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Abstract: The power function of the one-tailed T—test is characterized by a rapid rise from close to zero for I“ < #0 to one

as )u becomes larger than #0. The larger the number of elements in a simulated sample. the faster the power rises to
one, apparently until the mean value theorem takes effect and the sample averages begin to take on a normal distribution
themselves which gives a limiting power function where all of the assumptions of the test are satisfied by default.
Key words: power function. simuiation. T-test.

Simiilasyonlaria Tek-Yonlti T-testi’nin Gtic Fonksiyonunun
Elde Edilmesi

Ozet: Tek yt'mlti .11 < #0 T—testinin gilt; fonksiyonu Slftra yaktnken .11 degeri #0 degerini asttkca bire hizla yaklasan bir
fonksiyon olarak karakterize edilebilir. Simulasyondaki birim saytsm arttlkca. gut; bire daha htt yaklastr. Bu durum
ortalama deger teoremi etkisini gosterinceye ve ornek ortalamaiart normal dagiltm seklini alincaya kadar devam eder ki
bunun 6tesinde zaten test icin gerekli varsayimlar otomotik olarak saglanm IS olur.
Anahtar keiimeler: gtig fonksiyonu. simtilasyon. T-testi.

Introduction
In this study, the power of the one sample T-test is

analyzed using simulations for a generating distribution
where the assumptions of the test are satisfied. for
distributions where the assumption about the mean are
relaxed, and for where the assumptions about the
underlying distribution are relaxed. The statistical software
package Minitab is used to generate the simulations of the
data for the underlying distributions used in this study
(Ryan, Joiner and Cryer, 2005). Different sample sizes are
used for analyses of the power of the T-test.
The highlights of this study are the usefulness of
simulations and some of their properties, as well as
defining what the power of a statistical test.

Theoretical Background
The one-sample T-test is a statistical test of the

assumption that a sample mean is equal to the mean of
the assumed normal distribution underlying the data
(Wackerly et at. 2002). Based on the presumption that the
mean of the sample data taken is distributed according to
the t- distribution, comparison values for chosen type I
error probabilities. a . can be calculated numerically or
taken from a table for certain values of a . The T—statistic:

“(E—Vim)
has a t—distribution with (n — 1) degrees of freedom.

For the one-tailed Heat. the null hypothesis (
H0 : ,u = #0) is rejected if the sample T-statistic is larger
than the table value for a given a. This would indicate
that there is a probability of 1— a that the two means are
not the same as assumed in the null hypothesis. The
assumptions of the T—test are that the sampled data are
independently and identically distributed with a non-nai
distribution having a mean of ,u and standard deviation 0' .
The null hypothesis then assumes that the unknown
population mean is equal to the hypothesized value of pi.
This study focuses on the power of the one-tailed T-test
where the assumptions are satisfied and where the
assumption that the means are equal is relaxed and where
the underlying distribution is not normal, separately.

The power of a statistical test is simply the probability
that the test will reject the null hypothesis when it is false
(Navidi, 2006). To find an approximate power function for
the T-test for a normal underlying distribution with varying



it, and for an exponential distribution with varying 0,
simulations have to be used to test at different sample
sizes. The number of rejected simulations divided by the
total number of repetitions gives an approximate value for
the power of the test for each sample size and underlying
distributions of the data.

Study Design and Procedures
in this study. the approximate power function of the

one—tailed T-test for varying it with an underlying normal
distribution with 0:1, and for varying 6 with an
exponential underlying distribution are considered. Minitab
macros for both underlying distributions are created (see
Table 1). The T-statistic varies with the average value of
the sample, the sample standard deviation. and the
number of elements in the sample. The computer macro
for approximating the power of the T—test has to account
for this. The assigned value of 6 for the T-test is taken as
0.05. The samples are tested against the null hypothesis
that u is qual to yo (i.e. H0 :# =yo ). and the alternative
hypothesis thaty is greater than ,uo (i.e. Ha .‘ ,u > #0).
The null hypothesis is then rejected at the assigned a
value where the T—statistic is greater than the tabulated T-
vaiue for given a, and n—1 degrees of freedom (the
parameter of the t-distribution).

An initial indexing value has to be assigned outside of
the macro in Minitab. The number of repetitions for the
simulation (R) and the number of elements (n) in each
sample also has to be assigned outside of the macro for
efficient computing. A column of values for y and for t9
has to be defined for each underlying distribution to find an
approximate value of the power at each value of ,u or 9
for that distribution. The rest of the computation, including
simulating data for each underlying distribution, running a
T-test on each sample, and finding an approximate value
for the power of the T-test for each value of the mean for
both the normal and the exponential distributions is done
within the macros.

The power value for each given value of the mean of
the underlying distribution is stored in a column in Minitab
so that it can be graphed against its corresponding
underlying mean. The error in these approximate values
can be approximated using the calculated power values as
the approximate p-values of a binomial distribution. The
null hypothesis is rejected for each data sample from a
given underlying distribution with an approximate
probability equal to the value of the power. The standard
deviation for the approximate values for power is then;

s=1/p(1—p)/n and error=i1.96*s.

Table 1. Minitab macro used to generate the data for the various sample sizes for the normal underlying distribution:

SET 099
LET K1 = index number (1 to start)
LET K2 = number of elements. n
LET K3 = number of repetitions, R

EXECUTE ‘power' m

‘Powermtb'
LET K8 = K2-1
LET K9 = K2+1
LET K10 = K2+2
LET K11 = K2+3
LET K12 = K2+4
INVCDF 0.95 K6;
t K8.
LET K5 = 899(K1)
RANDOM K3 C1—CK2:
NORMAL K5, 1.
RMEAN C1-CK2 CK9
RSTD C‘i-CKZ CK10
LET CK11 = SQRT(K2)'CK9/CK10
LET CK12 = CK11>K6
MEAN CK12 = K4
LET C100(K1) = K4
LET K1 = K1+1
END

Data in C99 is values of ,Lt to be tested

Where ‘m' was the number of# values tested



The output values for the power at given M are the
corresponding elements of C100. To simulate the data
for the exponential distribution, to do the T-test on each
sample. and to calculate the approximate values of the
power at given values of (9. a new column C99 is
created with respect to the fact that 6 is greater than
zero for the exponential distribution. The only line in the
macro given in Table 1 that needs to be changed than
is that:

NORMAL K5, '1. was changed to EXPONENTIAL K5.
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These macros are run for sample sizes of 5. 10. 15, 25, 35
and 50 for each of the distributions. The plots of the
simulation results are presented in Figure 1 for normal
distribution and in Figure 2 for exponential distribution case.
The comparison of the two cases where the null and the
alternative hypotheses, respectively, are H0 = ,u = #0 =1

and Ha 3,11 > #0 with the sample size of n = 50 is shown
in Figure 3.
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Figure 1, Power of T—test for H0 = fl = #0 = 0 vs. Ha = p > #0 where sample data is it'd ~ N041); for sample size n.
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Figure 2, Power of T-test for H0 =1“ = #0 :1 vs. Ha = #5 > #0 where sample data is iid ~ exp(0) : for sample size n .
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Figure 3. Power function for n = 50 for X ~ it'd N041) and for X ~ lid Exp(6) of the one-tailed T—test for

Ho =iu=ito =1 w Ha =u>iuo-
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