applications such as crystal growth process [1], extrusion process in plastic
and metal industries [2], hot rolling [11], aerodynamical applications [13], turbomachinery
[29], rotating machinery [29], oceanography [29], gas turbine rotors [29], glass fiber and
paper production [17], cooling of metallic sheets or electronic chips [17], computer storage
devices [22], lubrication [25], thermal-power generating systems [25], medical equipment
[25], air cleaning machines [25], nuclear reactors [24]. In this paper, Hall impact is explored
for the MHD fluid flow and heat transfer over stretching rotating disk with uniform radial
electric field.
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Pioneering work of fluid flow was carried out by Von Kármán [20], triggered further
studies on an infinite rotating disk. The steady motion of an incompressible viscous fluid
was investigated by numerical Cochran [8] and asymptotical Benton [6] means. Crane
[10] obtained a similarity solution in closed analytical form for steady two-dimensional
incompressible boundary layer flow caused by stretching of a sheet. Studies of Altan, Oh
& Gegel [2], Fisher [15] and Tadmor [32], the flow induced by a moving boundary, are
important in the extrusion processes in plastic and metal industries. Wang [40] extented
stretching boundary problem to a three-dimensional case. An exact solution for the steady-
state Navier-Stokes equation in cylindrical coordinates was obtained by Fang [13]. Fang
and Zhang studied the flow between two stretching disks in [14]. Watson and Wang [41]
studied the unsteady flow over a rotating disk.

Millsaps & Pohlhausen [23] considered the heat transfer problem on the rotating infinite
disk. Following this study, the heat transfer on a flat plate was analyzed by Sparrow
& Gregg [31] for Prandtl numbers. Sparrow & Cess [30], Riley [26], Kumar, Thacker
& Watson [21] studied the effects of magnetic field to the heat transfer over a infinite
rotating disk. Many researchers followed them in [9, 19, 28, 30, 33–39]. Ultimately, effects
of the uniform radial electric field have been considered in some works in the literature
[33, 38, 39]. In these papers, Turkyilmazoglu [33] has triggered in his works examining
effects of radial electric field on the flow over a infinite rotating disk. After this work,
Uygun [38-39] studied analysis of Hall current and effects of uniform electric field on the
MHD and heat transfer due to a rotating disk.

The electromagnetic force, taken upright to both the electric and magnetic fields, is
generated in the flow, because of the motion of an electrically conducting fluid in a mag-
netic field. Due to the presence of this force the charged molecules to transpose in its own
direction and generate an electrical current density termed as the Hall current. Normally,
due to little and moderate values of the magnetic field, the impact of Hall current is disre-
garded in enforcing the Ohm’s law whereas the influence of Hall current cannot be ignored
for a strong magnetic field.

The influence of the electromagnetic force is noticeable when a strong magnetic field
is applied as it was stated by Cramer and Pai [9]. Therefore, when the strength of the
magnetic field is very strong then hall current cannot be neglected and Ohm’s law also
needs modification to include hall current effects. The Hall parameter is important and
it has a significant effect on the magnitude and the direction of a current density, and
consequently, on the magnetic force term.

In the literature, applying of Ohm’s law in the analysis, most of the studies the Hall
term is neglected for small or moderate values of the magnetic field, however in some
works the Hall effect has been taken into consideration. To the best of our knowledge,
Attia has initiated in [4] his study examining the Hall effect on the flow over an infinite
rotating disk. The study has been continued by Attia & Aboul-Hassan in [5], by Siddiqui,
Rana & Naseer in [28] and by Uygun in [38, 39]. The case without the Hall effect on a
rotating infinite disk has been investigated in [3, 7, 9, 12,19,21,23,26,28,30,31,33–36].

In the current paper, Hall current on the steady hydromagnetic flow of viscous, incom-
pressible fluids over stretching disk is examined with induced uniform electric field in the
radial direction. This problem is an extension of well-known von Kármán viscous pump
problem to the configuration with a stretchable disk with or without rotation. In this
work, an external uniform magnetic field is imposed for the normal direction, and a radial
electric field is produced by an electric potential. Because of the existence of a uniform
radial electric field at the infinity, a radial pressure gradient is generated. In the disk flow,
Magnetic Reynolds number is assumed to be negligible. The Navier-Stokes equation, the
Maxwell equation and the energy equation have been modified for considered the presence
of uniform radial electric field, magnetic field, and also Hall effect. The governing partial
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differential equations have been transformed into the form of non-linear ordinary differ-
ential equations by using Kármán’s similarity transformations. The system of equations
generated by the Navier-Stokes, Maxwell and energy equations has been solved using spec-
tral Chebyshev collocation technique for varying values of Hall parameters, radial electric
parameters, rotation parameters, Eckert numbers, and for a fixed magnetic interaction
number. Impacts of the Hall parameters in these equations are analyzed.

The rest of the paper relies on the following strategy. In Section 2 equations governing
the motion are derived. Section 3 presents the results and discussion. Finally, Section 4
contains the conclusions drawn from the present results.

2. Formulation of the problem
We consider three-dimensional, MHD laminar flow of a viscous fluid due to a rotating

disk. The disk is assumed to be rotating about the z-axis with a constant angular velocity
Ω in the cylindrical coordinates (r, θ, z). The terminology is given for an external uniform
magnetic field and electric field in Turkyilmazoglu [37] and Uygun [38] is followed. Re-
spectively, Continuity equation, the Navier-Stokes equations including the Lorentz force
and energy equation with viscous dissipation and Joule heating are given by,

∇ · v = 0, (2.1)

ρ
[∂v

∂t
+ (v · ∇)v

]
= −∇p + 1

Re

[
∇2v

]
+ Mn(j × B)i, (2.2)
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[
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]
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∞
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σ .
(2.3)

The term Mn(j × B)i in Eq.(2.2) represents Lorentz force terms. The last two terms in
the right-hand-side of Eq.(2.3) represent

Φ = (∂u

∂z
)2 + (∂v

∂z
)2,

the viscous dissipation and
j2

σ
= 1

(1 + m2)2
[
(er + mu + v)2 + (mer − u + mv)2 + (1 + m2)2e2

z

]
Joule heating terms respectively.

The parameters in equations (2.1-2.3) are following: ρ the density, v = (u, v, w) the
velocity vector, ∇ the usual gradient operator in cylindrical coordinates, p the pressure,
Re is the Reynolds number characterizing the flow defined by Re = sΩ

ν , ν is the kinematic
viscosity of the fluid, Mn is the magnetic interaction parameter which represents the ratio
between the magnetic force to the fluid interia force. The electric current is

j = σ(e + v × B − β(j × B)),

where j = (jr, jθ, jz) is the current density vector, σ is the electrical conductivity, e =
(er, eθ, ez) is the electric field, B is an external uniform magnetic field which has a constant
magnetic flux density B0, and the last term defines the Hall effect as β is the Hall factor.
Moreover, T is the temperature of the fluid, Pr = µcp

k is the Prandatl number cp is the
specific heat capacity, µ is the dynamical viscosity and k is the thermal conductivity of
the fluid, Γ is the ratio of the specific heats, M∞ is the free-stream Mach number.

The basic flow of incompressible case, also called as Von Kármán’s [20] flow will be
considered here. Which means that the disk flow is assumed to evolve alongside the
boundary layer coordinate η = Re1/2z, in conformity with the self-similarity variables (see
Hossain, Hossain& Wilson [18]),
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(u, v, w) = (rΩF (η), rΩG(η), Re−1/2H(η)),
(p, T ) = (ρΩ2P (η), T∞ + (Tw − T∞)θ(η)), (2.4)

where Tw is the temperature at the surface of the disk, T∞ is the temperature of the
ambient fluid at a large distance from the disk. These quantities substitute into the
governing equations (2.1-2.3), and also neglect terms of O(Re−1), the disk flow quantities
are determined from the subsequent equations and boundary conditions appropriate to
the stretchable disk flow as,

2F +H ′ = 0,

F 2 −G2 + F ′H − F ′′ − Mn
1+m2

[
− mγ − F + mG

]
+ γ2 = 0,

2FG +G′H − G′′ − Mn
1+m2

[
γ − G − mF

]
= 0,

P ′ +H ′H − H ′′ = 0,
1

P r θ′′ −Hθ′ + Ec
[
γ2F + F ′2 + G′2]

+ MnEc
(1+m2)2

[
(−γ + mF + G)2

+(−mγ − F + mG)2]
= 0,

(2.5)

F − 1 = G − ω = H = θ − 1 = 0 at η = 0,
F → 0, G → γ, θ → 0, as η → ∞,

(2.6)

where Ec = M2
∞(Γ−1)

Tw−T∞
is the Eckert number. ω = Ω/s represents a rotation strength

parameter measuring the ratio of swirl to stretch and ω = 0 means a pure stretching
without rotation. γ is the radial electric parameter caused by the electric field applied in
a radial direction. Noting that a prime denotes derivative with respect to η. We should
denote that equations (2.5) and boundary conditions (2.6) can be described as an extension
of the problem of Fang [13] in the nonmagnetic and non-heat conducting flow case. It can
be easily shown that the integration of the third momentum equation implements the
stretching pressure.

The shear stress of fluid is directly proportional to the force applied and inversely pro-
portional to its viscosity. This relationship is now known as Newton’s Law of Viscosity.
Therefore, applying the Newtonian formula, the radial component τr and tangential com-
ponent τθ of the shear stress are respectively obtained by

τr =
(

∂u

∂z

)
w

= rΩ

√
Ω
ν

F ′(0) (2.7)

τθ =
(

∂v

∂z

)
w

= rΩ

√
Ω
ν

G′(0) (2.8)

Of physical interest is also the magnitude of the constant axial velocity at infinity, given
by H(∞).

The heat transfer from the disk surface to the fluid is computed by the application of
the Fourier’s law, and using transformation for heat term we get,

q = −k
(

∂T
∂z

)
w

= −k(Tw − T∞)
√

Ω
ν

dθ(0)
dη , (2.9)

by rephrasing the heat transfer result in terms of the Nusselt number, defined as

Nu =
q
√

ν
Ω

k(Tw − T∞)
Therefore the equation (2.9) becomes,

Nu = −dθ(0)
dη

(2.10)
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We here prefer, due primarily to its high accuracy, the use of spectral collocation method
incorporating Chebyshev polynomials. Having mapped the physical semi-infinite region
onto the computational domain via a suitable transformation, a staggered mesh is then
chosen so that Chebyshev Collocation points are interchanged between the Gauss-Lobatto
points and Gauss points, whenever necessary, particularly to deal with the pressure per-
turbation at the wall. As a result of the spectral discretization, the system together with
the relevant initial and boundary conditions were put into a large matrix form and then
solved using LU matrix decomposition combined with a usual Newton-Raphson search
procedure.

In this study, stated above a matrix method, which is called the Chebyshev-matrix
method, for the approximate solution of linear differential equations in term of Chebyshev
collocations is presented for numerical solution of the equations (2.5) under the initial
and boundary conditions (2.6). The method is based on the truncated Chebyshev se-
ries of the functions in the equations and then substituting their matrix forms into the
given equations. Using the Chebyshev collocation points, this method transforms the
differential-integral equations to a matrix equation which corresponds to a system of lin-
ear algebraic equations with unknown Chebyshev coefficients. Therefore this allows us to
make use of the computer for the solution of the equations. Also, the Chebyshev colloca-
tion method can be used for differential and integral equations.

3. Results and discussions
In the literature, many researchers have applied different methods to solve the system

of the equations. Some of these methods they use to reach their results can be given as: a
finite-difference method, a special technique, and also Chebyshev collocation method. For
instance, Attia [4], Jasmine & Gajjar [19], Sahoo [27], Turkyilmazoglu [33,36] and Uygun
[38,39] achieved their works using these technics.

Here we prefer the use of the Spectral Collocation method. In the paper we numeri-
cally solved the system of differential equations (2.5) together with the relevant boundary
conditions (2.6). The numerical results are obtained by utilizing the Spectral Chebyshev
collocation scheme basing on Chebyshev polynomials. We briefly summarize the numerical
scheme as follows: Initially, nonlinear terms are linearized with the Newton linearization
technique in the given equations. After that, using the Chebyshev collocation points,
the linearized equations are transformed to a matrix equation with unknown Chebyshev
coefficients and then the matrix system is solved by decomposition technique.

Mn F ′(0) −G′(0)
Present Sahoo Present Sahoo

0.0 0.510232 0.510214 0.615922 0.615909
Table 1. Comparison of the numerical solutions of shear stress coefficients in
radial and tangential directions F ′(0), −G′(0) respectively.

Mn Pr Γ H(∞) -θ′(0)
Present Turkyilmazoglu Present Turkyilmazoglu

0.5 1.0 0.0 -0.458880064 -0.45888005 0.282655934 0.28265593
Table 2. Comparison of numerical solutions of the vertical velocity, H(∞) and
coefficients of the heat transfer, −θ′(0).
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To verify the accuracy of the numerical scheme, as well as, to validate the code, we
compared our results with the outcome of the studies by Sahoo [27] and Turkyilmazoglu
[33]. For comparison purpose, the results of Sahoo [27], and Turkyilmazoglu [33] are
tabulated in Table 1 and Table 2, which presents a clear evidence for accuracy of the
numerical method.

3.1. Outcomes and debates of graphs

(a) (b)

(c) (d)

Figure 1. Effects of Hall parameter m are demostrated on the flow quantities
for the selected paremeters Mn = 3.0, γ = 0.0, ω = 0.0, Pr = 1.0 and Ec = 0.0,
respectively in (a) for radial velocity profiles F , in (b) for tangential velocity
profiles G, in (c) for axial velocity profiles H and in (d) for temperature profiles
θ.

The importance of the Hall effect is supported by the need to determine accurately
carrier density, electrical resistivity, and the mobility of carriers in semiconductors. The
Hall effect provides a relatively simple method for doing this. Because of its simplicity,
low cost, and fast turnaround time, it is an indispensable characterization technique in
the semiconductor industry and in research laboratories. Furthermore, two Nobel prizes
(1985, 1998) are based upon the Hall effect.

The Hall effect is the production of a voltage difference across an electrical conduc-
tor, transverse to an electric current in the conductor and to an applied magnetic field
perpendicular to the current. It was discovered by Edwin Hall [16] in 1879.

The Hall effect is due to the nature of the current in a conductor. Current consists of
the movement of many small charge carriers, typically electrons, holes, ions or all three.
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(a) (b)

(c) (d)

Figure 2. Effects of Hall parameter m are demostrated on the flow quantities
for the selected paremeters Mn = 3.0, γ = 0.6, ω = 0.0, Pr = 1.0 and Ec = 0.0,
respectively in (a) for radial velocity profiles F , in (b) for tangential velocity
profiles G, in (c) for axial velocity profiles H and in (d) for temperature profiles
θ.

When a magnetic field is present, these charges experience a force, called the Lorentz
force. When such a magnetic field is absent, the charges follow approximately straight,
’line of sight’ paths between collisions with impurities, phonons, etc. However, when a
magnetic field with a perpendicular component is applied, their paths between collisions
are curved, thus moving charges accumulate on one face of the material. This leaves equal
and opposite charges exposed on the other face, where there is a scarcity of mobile charges.
The result is an asymmetric distribution of charge density across the Hall element, arising
from a force that is perpendicular to both the ’line of sight’ path and the applied magnetic
field. The separation of charge establishes an electric field that opposes the migration of
further charge, so a steady electric potential is established for as long as the charge is
flowing. As a result, the Hall effect is very useful as a means to measure the magnetic
field.

Physically, when the Hall parameter is low, the trajectories of electrons between two en-
counters with heavy particles (neutral or ion) are almost linear. But if the Hall parameter
is high, the electron movements are highly curved. The current density vector is no more
colinear with the electric field vector. It means that, the Hall parameter value increases
with the magnetic field strength.

The Hall parameter m appears in the magnetic force terms of continuity equations and
in Joule heating term of energy equation. Considering these terms, we conclude that for



516 N. Uygun

(a) (b)

(c) (d)

Figure 3. Effects of Hall parameter m are demostrated on the flow quantities
for the selected paremeters Mn = 3.0, γ = 0.6, ω = 5.0, Pr = 1.0 and Ec = 0.0,
respectively in (a) for radial velocity profiles F , in (b) for tangential velocity
profiles G, in (c) for axial velocity profiles H and in (d) for temperature profiles
θ.

varying values of Hall parameter m, the impact of Hall parameter m on the numerator is
stronger than its impact on the denominator.

Equations (2.5) under the conditions (2.6) are solved to compute the various velocity
profiles and temprature profiles as depicted in Figures (1-7). These graphs show effects of
the various Hall parameters m for the two different rotation numbers ω = 0.0, ω = 5.0, the
three different radial electric parameters γ = −0.5, γ = 0.0, γ = 0.6, and Eckert numbers
Ec = −2.0, Ec = 0.0, Ec = 2.0 respectively, fixed Magnetic interaction number Mn = 3.0,
and fixed Prandtl number Pr = 1.0.

In the event that the radial electric parameter doesn’t exist (when γ = 0.0) and without
rotation (ω = 0.0), all the velocity profiles and the temperature profile behave like a
torque when the Hall parameter m varies from the biggest value to the smallest value
or vice versa, as shown in Figures (1(a)-1(d)). Also, these graphs demonstrate that the
tangential velocity profiles get symmetric values, although the radial velocity F , the axial
velocity profiles H, and the temperature profiles θ take the same values at the several
symmetric Hall parameters m for fixed Magnetic interaction number Mn = 3.0, Eckert
number Ec = 0.0, and Prandtl number Pr = 1.0. That is to say, while acting as an
odd function in the profiles of axial velocity G, radial velocity F , axial velocity H, and
temperature profiles θ behave like an even function at the symmetric Hall parameter m
values.
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(a) (b)

(c) (d)

Figure 4. Effects of Hall parameter m are demostrated on the flow quantities for
the selected paremeters Mn = 3.0, γ = −0.5, ω = 0.0, Pr = 1.0 and Ec = 0.0,
respectively in (a) for radial velocity profiles F , in (b) for tangential velocity
profiles G, in (c) for axial velocity profiles H and in (d) for temperature profiles
θ.

In case of becoming positive γ = 0.6 or negative γ = −0.5 values of the radial electric
parameter, it is observed that when the Hall parameter m decreases from the biggest
value to the smallest value or vice versa, all components of the velocity profiles, and also
temperature profiles forms similar to a saddle shape except for temperature profile at
rotation number ω = 5.0 in Figure 5(d). All of these relations can be fairly seen in figures
(2-5) for fixed Magnetic interaction number Mn = 3.0, Eckert number Ec = 0.0, and
Prandtl number Pr = 1.0.

It should be noted that, in both cases for without rotation, the size of the interval
of η first shrinks and then expands at the radial velocity F , and the tangential velocity
profiles G, while Hall parameter m is monotone, that is either decreasing or increasing.
There is a similar exchange in the temperature profiles θ, however the situation is exactly
reversed. According to graphs (2) and (4), there is no meaningful change in radial and
tangential component of the velocity profiles and also temperature profiles when the Hall
parameter varies from the smallest value to the biggest value or vice versa. Meanwhile, on
the axial component of the velocity can be visualized as in graph 2(c) and in graph 4(c).
These graphs demonstrate that the increment or descent in the Hall parameter causes
first increment and then descent in the axial velocity values for both positive γ = 0.6 and
negative γ = −0.5 electric parameters in radial direction.
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(a) (b)

(c) (d)

Figure 5. Effects of Hall parameter m are demostrated on the flow quantities for
the selected paremeters Mn = 3.0, γ = −0.5, ω = 5.0, Pr = 1.0 and Ec = 0.0,
respectively in (a) for radial velocity profiles F , in (b) for tangential velocity
profiles G, in (c) for axial velocity profiles H and in (d) for temperature profiles
θ.

In consequence of getting the value 5.0 of the rotation parameter, when the electric
parameter on the radial direction has a positive value (γ = 0.6), a similar effect is observed
on the all components of the velocity profiles and also the temperature profiles as illustrated
in figures (3(a)-(d)) for changing Hall parameters. In other words, all these profiles almost
identical with the previous one, therefore, it is similar to the shape of saddle as Hall
parameter increases or decreases.

Moreover, in cases where the electrical parameter has positive γ = 0.6 and negative
γ = −0.5 values, all components of the velocity profiles are similar to each other. The
impacts of the negative Hall parameters on the these profiles can be clearly seen in graphs
(5(a)-(c)) when the radial electric parameter takes negative value γ = −0.5. These graphs
delineate that the negative Hall parameter has a prominent effect on especially radial and
axial components of velocity. Also, the impacts of Hall numbers on temperature profiles
are depicted in graph 1(d). However, these show that the effects of the negative Hall
parameters on the all velocity profiles are very different from on the temperature profiles.
In current state can be explained that the size of the interval of η increases while a Hall
parameter decreases, especially in negative Hall parameters.

Finally, let us examine the behavior of the temperature profiles for two different Eckert
numbers Ec = −2.0 and Ec = 2.0 in two cases. These cases in which a rotation parameter
becomes ω = 0.0 and it gets the value ω = 5.0. In the first case, while temperature profile
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(a) (b)

(c)

Figure 6. Effects of Hall parameter m are demostrated on the temperature pro-
files θ for the selected paremeters Mn = 3.0, ω = 0.0, Pr = 1.0 for two different
Eckert numbers Ec = 2.0 and Ec = −2.0, and for three different radial electric
parameters, respectively in (a) γ = 0.0, in (b) γ = 0.6, and in (c) γ = −0.5.

behaves like a torque for radial electric parameter γ = 0.0, but it forms a saddle shape in
case of having positive or negative values of the electric parameter in the radial direction
then this seems to occur for Eckert number Ec = 0.0. In the second case, temperature
profile shows similar behavior to the previous case for the radial electric parameters γ =
0.0, γ = 0.6. On the other hand, at the negative radial electric parameter γ = −0.5, due to
decreasing Hall parameter, the size of the interval of η expands, furthermore, particularly
in negative Hall parameters, the temperature profiles gradually grow or shrink for Eckert
number Ec = 2.0 or Ec = −2.0 respectively. The impact of the Hall parameter on
temperature profiles is emphasized in Figures (6-7) for fixed magnetic interaction number
Mn = 3.0, and for fixed Prandtl number Pr = 1.0.

3.2. Outcomes and debates of tables
The history of the Hall effect begins in 1879 when Edwin H. Hall discovered that a

small transverse voltage appeared across a current-carrying thin metal strip in an applied
magnetic field. The basic physical principle underlying the Hall effect is the Lorentz force,
which is a combination of two separate forces: the electric force and the magnetic force.

Physically, the trajectories of electrons are curved by the Lorentz force. Nevertheless,
when the Hall parameter is low, their motion between two encounters with heavy particles
(neutral or ion) is almost linear. But if the Hall parameter is high, the electron movements
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(a) (b)

(c)

Figure 7. Effects of Hall parameter m are demostrated on the temperature pro-
files θ for the selected paremeters Mn = 3.0, ω = 5.0, Pr = 1.0 for two different
Eckert numbers Ec = 2.0 and Ec = −2.0, and for three different radial electric
parameters, respectively in (a) γ = 0.0, in (b) γ = 0.6, and in (c) γ = −0.5.

are highly curved. The current density vector is no longer collinear with the electric field
vector.

In this work, variations of the radial shear stress F ′(0), tangential shear stress G′(0),
the velocity in the radial direction H(∞) and coefficients of heat transfer −θ′(0) have
been tabulated for various Hall parameter m for the fixed magnetic interaction number
Mn = 3.0, for the two different rotation parameters ω = 0.0, ω = 5.0, for three different
radial electric parameters γ = −0.5, γ = −0.0, γ = 0.6 and for the three different Eckert
numbers Ec = −2.0, Ec = 0.0, Ec = 2.0 respectively, illustrated in Tables (3-6).

When the positive Hall parameter m increases, the radial shear stress increases for the
all electric fields with or without rotation, however, there is a reverse effect at the negative
Hall numbers, as seen in tables (3) and (5).

The tangential shear stress decreases when the negative Hall parameter increases, but
it increases as the positive Hall parameter increases at the negative radial field for with
or without rotation. In the case of without rotation, the increasing Hall parameter causes
decreases in the tangential shear stress for having the value γ = 0.0 of radial electric
parameter, and it increases when the negative Hall parameter increases, as it decreases
if the positive Hall parameter increases at the positive radial field. Both at the taking
zero value of the radial electric parameter and at the positive radial field for rotation case,
the tangential shear stress decreases/increases when the negative/positive Hall parameter
increases. All these relations can be concluded from tables (3) and (5).



Hall impact on the MHD fluid flow and heat transfer 521

ω γ m F ′(0) G′(0) H(∞)
-2.0 -1.854945 -0.118076 -0.785723
-0.5 -2.232868 -0.509406 -0.784548

-0.5 0.0 -2.172160 -0.878613 -0.868367
0.5 -1.873577 -1.110068 -1.004486
2.0 -1.323200 -0.900473 -1.337277
-2.0 -1.467409 0.430753 -1.163193
-0.5 -1.962015 0.314871 -0.951425

0.0 0.0 0.0 -2.084846 4.69E-014 -0.922605
0.5 -1.962015 -0.314871 -0.951425
2.0 -1.467409 -0.430753 -1.163193
-2.0 -1.327327 0.987694 -1.329457
-0.5 -1.878534 1.267034 -0.998957

0.6 0.0 -2.210470 1.055630 -0.844945
0.5 -2.307988 0.678969 -0.740608
2.0 -1.957950 0.238829 -0.700847

Table 3. Shear stress coefficients F ′(0) and G′(0), vertical velocity H(∞) are
tabulated at some chosen Hall parameters m, for the three different radial elec-
tric parameters γ = −0.5, γ = 0.0 and γ = 0.6 respectively, for fixed Magnetic
interaction number Mn = 3.0 and for fixed rotation number ω = 0.0.

ω Ec γ m = −2.0 m = −0.5 m = 0.0 m = 0.5 m = 2.0
-0.5 3.395840 4.627154 4.888683 4.502633 3.102112

-2.0 0.0 2.549249 3.618659 3.879251 3.618659 2.549249
0.6 3.374241 4.902956 5.332295 5.058447 3.736165
-0.5 0.659184 0.630868 0.660975 0.714658 0.816639

0.0 0.0 0.0 0.778826 0.696492 0.681802 0.696492 0.778826
0.6 0.814909 0.712799 0.651599 0.611263 0.622617
-0.5 -2.077471 -3.365416 -3.566732 -3.073316 -1.468832

2.0 0.0 -0.991597 -2.225673 -2.515646 -2.225673 -0.991597
0.6 -1.744422 -3.477358 -4.029096 -3.835920 -2.490931

Table 4. Heat transfer parameter −θ′(0) is tabulated at some chosen Hall pa-
rameters m for the three different radial electric parameters γ = −0.5, γ = 0.0,
γ = 0.6, and Eckert numbers Ec = −2.0, Ec = 0.0, Ec = 2.0 respectively, fixed
Magnetic interaction number Mn = 3.0, fixed rotation number ω = 0.0, and fixed
Prandtl number Pr = 1.0.

The vertical velocity increases/decreases at the infinity when the negative/ positive
Hall parameter increases for the negative (γ = −0.5) radial electric parameter and also
having zero value (γ = 0.0) of radial electric parameter at the far from the disk. It
increases in case of having positive electric parameters in the radial direction if there
is increament of the Hall parameter. All of these behaviors of the vertical velocity are
decuded from table (3) in the nonrotation disk. Also, table (5) demonstrates that the
vertical velocity decreases far from the rotation disk for the increasing Hall parameter at
the negative electric field in the radial direction. The increament in the negative/positive
Hall parameter causes increases/decreases in the vertical velocity at the infinity for both
becoming zero or positive value of the radial electric parameter in the rotation disk.

The impact of Hall numbers on heat tranfer parameter can be deduced from tables (4)
and (6). Regardless of nonrotation or rotation disk, it can be seen that the heat tranfer
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ω γ m F ′(0) G′(0) H(∞)
-2.0 0.899717 -8.583750 -9.42E-002
-0.5 -6.16E-002 -11.252060 -0.609877

-0.5 0.0 1.035168 -12.763429 -1.195614
0.5 2.557373 -12.976875 -1.682194
2.0 3.709262 -11.229947 -2.176914
-2.0 1.534930 -8.658559 -1.397829
-0.5 0.502729 -10.710837 -1.118283

5.0 0.0 0.0 1.370233 -12.057284 -1.429702
0.5 2.700050 -12.305152 -1.783035
2.0 3.785244 -10.854629 -2.246936
-2.0 1.923264 -8.416167 -1.934672
-0.5 0.912643 -9.970062 -1.452679

0.6 0.0 1.554997 -11.131026 -1.558208
0.5 2.671395 -11.403082 -1.786789
2.0 3.663121 -10.251231 -2.173806

Table 5. Shear stress coefficients F ′(0) and G′(0), vertical velocity H(∞) are
tabulated at some chosen Hall parameters m, for the three different radial elec-
tric parameters γ = −0.5, γ = 0.0 and γ = 0.6 respectively, for fixed Magnetic
interaction number Mn = 3.0 and for fixed rotation number ω = 5.0.

ω Ec γ m = −2.0 m = −0.5 m = 0.0 m = 0.5 m = 2.0
-0.5 68.271820 94.471808 102.204217 95.645113 67.677868

-2.0 0.0 47.849021 76.417962 85.863844 82.030346 60.471686
0.6 41.350049 61.312814 69.727930 67.878672 52.474675
-0.5 0.310365 0.628128 0.847566 1.002861 1.127978

5.0 0.0 0.0 0.952788 0.820072 0.915726 1.028868 1.142697
0.6 1.041602 0.912599 0.952620 1.033550 1.134726
-0.5 -67.651089 -93.215551 -100.509084 -93.639389 -65.421911

2.0 0.0 -45.943444 -74.777817 -84.032391 -79.972608 -58.186292
0.6 -39.266844 -59.487614 -67.822689 -65.811572 -50.205222

Table 6. Heat transfer parameter −θ′(0) is tabulated at some chosen Hall pa-
rameters m for the three different radial electric parameters γ = −0.5, γ = 0.0,
γ = 0.6, and Eckert numbers Ec = −2.0, Ec = 0.0, Ec = 2.0 respectively, fixed
Magnetic interaction number Mn = 3.0, fixed rotation number ω = 5.0, and fixed
Prandtl number Pr = 1.0.

parameter increases/decreases in the case of increasing negative/positive Hall parameter
values for negative Eckert number Ec = −2.0. Besides this, if the Hall parameter gets
opposite values, the effect on it becomes reversed for positive Eckert number Ec = 2.0.
These conclusions valid again for with or without rotation.

4. Conclusions
The velocity and temperature profiles governing the steady-incompressible boundary

layer flow over a stretching disk have been obtained using self-consistent assumptions.
The reconstructing equations have then been solved numerically by using Chebyshev col-
location method. Then the behaviors of the velocity and temperature profiles are obtained
and displayed graphically.
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The effects of Hall parameter are tabulated for the three different radial electric pa-
rameters, for three different Eckert numbers, for two different rotation parameters, and a
fixed magnetic interaction parameter. One of the main outcomes of the present study is
defining the effect of the Hall parameters on velocity and temperature profiles for varying
Hall numbers. In case of decreasing values of Hall parameter with rotation on the negative
radial electric field, size of the interval of η expands in the temperature profiles, moreover,
temperature profiles gradually grow/shrink for positive/negative Eckert numbers.
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