

Sakarya University Journal of Science

ISSN 1301-4048 | e-ISSN 2147-835X | Period Bimonthly | Founded: 1997 | Publisher Sakarya University | http://www.saujs.sakarya.edu.tr/en/

Title: Left-sided Hermite-Hadamard Type Inequalities for Trigonometrically P-functions

Authors: Kerim BEKAR

Recieved: 2020-01-09 16:51:27 Accepted: 2020-03-17 20:48:12

Article Type: Research Article

Volume: 24 Issue: 3 Month: June Year: 2020 Pages: 487-493

How to cite

Kerim BEKAR; (2020), Left-sided Hermite-Hadamard Type Inequalities for Trigonometrically P-functions. Sakarya University Journal of Science, 24(3),

487-493, DOI: https://doi.org/10.16984/saufenbilder.672838

Access link

http://www.saujs.sakarya.edu.tr/en/issue/52472/672838

Sakarya University Journal of Science 24(3), 487-493, 2020

Left-sided Hermite-Hadamard Type Inequalities for Trigonometrically *P*-Functions

Kerim BEKAR*1

Abstract

In this paper, we obtain refinements of the left-sided Hermite-Hadamard inequality for functions whose first derivatives in absolute value are trigonometrically *P*-function.

Keywords: Convex function, trigonometrically convex function, trigonometrically *P*-functions, Hermite-Hadamard inequality

1. INTRODUCTION

Convexity theory provides powerful principles and techniques to study a wide class of problems in both pure and applied mathematics. See articles [2, 4, 7, 9, 11, 12] and the references therein.

Throughout the paper I is a non-empty interval in \mathbb{R} . Let $f: I \to \mathbb{R}$ be a convex function. Then the following inequality hold

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) dx \le \frac{f(a)+f(b)}{2}$$

for all $a, b \in I$ with a < b. This double inequality is well known as the Hermite-Hadamard inequality (for more information, see [5]). Since then, some refinements of the Hermite-Hadamard inequality for convex functions have been obtained [3, 14].

Definition 1. [4] A non-negative function $f: I \to \mathbb{R}$ is said to be a P-function if the inequality

$$f(tx + (1-t)y) \le f(x) + f(y)$$

holds for all $x, y \in I$ and $t \in [0,1]$. The set of P-functions on the interval I is denoted by P(I).

Definition 2. [13] Let $h: J \to \mathbb{R}$ be a non-negative function, $h \neq 0$. We say that $f: I \to \mathbb{R}$ is an h-convex function, or that f belongs to the class SX(h, I), if f is non-negative and for all $x, y \in I$, $\alpha \in (0,1)$ we have

$$f(\alpha x + (1 - \alpha)y) \le h(\alpha)f(x) + h(1 - \alpha)f(y).$$

If this inequality is reversed, then f is said to be h-concave, i.e. $f \in SV(h, I)$.

^{*}Corresponding Author: kebekar@gmail.com

¹ Department of Mathematics, Faculty of Arts and Sciences, Giresun University, 28200, Giresun-Turkey ORCID ID: 0000-0002-7531-9345

In [8], Kadakal gave the concept of trigonometrically convex function as follows:

Definition 3. [8] A non-negative function $f: I \to \mathbb{R}$ is called trigonometrically convex if for every $x, y \in I$ and $t \in [0,1]$,

$$f(tx + (1-t)y) \le \left(\sin\frac{\pi t}{2}\right)f(x) + \left(\cos\frac{\pi t}{2}\right)f(y).$$

The class of all trigonometrically convex functions is denoted by TC(I) on interval I.

In [1], Bekar gave the concept of trigonometrically *P*-function as follows:

Definition 4. [1] A non-negative function $f: I \to \mathbb{R}$ is called trigonometrically P-functions if for every $x, y \in I$ and $t \in [0,1]$,

$$f(tx + (1-t)y) \le \left(\sin\frac{\pi t}{2} + \cos\frac{\pi t}{2}\right)[f(x) + f(y)].$$

We will denote by TP(I) the class of all trigonometrically P-functions on interval I. The range of the trigonometrically P-functions is greater than or equal to 0. Every non-negative trigonometrically convex function is trigonometrically P-functions. We note that, every trigonometrically convex function is a h-convex function for $h(t) = \sin \frac{\pi t}{2}$. Morever, if f(x) is a nonnegative function, then every trigonometric convex function is a P-function.

We will denote by L[a, b] the space of (Lebesgue) integrable functions on the interval [a, b].

In [1], Bekar also obtained the following Hermite-Hadamard type inequalities for the trigonometrically *P*-function as follows:

Theorem 1. Let the function $f:[a,b] \to \mathbb{R}$ be a trigonometrically P-function. If a < b and $f \in L[a,b]$, then the following inequality holds:

$$\tfrac{1}{2\sqrt{2}}f\left(\tfrac{a+b}{2}\right) \leq \tfrac{1}{b-a}\int_a^b f(x)dx \leq \tfrac{4}{\pi}[f(a)+f(b)].$$

In [6], İşcan gave a refinement of the Hölder integral inequality as follows:

Theorem 2. [6] Let p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$. If f and g are real functions defined on interval [a, b] and if $|f|^p$, $|g|^q$ are integrable functions on [a, b] then

$$\int_{a}^{b} |f(x)g(x)| dx \leq \frac{1}{b-a} \left\{ \left(\int_{a}^{b} (b-x) |f(x)|^{p} dx \right)^{\frac{1}{p}} \right. \\
\times \left(\int_{a}^{b} (b-x) |g(x)|^{q} dx \right)^{\frac{1}{q}} \\
+ \left(\int_{a}^{b} (x-a) |f(x)|^{p} dx \right)^{\frac{1}{p}} \\
\times \left(\int_{a}^{b} (x-a) |g(x)|^{q} dx \right)^{\frac{1}{q}} \right\}.$$

2. SOME NEW INEQUALITIES FOR TRIGONOMETRICALLY *P*-FUNCTION

The main purpose of this section is to establish new estimates that refine left-sided Hermite-Hadamard inequality for functions whose first derivative in absolute value, raised to a certain power which is greater than one, respectively at least one, is trigonometrically *P*-function. Kırmacı [10] used the following lemma:

Lemma 1. Let $f: I^* \subset \mathbb{R} \to \mathbb{R}$ be differentiable mapping on I^* , $a, b \in I^\circ$ (I^* is the interior of I) with a < b. If $f' \in L[a, b]$, then we have

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx - f\left(\frac{a+b}{2}\right)$$

$$= (b-a) \left[\int_{0}^{\frac{1}{2}} tf'(ta + (1-t)b) dt + \int_{\frac{1}{2}}^{1} (t-1)f'(ta + (1-t)b) dt \right]$$

for $t \in [0,1]$.

Theorem 3. Let $f: I \to \mathbb{R}$ be a continuously differentiable function, let a < b in I and assume that $f' \in L[a,b]$. If |f'| is trigonometrically P-function on interval [a,b], then the following inequality

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f\left(\frac{a+b}{2}\right) \right|$$

$$\leq 16(b-a) \left(\frac{\sqrt{2}-1}{\pi^{2}}\right) A(|f'(a)|, |f'(b)|)$$

holds for $t \in [0,1]$, where A is the arithmetic mean.

Proof. Using Lemma 1 and the inequality

$$|f'(ta + (1-t)b)|$$

$$\leq \left(\sin\frac{\pi t}{2} + \cos\frac{\pi t}{2}\right)[|f'(a)| + |f'(b)|],$$

we get

$$\left| \frac{1}{b-a} \int_a^b f(x) dx - f\left(\frac{a+b}{2}\right) \right|$$

$$\leq (b-a) \left[\int_0^{\frac{1}{2}} |t||f'(ta+(1-t)b)|dt + \int_{\frac{1}{2}}^{1} |t-1||f'(ta+(1-t)b)|dt \right]$$

$$\leq (b-a) \left[\int_0^{\frac{1}{2}} |t| \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) [|f'(a)| + |f'(b)|] dt \right]$$

$$+ \int_{\frac{1}{2}}^{1} |t - 1| \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) [|f'(a)| + |f'(b)|] dt \right]$$

$$= (b - a)[|f'(a)| + |f'(b)|]$$

$$\times \left[\int_0^{\frac{1}{2}} |t| \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) dt \right]$$

$$+\int_{\underline{1}}^{1} |t-1| \left(\sin\frac{\pi t}{2} + \cos\frac{\pi t}{2}\right) dt$$

$$= 2(b-a)[|f'(a)| + |f'(b)|] \left(\frac{4(\sqrt{2}-1)}{\pi^2}\right)$$

$$= 16(b-a)\left(\frac{\sqrt{2}-1}{\pi^2}\right)A(|f'(a)|,|f'(b)|),$$

where

$$\int_0^{\frac{1}{2}} |t| \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) dt = \frac{4(\sqrt{2} - 1)}{\pi^2}$$

$$\int_{\frac{1}{2}}^{1} |t - 1| \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) dt = \frac{4(\sqrt{2} - 1)}{\pi^2}.$$

This completes the proof of the theorem.

Theorem 4. Let $f: I \to \mathbb{R}$ be a continuously differentiable function, let a < b in I and assume

that q > 1. If $|f'|^q$ is a trigonometrically P-function on interval [a,b], then the following inequality

$$\left| \frac{1}{b-a} \int_a^b f(x) dx - f\left(\frac{a+b}{2}\right) \right|$$

$$\leq 2^{\frac{3}{q}-1} \left(\frac{1}{\pi}\right)^{\frac{1}{q}} \left(\frac{1}{p+1}\right)^{\frac{1}{p}} (b-a) A^{\frac{1}{q}} (|f'(a)|^q, |f'(b)|^q)$$

holds for $t \in [0,1]$, where $\frac{1}{p} + \frac{1}{q} = 1$ and A is the arithmetic mean.

Proof. Using Lemma 1, Hölder's integral inequality and the following inequality

$$|f'(ta + (1-t)b)|^q$$

$$\leq \left(\sin\frac{\pi t}{2} + \cos\frac{\pi t}{2}\right) [|f'(a)|^q + |f'(b)|^q]$$

which comes from the definition of trigonometrically *P*-function for $|f'|^q$, we get

$$\left| \frac{1}{b-a} \int_a^b f(x) dx - f\left(\frac{a+b}{2}\right) \right|$$

$$\leq \left| (b-a) \left[\int_0^{\frac{1}{2}} tf'(ta + (1-t)b)dt + \int_{\frac{1}{2}}^{1} (t-1)f'(ta + (1-t)b)dt \right] \right|$$

$$\leq (b-a)\left(\int_0^{\frac{1}{2}}|t|^pdt\right)^{\frac{1}{p}}$$

$$\times \left(\int_0^{\frac{1}{2}} |f'(ta + (1-t)b)|^q dt \right)^{\frac{1}{q}}$$

$$+(b-a)\left(\int_{\frac{1}{2}}^{1}|t-1|^{p}dt\right)^{\frac{1}{p}}\left(\int_{\frac{1}{2}}^{1}|f'(ta+(1-t)b)|^{q}dt\right)^{\frac{1}{q}}$$

$$\leq (b-a) \left(\int_0^{\frac{1}{2}} |t|^p dt \right)^{\frac{1}{p}}$$

$$\times \left(\int_0^{\frac{1}{2}} \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) [|f'(a)|^q + |f'(b)|^q] dt \right)^{\frac{1}{q}}$$

$$+(b-a)\left(\int_{\frac{1}{2}}^{1}|t-1|^{p}dt\right)^{\frac{1}{p}}$$

$$\times \left(\int_{\frac{1}{2}}^{1} \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) [|f'(a)|^{q} + |f'(b)|^{q}] dt \right)^{\frac{1}{q}}$$

$$= (b - a) 2^{\frac{1}{q}} A^{\frac{1}{q}} (|f'(a)|^{q}, |f'(b)|^{q})$$

$$\times \left(\frac{1}{(p+1)2^{p+1}} \right)^{\frac{1}{p}} \left[\int_{0}^{1} \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) dt \right]^{\frac{1}{q}}$$

$$+ (b - a) 2^{\frac{1}{q}} A^{\frac{1}{q}} (|f'(a)|^{q}, |f'(b)|^{q})$$

$$\times \left(\frac{1}{(p+1)2^{p+1}} \right)^{\frac{1}{p}} \left[\int_{\frac{1}{2}}^{1} \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) dt \right]^{\frac{1}{q}}$$

$$= 2^{\frac{3}{q} - 1} \left(\frac{1}{\pi} \right)^{\frac{1}{q}} \left(\frac{1}{p+1} \right)^{\frac{1}{p}} (b - a) A^{\frac{1}{q}} (|f'(a)|^{q}, |f'(b)|^{q}),$$

where

$$\begin{split} &\int_{0}^{\frac{1}{2}} |t|^{p} dt = \int_{\frac{1}{2}}^{1} |t - 1|^{p} dt = \frac{1}{(p+1)2^{p+1}} \\ &\int_{0}^{\frac{1}{2}} \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) dt = \frac{2}{\pi} \\ &\int_{\frac{1}{2}}^{1} \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) dt = \frac{2}{\pi}. \end{split}$$

This completes the proof of the theorem.

Theorem 5. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function, let a < b in I and assume that $q \ge 1$. If $|f'|^q$ is a trigonometrically P-function on the interval [a,b], then the following inequality holds for $t \in [0,1]$

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f\left(\frac{a+b}{2}\right) \right|
\leq (b-a) 2^{\frac{6}{q}-2} A^{\frac{1}{q}} (|f'(a)|^{q}, |f'(b)|^{q}) \left(\frac{\sqrt{2}-1}{\pi^{2}}\right)^{\frac{1}{q}},$$

where *A* is the arithmetic mean.

Proof. Assume first that q > 1. From Lemma 1, Hölder integral inequality and the property of $|f'|^q$ which is trigonometrically P-function, we obtain

$$\left|\frac{1}{b-a}\int_a^b f(x)dx - f\left(\frac{a+b}{2}\right)\right| \le (b-a)\left(\int_0^{\frac{1}{2}} |t|dt\right)^{1-\frac{1}{q}}$$

$$\times \left(\int_{0}^{\frac{1}{2}} |t| |f'(ta + (1 - t)b)|^{q} dt \right)^{\frac{1}{q}} \\
+ (b - a) \left(\int_{\frac{1}{2}}^{1} |t - 1| dt \right)^{1 - \frac{1}{q}} \\
\times \left(\int_{\frac{1}{2}}^{1} |t - 1| |f'(ta + (1 - t)b)|^{q} dt \right)^{\frac{1}{q}} \\
\le (b - a) \left(\int_{0}^{\frac{1}{2}} |t| dt \right)^{1 - \frac{1}{q}} \\
\times \left(\int_{0}^{\frac{1}{2}} |t| \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) [|f'(a)|^{q} + |f'(b)|^{q}] dt \right)^{\frac{1}{q}} \\
+ (b - a) \left(\int_{\frac{1}{2}}^{1} |t - 1| dt \right)^{1 - \frac{1}{q}} \\
\times \left(\int_{\frac{1}{2}}^{1} |t - 1| \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) [|f'(a)|^{q} + |f'(b)|^{q}] dt \right)^{\frac{1}{q}} \\
= 2(b - a) \left(\frac{1}{8} \right)^{1 - \frac{1}{q}} 8^{\frac{1}{q}} A^{\frac{1}{q}} (|f'(a)|^{q}, |f'(b)|^{q}) \left(\frac{4(\sqrt{2} - 1)}{\pi^{2}} \right)^{\frac{1}{q}} \\
= (b - a) 2^{\frac{6}{q} - 2} A^{\frac{1}{q}} (|f'(a)|^{q}, |f'(b)|^{q}) \left(\frac{\sqrt{2} - 1}{\pi^{2}} \right)^{\frac{1}{q}}.$$

It can be seen that

$$\begin{split} &\int_{0}^{\frac{1}{2}} |t| dt = \int_{\frac{1}{2}}^{1} |t - 1| dt = \frac{1}{8} \\ &\int_{0}^{\frac{1}{2}} |t| \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) dt = \frac{4(\sqrt{2} - 1)}{\pi^{2}} \\ &\int_{\frac{1}{2}}^{1} |t - 1| \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) dt = \frac{4(\sqrt{2} - 1)}{\pi^{2}} \end{split}$$

Therefore, the desired result is obtained.

For q = 1 we use the estimates from the proof of the Theorem 3, which also follow step by step the above estimates.

This completes the proof of the theorem.

Corollary 1. Under the assumption of the Theorem 5 with q = 1, we get the conclusion of the Theorem 3

Theorem 6. Let $f: I \to \mathbb{R}$ be a continuously differentiable function, let a < b in I and assume that q > 1. If $|f'|^q$ is a trigonometrically P-function on interval [a,b], then the following inequality

$$\begin{split} & \left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f\left(\frac{a+b}{2}\right) \right| \\ & \leq 2^{\frac{1}{q}+2} (b-a) A^{\frac{1}{q}} (|f'(a)|^{q}, |f'(b)|^{q}) \left(\frac{1}{p+2}\right)^{\frac{1}{p}} \\ & \times \left[\left(\frac{1}{p+1}\right)^{\frac{1}{p}} \left(\frac{\pi - 4\sqrt{2} + 4}{\pi^{2}}\right)^{\frac{1}{q}} + \left(\frac{4\sqrt{2} - 4}{\pi^{2}}\right)^{\frac{1}{q}} \right] \end{split}$$

holds for $t \in [0,1]$, where $\frac{1}{p} + \frac{1}{q} = 1$ and A is the arithmetic mean.

Proof. Using Lemma 1, Hölder-İşcan integral inequality and the following inequality

$$|f'(ta + (1-t)b)|^{q}$$

$$\leq \left(\sin\frac{\pi t}{2} + \cos\frac{\pi t}{2}\right)[|f'(a)|^{q} + |f'(b)|^{q}]$$

which comes from the definition of trigonometrically *P*-function for $|f'|^q$, we get

$$\begin{split} & \left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f\left(\frac{a+b}{2}\right) \right| \\ & \leq (b-a) \left[\int_{0}^{\frac{1}{2}} |t| |f'(ta+(1-t)b)| dt \\ & + \int_{\frac{1}{2}}^{1} |t-1| |f'(ta+(1-t)b)| dt \right] \\ & \leq 2(b-a) \left[\left(\int_{0}^{\frac{1}{2}} \left| \frac{1}{2} - t \right| |t|^{p} dt \right)^{\frac{1}{p}} \right. \\ & \times \left(\int_{0}^{\frac{1}{2}} \left| \frac{1}{2} - t \right| |f'(ta+(1-t)b)|^{q} dt \right)^{\frac{1}{q}} \\ & + \left(\int_{0}^{\frac{1}{2}} |t| |t|^{p} dt \right)^{\frac{1}{p}} \left(\int_{0}^{\frac{1}{2}} |t| |f'(ta+(1-t)b)|^{q} dt \right)^{\frac{1}{q}} \end{split}$$

$$\begin{split} &+\left(\int_{\frac{1}{2}}^{1}|1-t||t-1|^{p}dt\right)^{\frac{1}{p}} \\ &\times\left(\int_{\frac{1}{2}}^{1}|1-t||f'(ta+(1-t)b)|^{q}dt\right)^{\frac{1}{q}} \\ &+\left(\int_{\frac{1}{2}}^{1}|t-\frac{1}{2}||t-1|^{p}dt\right)^{\frac{1}{p}} \\ &\left(\int_{\frac{1}{2}}^{1}|t-\frac{1}{2}||f'(ta+(1-t)b)|^{q}dt\right)^{\frac{1}{q}} \\ &\leq 2(b-a)\left[\left(\int_{0}^{\frac{1}{2}}|\frac{1}{2}-t||t|^{p}dt\right)^{\frac{1}{p}} \\ &\times\left(\int_{0}^{\frac{1}{2}}|\frac{1}{2}-t|\left(\sin\frac{\pi t}{2}+\cos\frac{\pi t}{2}\right)[|f'(a)|^{q}+|f'(b)|^{q}]dt\right)^{\frac{1}{q}} \\ &+\left(\int_{0}^{\frac{1}{2}}|t||t|^{p}dt\right)^{\frac{1}{p}} \\ &\times\left(\int_{0}^{\frac{1}{2}}|t|\left(\sin\frac{\pi t}{2}+\cos\frac{\pi t}{2}\right)[|f'(a)|^{q}+|f'(b)|^{q}]dt\right)^{\frac{1}{q}} \\ &+\left(\int_{\frac{1}{2}}^{1}|1-t|\left(\sin\frac{\pi t}{2}+\cos\frac{\pi t}{2}\right)[|f'(a)|^{q}+|f'(b)|^{q}]dt\right)^{\frac{1}{q}} \\ &\times\left(\int_{\frac{1}{2}}^{1}|1-t|\left(\sin\frac{\pi t}{2}+\cos\frac{\pi t}{2}\right)[|f'(a)|^{q}+|f'(b)|^{q}]dt\right)^{\frac{1}{q}} \\ &+\left(\int_{\frac{1}{2}}^{1}|t-\frac{1}{2}|\left(\sin\frac{\pi t}{2}+\cos\frac{\pi t}{2}\right)[|f'(a)|^{q}+|f'(b)|^{q}]dt\right)^{\frac{1}{q}} \\ &\times\left(\int_{\frac{1}{2}}^{1}|t-\frac{1}{2}|\left(\sin\frac{\pi t}{2}+\cos\frac{\pi t}{2}\right)[|f'(a)|^{q}+|f'(b)|^{q}]dt\right)^{\frac{1}{q}} \\ &=2^{1+\frac{1}{q}}(b-a)A^{\frac{1}{q}}(|f'(a)|^{q},|f'(b)|^{q}) \\ &\times\left(\left(\frac{2^{-(p+2)}}{(p+1)(p+2)}\right)^{\frac{1}{p}}\left(\frac{\pi-4\sqrt{2}+4}{\pi^{2}}\right)^{\frac{1}{q}} \end{split}$$

$$+ \left(\frac{2^{-(p+2)}}{p+2}\right)^{\frac{1}{p}} \left(\frac{4\sqrt{2}-4}{\pi^2}\right)^{\frac{1}{q}} + \left(\frac{2^{-(p+2)}}{p+2}\right)^{\frac{1}{p}} \left(\frac{4\sqrt{2}-4}{\pi^2}\right)^{\frac{1}{q}}$$

$$+ \left(\frac{2^{-(p+2)}}{(p+1)(p+2)}\right)^{\frac{1}{p}} \left(\frac{\pi-4\sqrt{2}+4}{\pi^2}\right)^{\frac{1}{q}} \right]$$

$$= 2^{\frac{1}{q}+2} (b-a) A^{\frac{1}{q}} (|f'(a)|^q, |f'(b)|^q) \left(\frac{1}{p+2}\right)^{\frac{1}{p}}$$

$$\times \left[\left(\frac{1}{p+1}\right)^{\frac{1}{p}} \left(\frac{\pi-4\sqrt{2}+4}{\pi^2}\right)^{\frac{1}{q}} + \left(\frac{4\sqrt{2}-4}{\pi^2}\right)^{\frac{1}{q}} \right]$$

where

$$\begin{split} &\int_{0}^{\frac{1}{2}} \left| \frac{1}{2} - t \right| |t|^{p} dt = \frac{2^{-(p+2)}}{(p+1)(p+2)} \\ &\int_{\frac{1}{2}}^{1} \left| t - \frac{1}{2} \right| |t - 1|^{p} dt = \frac{2^{-(p+2)}}{(p+1)(p+2)} \\ &\int_{0}^{\frac{1}{2}} |t| |t|^{p} dt = \int_{\frac{1}{2}}^{1} |1 - t| |t - 1|^{p} dt = \frac{2^{-(p+2)}}{p+2} \\ &\int_{0}^{\frac{1}{2}} \left| \frac{1}{2} - t \right| \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) dt = \frac{\pi - 4\sqrt{2} + 4}{\pi^{2}} \\ &\int_{\frac{1}{2}}^{1} \left| t - \frac{1}{2} \right| \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) dt = \frac{\pi - 4\sqrt{2} + 4}{\pi^{2}} \\ &\int_{0}^{\frac{1}{2}} |t| \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) dt = \frac{4\sqrt{2} - 4}{\pi^{2}} \\ &\int_{\frac{1}{2}}^{1} |1 - t| \left(\sin \frac{\pi t}{2} + \cos \frac{\pi t}{2} \right) = \frac{4\sqrt{2} - 4}{\pi^{2}}. \end{split}$$

This completes the proof of the theorem.

REFERENCES

- [1] K. Bekar, "Hermite-Hadamard type inequalities for trigonometrically P-functions", C. R. Acad. Bulgare Sci., 72(11), 2019.
- [2] S.S. Dragomir and R.P. "Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula", Appl. Math. Lett. 11 (1998), 91-95.

- [3] S.S. Dragomir and C.E.M. Pearce, "Selected Topics on Hermite-Hadamard Inequalities and Its Applications", RGMIA Monograph 2002.
- [4] S.S. Dragomir, J. Pečarić and LE.Persson, "Some inequalities of Hadamard Type", Soochow J. Math., 21 (3)(2001), pp. 335-341.
- [5] J. Hadamard, "Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann", J. Math. Pures Appl. 58(1893), 171-215.
- [6] İ. İşcan, "New refinements for integral and sum forms of Hölder inequality", J. Inequal. Appl., (2019) 2019:304, 11 pages.
- [7] İ. İşcan and M. Kunt, "Hermite-Hadamard-Fejer type inequalities for quasi geometrically convex functions via fractional integrals", J. Math., Volume 2016, Article ID 6523041, 7 pages.
- [8] H. Kadakal, "Hermite-Hadamard type inequalities for trigonometrically convex functions", Sci. Stud. Res. Ser. Math. Inform., Vol. 28(2018), No. 2, 19-28.
- [9] M. Kadakal, H. Kadakal and İ. İşcan, "Some new integral inequalities for *n*-times differentiable *s*-convex functions in the first sense", TJANT, Vol. 5, No. 2 (2017), 63-68.
- [10] U.S., Kırmacı, "Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula", Appl. Math. Comput. 147 (1) (2004), 137-146.
- [11] S. Maden, H. Kadakal, M. Kadakal and İ, İşcan, "Some new integral inequalities for *n*-times differentiable convex and concave functions", J. Nonlinear Sci. Appl., 10, 12(2017), 6141-6148.
- [12] S. Özcan, and İ. İşcan, "Some new Hermite-Hadamard type inequalities for s-convex functions and their applications", J. Inequal. Appl., Article number: 2019:201 (2019).

- [13] S. Varošanec, "On *h*-convexity", J. Math. Anal. Appl. 326 (2007) 303-311.
- [14] G. Zabandan, "A new refinement of the Hermite-Hadamard inequality for convex functions", J. Inequal. Pure Appl. Math. 10 2(2009), Article ID 45.