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Abstract

In this paper, we obtain refinements of the left-sided Hermite-Hadamard inequality for
functions whose first derivatives in absolute value are trigonometrically P-function.
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1. INTRODUCTION

Convexity theory provides powerful
principles and techniques to study a wide class of
problems in both pure and applied mathematics.
See articles [2, 4, 7, 9, 11, 12] and the references
therein.

Throughout the paper I is a non-empty
interval in R. Let f:1 = R be a convex function.
Then the following inequality hold

f(asz) < ﬁf;f(x)dx < f(a);rf(b)
for all a,b € I with a < b. This double inequality
is well known as the Hermite-Hadamard inequality
(for more information, see [5]). Since then, some
refinements of the Hermite-Hadamard inequality
for convex functions have been obtained [3, 14].

*Corresponding Author: kebekar@gmail.com

Definition 1. [4] A non-negative function f:1 - R
is said to be a P-function if the inequality

flex+ (A =0)y) < fx)+f(y)

holds for all x,y € I and t € [0,1]. The set of P-
functions on the interval I is denoted by P (I).

Definition 2. [13] Let h: ] — R be a non-negative
function, h = 0. We say that f:1 - R is an h-
convex function, or that f belongs to the class
SX(h, 1), if f is non-negative and for all x,y € I,
a € (0,1) we have

flax + (1= a)y) < h(@)f (x) + h(1 - ) f (¥).

If this inequality is reversed, then f is said to be h-
concave, i.e. f € SV (h,I).
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In [8], Kadakal gave the concept of
trigonometrically convex function as follows:

Definition 3. [8] A non-negative function f:1 - R
is called trigonometrically convex if for every
X,y €Elandt € [0,1],

it

ftx+ (A -ty < (sin ?)f(x) + (cos %t)f(y).

The class of all trigonometrically convex
functions is denoted by TC(I) on interval I.

In [1], Bekar gave the concept of
trigonometrically P-function as follows:

Definition 4. [1] A non-negative function f: 1 - R
is called trigonometrically P-functions if for every
x,y €Elandt € [0,1],

ftx+ (A —-0t)y) < (sin%t + cos%) [fx)+ fO].

We will denote by TP(I) the class of all
trigonometrically P-functions on interval I. The
range of the trigonometrically P-functions is
greater than or equal to 0. Every non-negative
trigonometrically convex function is
trigonometrically P-functions. We note that, every
trigonometrically convex function is a h-convex

. . t . .
function for h(t) = sin % Morever, if f(x) is a
nonnegative function, then every trigonometric
convex function is a P-function.

We will denote by L[a, b] the space of
(Lebesgue) integrable functions on the interval
[a, b].

In [1], Bekar also obtained the following
Hermite-Hadamard type inequalities for the
trigonometrically P-function as follows:

Theorem 1. Let the function f:[a,b] > R be a
trigonometrically P-function. If a < b and f €
Lla, b], then the following inequality holds:

a+b

= (52) < 5= f) F@dx < 2[f(@) + F(B)].

In [6], Iscan gave a refinement of the
Hoélder integral inequality as follows:
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Theorem 2. [6] Letp > 1 and% + i =1.Iff and

g are real functions defined on interval [a, b] and
if If1P, |g|? are integrable functions on [a, b] then

[ I (g @)ldx < ﬁ{(ff (b - DIf @Pdx)’

x(f; (b - x)lg(x)lqu)%

1

+(J7 - @I fGOIPdx)

x(f G- a)lg(x)lqu)%}_

2. SOME NEW INEQUALITIES FOR
TRIGONOMETRICALLY P-FUNCTION

The main purpose of this section is to
establish new estimates that refine left-sided
Hermite-Hadamard inequality for functions whose
first derivative in absolute value, raised to a certain
power which is greater than one, respectively at
least one, is trigonometrically P-function. Kirmaci
[10] used the following lemma:

Lemma 1. Let f:I" € R = R be differentiable
mapping on I*, a,b € I° (I" is the interior of 1)
witha < b. If f' € L[a, b], then we have

a+b

IIOUSNICY

fO% tf'(ta+ (1 —t)b)dt

=(b—a) ) ,
+ [ (t—1Df'(ta+ (1 —t)b)dt
2
fort € [0,1].
Theorem 3. Let f:1 - R be a continuously

differentiable function, let a < b in I and assume
that f' € L{a,b). If |f'| is trigonometrically P-
function on interval [a,b], then the following
inequality

I Feodx - £ (5]

V2-1

2

<16(b - @) () AU (@LIf (D)D)
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holds for t € [0,1], where A is the arithmetic
mean.

Proof. Using Lemma 1 and the inequality

If'(ta+ (1 —t)b)|

< <sm%t+ cos—) ' @]+ 1f" (b)],

we get
= [ fxydx — £ (<2)|

2 1llf"Cta + (1 — )b)de

<(b-a) 1 ’
+ i |t = 1||f'(ta + (1 = ©)b)|dt

<(b-a) fz [t] (sm—+ cos—) [1f'(a)] +
|f'(b)|]dt

+f1 [t — 1] (51n—+ cos—) [If'(a)] +
ronal

= -ollf' @+ (b)l]
X [f()% [t] (sin%t+ cos%t) dt
+ it -1 (sin%t+ cos%t) dt]

=20 - ollf @] + If' o)1 (L22)

=160 — @) (Z2) AU @)L IF' DD,
where
fz t] (sm— + cos )dt = 4(\/:2_1)

f1 |t—1|(51n—+cos )dt—4(f2_1).

This completes the proof of the theorem.

Theorem 4. Let f:1 > R be a continuously
differentiable function, let a < b in I and assume
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that q > 1. If |f'|? is a trigonometrically P-
function on interval [a,b], then the following

inequality
()]
N

<27 (91 () @ - 4 @I I 1)

T

7 f()dx

holds for t € [0,1], where %+ % =1 and A is the

arithmetic mean.

Proof. Using Lemma 1, Holder’s integral
inequality and the following inequality

|f'(ta+ (1 —t)b)|?
< (sin%t+ cos%t) [(If (@]?+ |f'(b)I?]

which comes from the definition of
trigonometrically P-function for |f'|9, we get

- (5]
fO% tf'(ta+ (1 —t)b)dt
+ [ (t=Df'(ta+ (1 - t)b)dt

7 f()dx

<|(b—a)

<(b-a) <f0% |t|pdt)%

x (f7 If (ta + (@~ Db)ld )

1

+(b—a) (f%1 It — llpdt>% (f%1 If'(ta+ (1 — t)b)lth)q

S

<(b-a) (fo Itlpdt)

1

x (f3 ( sin+cosZ)IF @17 + IF' ®)1)e )’

1

+(b—a) (f; It — 1|pdt>p
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1

x ([ ((sin + cosZ) [IF' @17 + I ()] )de)

2

= (b— Q) 2ZiAT(|f" @I, | (B)|7)

1
X (m)p [fol (Sm— + cos )dt]

+(b - 2943 (1 (@]9, 1 (B9

1 1

X (mf [f; ( sm— + cos )dt]

— a7} (%)3 (p+1) (b — a)Aq(|f @I If' (D)D),
where

1
(p+1)2p+1

1
JZ |tlPdt = fi |t —1|Pdt =
2

fz (sm—+cos )dt——
f; (sm—+cos )dt—;

This completes the proof of the theorem.

Theorem 5. Let f:1 € R — R be a continuously
differentiable function, let a < b in I and assume
that q = 1. If |f'|? is a trigonometrically P-
function on the interval [a, b], then the following
inequality holds for t € [0,1]

[ feodx - £ (2]

|~

2_2 2 ! ! V2-1
< (b - )2 Al @19, IF 01D ()
where 4 is the arithmetic mean.
Proof. Assume first that ¢ > 1. From Lemma 1,
Holder integral inequality and the property of | f'|4
which is trigonometrically P-function, we obtain

i 2 Feodx - £ (S2)| < o - o) (17 |t|dt)1_
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1
1 q

2
« j Itllf' (ta + (1 — £)b)|9dt

11
q

+(b—a) <f%1 It — 1|dt>

1 7
« (fl It —1|If"(ta + (1 — t)b)qut>

2

1

< & - a)(f7 Itlar)

1

x (J 161 sinZ+ cosZ) 7 @17 + 1)1 )

1t

+(b - a) <f%1 It — 1|dt> “

1

x (1 16 = 11 (sin® + cos ) 17 @17 + 17 )1 de )

—= 1 1

=2 - () A @B 1 ol ()

1

1)6.

= (b - 2 2Aa(f @I, 1 ()19 (5

It can be seen that

1 1 1
J2 Itldt = f% |t —1ldt =<

fz t] (sm— + cos )dt = 4(f2_1)

ﬁ [t — 1] (sm— + cos )dt = 4(\/:2_1).

Therefore, the desired result is obtained.

For g = 1 we use the estimates from the
proof of the Theorem 3, which also follow step by
step the above estimates.

This completes the proof of the theorem.

490



Kerim BEKAR

Left-sided Hermite-Hadamard Type Inequalities for Trigonometrically P-functions

Corollary 1.Under the assumption of the Theorem

Swith q = 1, we get the conclusion of the Theorem
3.

Theorem 6. Let f:1 - R be a continuously
differentiable function, let a < b in I and assume
that q > 1. If |f'|? is a trigonometrically P-
function on interval [a,b], then the following
inequality

a+b

I Feodx - £ (5]

< 203 (b — )4 (If (@19, If (D)) )

p+2
1 1 1
X (pj-l)p (”“;‘/EH)" + (4“/:2‘4)"]

holds for t € [0,1], where % +% =1 and A is the

arithmetic mean.

Proof. Using Lemma 1, Hélder-Iscan integral
inequality and the following inequality

If'(ta+ (1 —t)b)|?
< (sin%‘t + cos %t) [ @7+ |f'(b)]7]

which  comes from the definition of
trigonometrically P-function for |f'|?, we get

I, fedx - £ (22|

fo ltllf'(ta + (1 — t)b)|dt
+ i e = 1If"(ta + (1 — ©)b)|dt

(17

<(-a)

1

<2(b—-a) %—t| |t|pdt>p

1

Lo t|Iftat+ (1 - t)b)lthf

x(fO%

(fé lllf" (ta + (1 - t)b)lth)q

S

1
+(f7 1ellepar)
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1
1 P
+<] |1—t||t—1|pdt)

2

=

1
q

fuy

1
X ( [1—t||f'(ta+ (1 — t)b)lth>
2

1

Ce-31e- 1|Pdt>”

+(f%

(ff t—3| If'(ta + (1 - t)b)lth)%]

1

)
%— t| |t|Pdt)

<2(b-a) [(fé

1

Lot (‘sinZ+ cos D) [If @) + If’(b)lq]dt)a

x(Jz
1 1
+(Jz 1etterae)’

0

1

2161 ( sin -+ cos™) [1f' @17 + 170 )t )’

(= ele - 1|Pdt)”

1

(
(
( 1
(

x (11—t ((sin %+ cos™) [If @) + If’(b)lq]dt>q

If’(b)l"]dt)al

= 2“3(19 — a)A3(|f'(a)|°I, If" (D)D)

1 1
y ( 2-(+2) )E (n—4ﬁ+4)3
(P+1)(p+2) 2
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1 1

1 1
+ (2—(1’“))5 (4\/5—4)6 + (2—(1’“’))5 (4\/5—4)5
p+2 2 p+2 2

1 1
) (=]

1
—+
= 24

1

(b - ) AT (£ @19 1 DI (=)

p+2

| sy ey

where
1
=11 2—(p+2)
2 |= — 14 - @
fO |2 t| |t| dt (p+D(p+2)
1 —-(p+2)
fi |t —3| |t — 1|Pdt = =————
Z 2 (r+1)(p+2)
1 1 2—(p+2)
2 p — — —_ p =
fO [t]|t|Pdt f% [1—t||t — 1|Pdt —
1
2 |l — t| ( sinZ + cos”—t) dt = T2
0 2 2 2 2
1 . -
Ji t—l|( sm”—t+cos”—t)dt=” 4\/2§+4
z 2 2 2 T
1
[z |t| ( sinZ + cosn—t) dt = 4\/52_4
0 2 2 ™
1 . -
fi |1 -t ( sin = + cos”—t) = 4ﬁ2 2
2 2 2 T

This completes the proof of the theorem.
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