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ABSTRACT. This paper revisits the Gneiting class of positive definite kernels originally proposed as a class of co-
variance functions for space-time processes. Under the framework of quasi-metric spaces and isometric embeddings,
the paper proposes a general and unifying framework that encompasses results provided by earlier literature. Our
results allow to study the positive definiteness of the Gneiting class over products of either Euclidean spaces or high
dimensional spheres and quasi-metric spaces. In turn, Gneiting’s theorem is proved here by a direct construction,
eluding Fourier inversion (the so-called Gneiting’s lemma) and convergence arguments that are required by Gneiting
to preserve an integrability assumption.
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1. INTRODUCTION

Positive definite kernels have a long history that traces back to many branches of pure and
applied mathematics, as well as to statistics, machine learning, computer science and other
applied sciences. Positive definite and radially symmetric kernels on metric spaces have been
introduced in the seminal papers [22, 23].

There has been a growing interest in the last twenty years for positive definiteness over
product spaces. The main motivation stems from stochastic processes defined continuously
over subsets of the type X × Y , where X is a subset of the d-dimensional Euclidean space Rd,
and Y is either the whole real line or the set of integers Z, and represents time. The nomencla-
ture space-time covariance functions is commonly accepted for kernels that are positive definite
over such product spaces, and the reader is referred to [8] for a review. A wealth of literature
is available for the case X = Rd, and the reader is referred to [2, 7, 16, 18, 21] and to [6] for
relevant contributions. Recently, much attention has been put on the case X = Sd−1, the unit
sphere embedded in Rd. A characterization theorem for this case (including the Hilbert sphere
S∞) is available thanks to [4]. Other contributions can be found in [10, 15] and recently in [27].

This paper considers quasi-metric spaces, that is, pairs (X,σ) where X is a non-empty set
and σ is a quasi-distance, that is, a function σ : X × X → [0,∞) satisfying σ(x, x′) = σ(x′, x),
x, x′ ∈ X , and σ(x, x) = 0, x ∈ X . A semi-metric space (X,σ) is a quasi-metric space if in addition
to the previous properties one has σ satisfying the triangle inequality. Further, if σ(x, x′) > 0
when x 6= x′, the semi-metric space (X,σ) becomes a metric space.

Normed spaces and inner product spaces are typical examples of quasi-metric spaces with
quasi-distance given by σ(x, x′) = ‖x− x′‖, x, x′ ∈ X , where ‖ · ‖ is the norm of the space. The
notion of semi-metric spaces is usually preferred when one deals with isometric embeddings.
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A quasi-metric space (X,σ) is isometrically embeddable in a Hilbert space (H, 〈·, ·〉) if there exists
a mapping i : X → H such that

〈i(x)− i(x′), i(x)− i(x′)〉 = σ(x, x′)2, x, x′ ∈ X.
This notion is explored in [28] and discussed in [3].

Let E be a nonempty set. A mapping ϕ : E × E → R is called positive definite if
N∑

k,l=1

ckclϕ(xk, xl) ≥ 0,

for any collection {ck : k = 1, . . . , N} ⊂ R and any {x1, . . . , xk} ⊂ E. IfE is a quasi-metric space
(X,σ), the positive definite function ϕ onE is usually demanded to be metric-dependent in the
sense that

ϕ(x, x′) = f(σ(x, x′)), x, x′ ∈ X,
where f is a continuous function. Obviously, the domain of f is understood to be the diameter
set of X , that is,

Dσ
X = {σ(x, x′) : x, x′ ∈ X},

while continuity on a semi-metric space is defined the same way it is so in a metric-space.
Depending on E and its metric structure, one may find convenient characterizations for the
positive definiteness of a function on E. One case that is somehow related to the present
work involves the case where E = Rd without any metric structure but the function ϕ being
translation-invariant, that is,

ϕ(x, y) = f(x− y), x, y ∈ Rd,
for some continuous function f : Rd → R. In this case, a result of Bochner ([1]) shows that ϕ is
positive definite if and only if f is the Fourier transform of a finite and positive Borel measure
µ, i.e.,

(1.1) f(x) =

∫
Rd

ei x · wdµ(w), x ∈ Rd,

with · denoting the dot product in Rd.
For two quasi-metric spaces (X,σ) and (Y, ν), we denote by PD(X × Y, σ, ν) the class of

continuous functions ϕ : Dσ
X ×Dν

Y → R such that the composite kernel

((x, y), (x′, y′)) 7→ ϕ(σ(x, x′), ν(y, y′)), (x, y), (x′, y′) ∈ X × Y,
is positive definite on X × Y . Analogously, we write PD(X,σ) for the class of functions ϕ :
Dσ
X → R being continuous and such that the kernel (x, x′) 7→ ϕ(σ(x, x′)) is positive definite.
Next, let us recall the notion of complete monotonicity. A function f : (0,∞) → R is called

completely monotone if it is infinitely often differentiable over (0,∞) and (−1)nf (n)(t) ≥ 0 for
all t > 0 and all n = 0, 1, . . .. In this paper, we will assume all completely monotone functions
are bounded so that they have a continuous extension to [0,∞). In particular, f(0) < ∞. A
nonnegative function f : (0,∞) → R having a completely monotone derivative is called a
Bernstein function. A Bernstein function can be continuously extended to [0,∞). Additional
information on completely monotone and Bernstein functions can be found in [20].

This paper deals with a class {Gα : α > 0} of continuous functions, where

(1.2) Gα(t, u) =
1

h(u)α
f

(
t

h(u)

)
, t, u ≥ 0,

with f and h strictly positive and continuous. In principle, both functions f and h are defined
over [0,∞), but they might be restricted to suitable subsets of [0,∞). Such a class has been
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especially popular in space-time geostatistics for the following reason: for d and l positive
integers, f being bounded and completely monotone and h such that exp(−ch) ∈ PD(Rl, ‖ · ‖)
for all c > 0, where ‖ · ‖ stands for the Euclidean norm, sufficient conditions for Gα to belong to
the class PD(Rd×R`, ‖·‖2, ‖·‖2) were given in [7]. The resulting class {Gα : α ≥ d/2} is usually
called Gneiting’s class. For f being bounded completely monotone, necessary and sufficient
conditions on h have been provided by [30] in order that Gα belong to PD(Rd×Y, ‖ · ‖2, ‖ · ‖Y ),
where (Y, ‖ · ‖Y ) is a normed linear space. Porcu et al. ([15]) presented sufficient conditions
for Gα to belong to the class PD

(
Rd × Sm, ‖ · ‖2, θm

)
, where θm is the geodesic distance over

Sm. Sufficient conditions for Gα to belong to the class PD(Sm × Rd, θm, ‖ · ‖2) for all d and m

were shown recently in [27]. In [21], Schlather has considered diagonalized versions G̃α(t) :=
Gα(t, t), t ≥ 0, ofGα. Minor modifications ofGα within the class PD(Rd×R, ‖·‖2, |·|) have been
proposed by [6] and [17]. Finally, [16] has considered the class PD(

∏m
k=1 Rk, ‖ · ‖2, . . . , ‖ · ‖2) on

the basis of a generalization of the function Gα.
The previous paragraph cannot be detached from a classical result proved by I. J. Schoenberg

([23]) involving conditionally negative definite functions. Recall that for a quasi-metric space
(X,σ), a continuous function f : Dσ

X → R is conditionally negative definite on X , and we write
f ∈ CND(X,σ), if for n ≥ 1 and points x1, . . . , xN in X , it holds

N∑
j,k=1

cjckf(σ(xj , xk)) ≤ 0,

for all real numbers c1, . . . , cn satisfying
∑N
j=1 cj = 0. If (X,σ) is a quasi-metric space, a func-

tion h : Dσ
X → R belongs to CND(X,σ) if and only if all the functions u ∈ Dσ

X 7→ exp(−sh(u)),
s > 0, belong to PD(X,σ). In particular, some of results described in the previous paragraph
can be re-established with the CND nomenclature.

Given the existing results, it is natural to ask for results that allow for a very general version
as well as for a unifying framework. The plan of this paper is the following. Section 2 provides
the necessary background, some preliminary results, a general abstract result that produces
functions in PD(Rd ×X, ‖ · ‖, σ), where (X,σ) is quasi-metric and examples. In particular, the
results imply an alternative proof of the original Gneiting’s result that does not involve conver-
gence arguments. Section 3 contains expanded versions of Gneiting’s result and adaptations to
the case, where one of the spaces is (Sm, θm).

2. PRELIMINARY FINDINGS

Positive definite functions of the type (1.1) that are additionally radially symmetric are
characterized as those functions f belonging to the class PD(Rd, ‖ · ‖). Define the function
Ωd : [0,∞)→ R through Ωd(0) = 1 and the identity

(2.3) Ωd(t) = Γ(d/2)

(
2

t

)(d−2)/2

J(d−2)/2(t), t > 0,

where Jν is the Bessel function of first kind and order ν. As showed in [23], the continuous
function f : [0,∞)→ R with f(0) = 1 belongs to the class PD(Rd, ‖ · ‖) if and only if

f(t) =

∫
[0,∞)

Ωd(rt)dµ(r), t ≥ 0,

where µ is a probability measure. Arguments in [5] show that Ωd is the characteristic function
of a random vector being uniformly distributed over the unit spherical shell Sd−1 embedded



88 V. A. Menegatto, C. P. Oliveira and E. Porcu

in Rd. Also, a convergence argument in [23] reveals that the class
⋂
d PD(Rd, ‖ · ‖) is uniquely

determined through scale mixtures of the type

f(t) =

∫
[0,∞)

e−rt
2
dµ(r), t ≥ 0,

with µ as before. This fact has a striking connection with completely monotone functions.
By Bernstein–Widder’s theorem ([26]), a continuous function f : [0,∞) → R restricts to a
completely monotone if and only if it is the Laplace transform of a positive and bounded mea-
sure µ:

(2.4) f(t) =

∫
[0,∞)

e−rtdµ(r), t ≥ 0.

In particular, this shows that f ∈ PD(Rd, ‖ · ‖) if and only if t ∈ (0,∞) 7→ f(
√
t) is completely

monotone.
For d a positive integer, let L1

d−1 denote the class of real measurable functions g on [0,∞) for
which

∫∞
0
|g(r)|rd−1dr < ∞. The Fourier-Bessel transform Fd(g) of order (d − 2)/2 of a function

g ∈ L1
d−1 is defined by

(2.5) Fd(g)(t) =

∫ ∞
0

g(r)Ωd(tr)r
d−1dr, t ∈ [0,∞).

It is well-known that Fd maps continuously and injectively L1
d−1 into the set C0([0,∞)) of

continuous functions on [0,∞) vanishing at infinity ([25, chapter 5]). On the other hand, the
fact that t ∈ [0,∞) 7→ Ωd(tr), r > 0, belongs to PD(Rd, ‖ · ‖), implies that the following
elementary result holds.

Proposition 2.1. If g : [0,∞)→ [0,∞) belongs to L1
d−1, then Fd(g) belongs to PD(Rd, ‖ · ‖).

A generalization of Proposition 2.1 is stated below and will turn to be very useful for the
findings following subsequently.

Theorem 2.2. Let (X,σ) be a quasi-metric space. Let g : [0,∞) × Dσ
X → R satisfy the following

assertions:
(i) g(·, u) belongs to L1

d−1 for any fixed u ∈ Dσ
X ;

(ii) g(r, ·) belongs to PD(X,σ) for any fixed r ≥ 0.
If the mapping (t, u) ∈ [0,∞) ×Dσ

X 7→ Fd(g(·, u))(t) is continuous on [0,∞) ×Dσ
X , then it belongs

to the class PD(Rd ×X, ‖ · ‖, σ).

Proof. Using Equation (2.5), the function Fd(g(·, u)) can be written as

Fd(g(·, u))(t) =

∫ ∞
0

g(r, u)Ωd(tr)r
d−1dr, (t, u) ∈ [0,∞)×Dσ

X ,

which, in concert with Schur product theorem ([11, p. 455]), completes the proof. �

An implication of Bernstein-Widder’s theorem is stated below. More details can be found in
[14].

Proposition 2.3. Let (X,σ) be a quasi-metric space. If f is bounded and completely monotone and h is
a nonnegative valued function in CND(X,σ), then f ◦ h belongs to PD(X,σ).

Proposition 2.3 is very useful to discuss the following important example.
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Example 2.4. Let (X,σ) be a quasi-metric space and d a positive integer. Let h be a nonnegative
valued function in CND(X,σ). Then, we claim that

(t, u) ∈ [0,∞)×Dσ
Y 7→

e−t
√
h(u)√

h(u)

belongs to PD(Rd ×X, ‖ · ‖, σ). To show it, let v > 0. We first recall the identity ([9, p. 678])∫ ∞
0

rd/2(r2 + v2)−(d+1)/2J(d−2)/2(tr)dr =

√
πt(d−2)/2

2d/2vevtΓ((d+ 1)/2)
, v, t > 0.

Resorting to Equation (2.3), and rearranging terms, we obtain∫ ∞
0

(r2 + v2)−(d+1)/2Ωd(tr)r
d−1dr =

Γ(d/2)
√
π

2vevtΓ((d+ 1)/2)
, v, t > 0.

Since the function on the right hand side is continuous, by letting t→ 0+ we have that the iden-
tity above holds for t = 0 as well. Since, for r fixed, v ∈ (0,∞) 7→ (r2 + v)−(d+1)/2 is bounded
and completely monotone, if h is a nonnegative valued function in (X,σ), then Proposition
2.3 shows that u ∈ Dσ

X 7→ (r2 + h(u))−(d+1)/2 belongs to PD(X,σ). After ignoring positive
constants, we can invoke Theorem 2.2 to show our claim.

It might be interesting to note that this example does not belong to the Gneiting class Gα.
We now rephrase Theorem 2.2 according to the language of Fourier transforms. For an ab-

solutely integrable function F in Rd, its Fourier transform F̂ is given by the formula

F̂ (x) =
1

(2π)d/2

∫
Rd

F (y)e−i x · ydy, x ∈ Rd.

It is well known that if F is radial, that is, F (x) = f(‖x‖), for some function f : [0,∞) → R,
then F̂ is radial as well [5]. For a function G : Rd × Dσ

X → R, we write Ĝ(·, u) to denote the
Fourier transform of x ∈ Rd 7→ G(x, u), for a fixed u, whenever it exists. If G(·, u) is radial in
the first variable, that is,

G(x, u) = g(‖x‖, u), x ∈ Rd,
for some g and Ĝ(·, u) exists, then we may also write Ĝ(x, u) = ĝ(‖x‖, u), for some function
ĝ(·, u). This notation appears below.

Theorem 2.5. Let (X,σ) be a quasi-metric space. Let G : Rd ×Dσ
X → R be radial in the first variable

and assume the following assumptions hold:
(i) g(·, u) belongs to L1

d−1 for any fixed u ∈ Dσ
X ;

(ii) g(r, ·) belongs to PD(X,σ) for any fixed r ≥ 0.
If the mapping (t, u) ∈ [0,∞) × Dσ

X 7→ ĝ(t, u) is continuous on [0,∞) × Dσ
X , then it belongs to the

class PD(Rd ×X, ‖ · ‖, σ).

Proof. Theorem 5.26 in [29] shows that if g(·, u) ∈ L1
d−1 for any u ∈ Dσ

X , then g(‖ · ‖, u) is
absolutely integrable in Rd. In particular, Ĝ(·, u) is well defined for any fixed u. Invoking again
Theorem 5.26 in [29], we have that

Ĝ(x, u) =
2−(d−2)/2

Γ(d/2)
Fd(g(·, u))(‖x‖), x ∈ Rd;u ∈ Dσ

X .

An application of Theorem 2.2 completes the proof. �

An illustration of Theorem 2.5 follows.
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Proposition 2.6. Let (X,σ) be a quasi-metric space and h a nonnegative valued function in the class
CND(X,σ). For s > 0, let Hs be the function defined through

(2.6) Hs(t, u) =
e−st

2/h(u)

h(u)d/2
, (t, u) ∈ [0,∞)×Dσ

X .

Then Hs belongs to PD(Rd ×X, ‖ · ‖, σ) for all s.

Proof. We start by invoking the well-known identity ([1, p.13])

e−‖v‖
2/2 =

1

(2π)d/2

∫
Rd

e−i v · we−‖w‖
2/2dw, v ∈ Rd.

Elementary Fourier inversion allows to write

2d/2
e−‖v‖

2/ξh(u)

ξd/2h(u)d/2
=

1

(2π)d/2

∫
Rd

e−i v · wG(‖w‖, u)dw, v ∈ Rd; ξ > 0,

where G : [0,∞)×Dσ
X → R is given through the identity

G(x, u) = e−sh(u)x2/4, x ≥ 0;u ∈ Dσ
X .

Since G is radial in the first argument, we can now write

g(r, u) = e−sh(u)r2/4, r ≥ 0;u ∈ Dσ
X .

Proposition 2.3 shows that g(r, ·) satisfies Assumption (ii) in Theorem 2.5 for all r ≥ 0. Assump-
tions (i) holds trivially, while for ξ > 0 fixed, the function

ĝ(t, u) = 2d/2
e−t

2/ξh(u)

ξd/2h(u)d/2
, (t, u) ∈ [0,∞)×Dσ

X ,

is continuous. Theorem 2.5 shows that

(t, u) ∈ [0,∞)×Dσ
X 7→ 2d/2

e−t
2/ξh(u)

ξd/2h(u)d/2
,

belongs to the class PD(Rd×X, ‖·‖, σ) for all positive ξ. A change of variable of the type ξ = 1/s
and the fact that we can ignore multiplicative positive constants complete the proof. �

Remark 2.7. The function Hs provides a way to prove Gneiting’s theorem [7] by direct con-
struction, without resorting to Fourier transform techniques which in turn require integrability
assumptions and the application of a convergence argument.

Remark 2.8. Proposition 2.6 can be also proved by invoking Theorem 2.2, in concert with the
identity∫ ∞

0

e−h(u)r2/4sΩd(tr)r
d−1dr = 2d−1sd/2Γ(d/2)

e−st
2/h(u)

h(u)d/2
, s > 0; t ≥ 0;u ∈ Dσ

X ,

that is derived from the equality (see [9, p.706])∫ ∞
0

rd/2e−vr
2
J(q−2)/2(tr)dr = t(d−2)/2

e−t
2/4v

(2v)q/2
, t, v > 0.
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Example 2.9. We use Formula 69 in Chapter 25 of [19]:∫ ∞
0

r(d+4)/2e−vr
2
J(d−2)/2(tr)dr =

t(d−2)/2

2d/2v(d+2)/2

(
d

2
− t2

4v

)
e−t

2/4v, t, v > 0.

Simple algebra manipulation as in the previous example leads to∫ ∞
0

r2e−vr
2
Ωd(tr)r

d−1dr =
Γ(d/2)

2

(
d

2
− t2

4v

)
e−t

2/4v

v1+d/2
, v > 0; t ≥ 0.

Replacing v by h(u)/(4s), with h ∈ CND(X,σ), yields that∫ ∞
0

r2e−h(u)r2/4sΩd(tr)r
d−1dr = Γ(d/2)2d+1s1+d/2

(
d

2
− st2

h(u)

)
e−st

2/h(u)

h(u)1+d/2
,

for s, t > 0 and u ∈ Dσ
X . Theorem 2.2 now shows that

(t, u) ∈ [0,∞)×Dσ
X 7→ s1+d/2

(
d

2
− st2

h(u)

)
e−st

2/h(u)

h(u)1+d/2

belongs to PD(Rd ×X, ‖ · ‖, σ). We can also integrate with respect to s in order to see that

(t, u) ∈ [0,∞)×Dσ
X 7→

1

h(u)1+d/2

∫ ∞
0

s1+d/2
(
d

2
− st2

h(u)

)
e−st

2/h(u)dµ(s)

also belongs to PD(Rd×X, ‖ · ‖, σ) as longs as µ is a convenient measure on [0,∞). Again, this
example does not belong to the Gneiting class Gα.

3. GNEITING CLASS: RESULTS

The following result is another implication of Bernstein-Widder’s theorem. As in Proposition
2.3, it can be extracted from [14].

Proposition 3.1. Let (X,σ) be a quasi-metric space. Let g be a Bernstein function and h a nonnegative
valued function in CND(X,σ). Then, exp(−c(g ◦ h)) belongs to PD(X,σ) for all c > 0.

We are now ready to state and prove one of our main contributions.

Theorem 3.2. Let d be a positive integer and (X,σ) a quasi-metric space. Let Gα be the function
defined at Equation (1.2) with f being completely monotone. If a ∈ (0, 1] and α ≥ d/2, then the
following assertions are true:

(i) Gα belongs to PD(Rd ×X, ‖ · ‖2a, σ) provided h is a nonnegative valued function in the class
CND(X,σ);

(ii) Gα belongs to PD(Rd × X, ‖ · ‖2a, σ) provided h := g ◦ h1, where g is a positive Bernstein
function and h1 is a nonnegative function in CND(X,σ);

(iii) Gα belongs to PD(Rd ×X, ‖ · ‖2a, σ2b) provided b ∈ (0, 1], h is a positive Bernstein function,
and (X,σ) is isometrically embeddable in a Hilbert space.

Proof. Let us show Assertion (i) by invoking Proposition 2.6, which shows that Hs in Equation
(2.6) defines an element of the class PD(Rd × X, ‖ · ‖, σ) for all s > 0. This in turn shows, in
concert with Bernstein–Widder’s theorem that

Gd/2(t2, u) =
1

h(u)d/2

∫ ∞
0

e−st
2/h(u)dµ(s) =

∫ ∞
0

Hs(t, u)dµ(s)
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is also a member of PD(Rd ×X, ‖ · ‖, σ), and thus Gd/2(t, u) ∈ PD(Rd ×X, ‖ · ‖2, σ). We now
observe that if h is a nonnegative valued function in CND(X,σ), then the Laplace transform
identity

1

x
=

∫ ∞
0

e−sxds, x > 0,

shows that 1/h ∈ PD(X,σ), while the identity

xa =

(∫ ∞
0

1− e−s2

s1+2a
ds

)−1 ∫ ∞
0

1− e−s2x

s1+2a
ds, x ≥ 0; a ∈ (0, 1),

implies that ha ∈ PD(X,σ) for a ∈ (0, 1). To proceed, for α ≥ d/2, write

Gα(t, u) =
1

h(u)α−d/2
Gd/2(t, u), t, u ≥ 0,

and notice that Proposition 2.3 shows that

u ∈ [0,∞) 7→ 1

h(u)α−d/2

belongs to PD(X,σ). Since it is an easy matter to verify that

(t, u) ∈ [0,∞)2 7→ 1

h(u)α−d/2

belongs to PD(Rd ×X, ‖ · ‖, σ), we may invoke the Schur product theorem in order to deduce
that Gα ∈ PD(Rd × X, ‖ · ‖2, σ), for α ≥ d/2. Finally, for any Hilbert space H, it is well-
known that the semi-metric space (H, ‖ · ‖a) is isometrically embeddable into (H, ‖ · ‖) itself.
Therefore, we have that Gα ∈ PD(Rd ×X, ‖ · ‖2a, σ). Assertion (ii) follows from (i) in concert
with Proposition 3.1. If (X,σ) is isometrically embeddable in a Hilbert space, then the function
h1(u) = u2 belongs CND(X,σ). Consequently, so does hb1, for b ∈ (0, 1]. Thus, Assertion (iii)
follows from (ii). �

In the last two results in the paper, we will employ the previous results in order to obtain
positive definite functions on Sm ×X , where X is a quasi-metric space.

Theorem 3.3. Letm be a positive integer. LetGα be the function defined at Equation (1.2) with f being
bounded and completely monotone. Then, the following assertions hold:

(i) Gα belongs to PD(Sm ×X, (2 − 2 cos θm)a, σ) provided (X,σ) is a quasi -metric space, h is
a nonnegative valued function in CND(X,σ), α ≥ (m+ 1)/2 and a ∈ (0, 1];

(ii) Gα belongs to PD(Sm × Sl, (2− 2 cos θm)a, θbl ) provided l ≥ 1, α ≥ (m+ 1)/2, a, b ∈ (0, 1]
and h is a Bernstein function.

Proof. Assertion (i) follows from the obvious identity

‖x− y‖2 = 2− 2 cos θm(x, y), x, y ∈ Sm,

in concert with Theorem 3.2-(i). As for Assertion (ii), we first notice that (Sl, θ
1/2
l ) is isometri-

cally embeddable in (S∞, θ
1/2
∞ ). On the other hand, arguments in [24] show that (S∞, θ

1/2
∞ ) is

isometrically embeddable in a Hilbert space. Thus, the assertion follows from Assertion (i) and
Theorem 3.2-(iii). �
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It becomes natural to ask whether Theorem 3.3 still holds when the metric (2− 2 cos θm)a is
replaced with the geodesic θm. The answer seems to rely on a suitable choice of the completely
monotone function f in the definition of Gα. Below, we show that it is true whenever α, s > 0,
f(t) = (s+ t)−α and h belongs CND(X,σ). Indeed, it suffices to observe that

Γ(α)

(t+ sh(u))α
=

∫ ∞
0

e−txe−sh(u)xxα−1dx.

Applying Proposition 2.3 once again, it is now seen that

(3.7) (t, u) ∈ [0, π]×Dσ
X 7→

Γ(α)

(t+ sh(u))α

belongs to PD(Sm ×X, θm, σ). Finally, one needs to observe that

1

(t+ sh(u))α
=

1

h(u)α
f

(
t

h(u)

)
= Gα(t, u), (t, u) ∈ [0, π]×Dσ

X .

The elaborations above suggest that a special class of completely monotonic functions might
turn to be useful for the result that follows. Following [12], we call a function f : [0,∞) → R a
generalized Stieltjes function of order λ if

f(x) = C +

∫ ∞
0

e−xrrλ−1φ(r)dr,

for some completely monotone function φ and some C ≥ 0.

Theorem 3.4. Let m be a positive integer and (X,σ) a quasi-metric space. Let Gα be the function
defined at Equation (1.2) with f a generalized Stieltjes function of order λ > 0. Then, Gα belongs to
PD(Sm ×X, θm, σ) provided α ≥ λ and h is a nonnegative valued function in CND(X,σ).

Proof. According to [20, p. 16], we can write

Gε+λ(t, u) =
1

h(u)ε+λ

[
A+

∫ ∞
0

h(u)λ

(rh(u) + t)λ
dr

]
=

A

h(u)ε+λ
+

1

h(u)ε

∫ ∞
0

1

(rh(u) + t)λ
dr, t ≥ 0;u ∈ Dσ

X ; ε ≥ 0,

for some positive constant A and a convenient positive measure µ on [0,∞). Since the function
in Equation (3.7) belongs to PD(Sm × X, θm, σ), when h is a nonnegative valued function in
CND(X,σ), the same is true for

(t, u) ∈ [0, π]×Dσ
X 7→

∫ ∞
0

1

(rh(u) + t)λ
dr.

Invoking Proposition 2.3 and taking into account that the class PD(Sm ×X, θm, σ) is a convex
cone, it follows that (t, u) ∈ [0, π]×Dσ

X 7→ Gε+λ(t, u) belongs to PD(Sm ×X, θm, σ). The proof
is completed. �

Deeper results providing generalizations of Gneiting’s result via generalized Stieltjes func-
tions were obtained recently in [13]. In particular, it provides concrete examples of completely
monotone functions f that lead to classes {Gα : α > 0} of strictly positive definite functions.
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