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Abstract

In this paper, we propose a new approach to investigate the chaos projective synchronization
of the modified fractional-order hyperchaotic Rössler system and its application in secure
communication. The proposed communication system consists of four main elements
including: modulation, master system, slave system and demodulation. The main idea of
this approach is to inject the bounded or unbounded message into one of the parameters
of the proposed system using the exponential function. However, the way of injecting the
message in the modulation parameter must not remove the hyperchaotic character of the
signal sent to the slave system. The slave system adaptively synchronizes with the master
system, and the information signal can be recovered. Based on the Lyapunov stability theory,
an adaptation laws and adaptive control are designed to achieve projection synchronization
of the modified system. Numerical simulations are performed to show the feasibility of the
proposed secure communication scheme.

1. Introduction

The concept of using chaos theory for communication systems was essentially inspired by the work of Pecora and Carroll in 1990 [1]. They
discovered that two identical chaotic systems with different initial conditions can synchronize if they are properly coupled.
The chaotic transmission is a mode of secure communication that arises from the inclusion of chaos in transmission systems. The main
idea of the chaotic transmission is to inject the message into a chaotic signal to hide this information and send it to the receiver system
through a public channel. Thus, after the synchronization of the two chaotic systems (transmitter and receiver), the encrypted information
is thus recovered at the receiver system. On the other hand, in literature, one often finds the name of the fractional derivation to the
generalization of the derivation to an arbitrary order. The concepts of derivation and fractional integration are often associated with the
names of Riemann-Liouville, whereas the question about the generalization of these notions is older.
With particular attention from physicists as well as engineers, a remarkable research activity has been devoted to fractional computing.
Indeed, it has been found that many real physical systems are better characterized by dynamic models of fractional orders, such as diffusion
systems [2], chemical systems [3], electrochemical systems [4], biological systems [5] and viscoelastic systems [6], etc. The use of classical
models based on a classical derivation is therefore not appropriate. Chaos synchronization phenomena have been of particular interest in
the study of chaotic and hyperchaotic dynamical systems, since they can be applied to large areas of engineering and information science,
particularly in secure communication [7], control processing [8] and cryptology [9].
The basic configuration of a synchronization system consists of two chaotic or hyperchaotic systems: a transmitter system and a receiver
system. Note that the two previous systems can be identical (with different initial conditions) or completely different. The transmitter
system synchronizes the receiver system via one or several signals. In the literature, divers control methods have been applied to achieve
synchronization, such as approximated auxiliary system [10], active control [11], adaptative control [12] and fuzy adaptive control [13]. Using
these methods, several concepts of chaotic and hyperchaotic synchronization have also been extended, such as complete synchronization [14],
anti-synchronization [15], generalized synchronization [16], projective synchronization [17] and modified projective synchronization [18].
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A great deal of work has been done in recent years, exploiting chaotic and hyperchaotic signals in the context of secure communications.
Indeed, their characteristics, sensitivities to the initial conditions, deterministic dynamics, ergodicity and structure complexity, are well
adapted to secure transmissions [19–21].
In most of the secure communication systems proposed above, the size of the message must be small enough, otherwise an hyperchaotic
system may be asymptotically stable, which may render the retrieval of the transmitted signal unsuccessful. However, in some real
applications, various messages to be transmitted can be unbounded.
In [22], X Wu et al. have proposed a new secure communication scheme based on the projective generalized synchronization of a hyperchaotic
system, where the signal of the message is bounded or unbounded. However, it should be mentioned that the fundamental results of the
previous work apply only to integer-order hyperchaotic systems to the design of the secure communication system. So, it is very interesting
to extend them to the general case of fractional order systems and the work in this area is still considered a stimulating research topic.
Motivated by the above considerations, in this paper, we propose a new simple approach to solve both the problem of projective synchroniza-
tion in the modified fractional-order hyperchaotic Rössler system and that of the transmission security, where the signal of the message is
bounded or unbounded.
The current manuscript is organized as follows: In Section 2, we present the system description and some preliminaries. The main result of
this paper concerning a new secure communication scheme based on fractional order hyperchaotic system is mainly presented in Section 3.
Therefore, in order to achieve this purpose, a modified adaptative control and a parameter update rule are designed. Numerical simulations
are presented to show the viability and efficiency of the proposed method in Section 4. Finally, we conclude our paper with a short summary
in Section 5.

2. System description and preliminaries

Consider the new hyperchaotic system [23] written by the dynamic equations:
ẋ1 =−x2− x3 + x4,
ẋ2 = x1 +a1x2,
ẋ3 = x1x3−a3x3 +a2,
ẋ4 = a4x1.

(2.1)

For the parameter values a2 = 0.01, a3 = 5, a4 = 0.1 and 0.16≤ a1 ≤ 0.19, the system has large hyperchaotic region. The variation of the
three largest Lyapunov exponents for different values of a1 is given in Figure 2.1.
From the Figure 2.1, one can say that there are two positive lyapunov’s exponents, when 0.16≤ a1 ≤ 0.19, wich means that the system is

0 0.05 0.1 0.15 0.2 0.25 0.3a
1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
λ

1

λ
2

λ
3

Figure 2.1: The three largest Lyapunov’s exponents of system (2.1)

hyperchaotic.
The fractional version of the system (2.1) is governed by:

Dα1 x1 =−x2− x3 + x4,
Dα2 x2 = x1 +a1x2,
Dα3 x3 = x1x3−a3x3 +a2,
Dα4 x4 = a4x1.

(2.2)

where αi ∈ ]0,1[ , i = 1,2,3,4 are fractional-orders, and Dα is the Caputo derivative, which is defined as:

Dα x(t) = Jn−α x(n)(t), α ∈ (0,1), (2.3)

were n = dαe, i.e., n is the first integer which is not less than α ; x(n) is the general n-order derivative and Jγ is the γ-order Riemann–Liouville
integral operator expressed as follows:

Jγ y =
1

Γ(γ)

∫ t

0
(t− τ)γ−1y(τ)dτ, (2.4)

where Γ(.) is the gamma function.
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Remark 2.1. The major advantage of the Caputo definition is that the initial conditions for fractional-order differential equations take a
similar form as for integer-order differential equations.

Remark 2.2. In system (2.1), the fractional-order system is called a commensurate fractional-order system if α1 = α2 = α3 = α4, otherwise
the system is called an incommensurate fractional-order system.

3. Main results

The Main results of this part is mainly devoted to a new secure communication scheme. This method is based on the projective synchronization
(PS) of the modified fractional Rösler system, using the parametric modulation technique. Figure 3.1 describes the proposed hyperchaotic
communication scheme based on parametric modulation. The signal of the message to be sent can be bounded or unbounded. The proposed
communication system consists of four main elements including: modulation (using exponontial function), master system, slave system and
demodulation. Finally, the original message signal transmitted can be successfully recovered by the estimated parameter and the proposed
invertible function.
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Figure 3.1: Principal diagram of the prposed secure communication.

In the proposed communication system, we plan to modulate in the unknown parameter a1 of the system(2.2).
Let m(t) be the signal of the message. Now let’s define a new unknown parameter A = A1(t). In order to preserve the hyperchaotic behavior
of the transmitter system studied, we propose the following parametric modulation technique:

A1(t) = 0.03e−m(t)+0.16, m(t)≥ 0, (3.1)

where e(.) is the exponontial function.
Now, we replace the parameter a1 of the system (2.2) by A1, we have:

Dα1 x1 =−x2− x3 + x4,
Dα2 x2 = x1 +A1x2,
Dα3 x3 = x1x3−a3x3 +a2,
Dα4 x4 = a4x1,

(3.2)

where x1,x2,x3, x4 are chaotic signals that must be transmitted to the receiver system via a public channel. Since A1(t) ∈ [0.16,0.19], the
resulting system (3.2) is still hyperchaotic. Then we can take the system (3.2) as the master system.
Consider also the hyperchaotic slave system, which is supposed to be written by:

Dα1 y1 =−y2− y3 + y4 +u1,

Dα2 y2 = y1 + Â1y2 +u2,
Dα3 y3 = y1y3−a3y3 +a2 +u3,
Dα4 y4 = a4y1 +u4,

(3.3)

where Â1 is the estimated parameter of A1 and ui, i = 1,2,3,4 are the controls to be determined.
Our main objective is to design a modified adaptive control ui (for all i = 1,2,3,4) and a parameter Â1 realizing a practical PS between the
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master system (3.2) and the slave system (3.3) and finally Â1 converges towards the value A1.
To quantify this goal, the synchronization error is defined as:

ei = yi−θxi, i = 1,2,3,4, (3.4)

where θ is a scaling factor defining a proportional relationship between the two synchronized systems.
Therefore, the complete synchronization and anti-synchronization are the special cases of a PS, when θ takes the values +1 and −1,
respectively.
Let us also define the estimation error as:

eA1 = A1− Â1. (3.5)

The error dynamics is easily obtained in the form:

Dαi ei = Dαi yi−θDαi xi, i = 1,2,3,4. (3.6)

Inserting(3.2) and (3.3) in (3.6) yields the following:
Dα1 e1 =−e2− e3 + e4 +u1,

Dα2 e2 = e1 + Â1e2−θeA1 x2 +u2,
Dα3 e3 =−a3e3 + y1y3−θx1x3 +a2(1−θ)+u3,
Dα4 e4 = a4e1 +u4.

(3.7)

Differentiating (3.5) from t, we have:

ėA1 =−0.03ṁe−m− ˙̂A1 (3.8)

On the basis of the previous discussions, we shall state and prove the following result:

Theorem 3.1. (Main results) If the adaptive control parameter coordinates are selected as:
u1 = e2 + e3− e4− k1Dα1−1e1,

u2 =−e1− Â1e2 +θeA1 x2−Dα2−1(θeA1 x2 + k2e2),
u3 = a3e3− y1y3 +θx1x3−a2(1−θ)− k3Dα3−1e3,
u4 =−a4e1− k4Dα4−1e4,

(3.9)

where ki, i = 1,2,3,4 are positive control gains,
and the update law for the parameter estimate is taken as:

˙̂A1 =−θe2x2−0.03ṁe−m, (3.10)

then the PS between the two identical systems (3.2) and (3.3) is achieved.

Proof. Inserting (3.9) into (3.7), we get the error dynamic system as follows:
Dα1 e1 =−k1Dα1−1e1,
Dα2 e2 =−Dα2−1(θeA1 x2 + k2e2),
Dα3 e3 =−k3Dα3−1e3,
Dα4e4 =−k4Dα4−1e4.

(3.11)

Consider the Lyapunov function candidate as:

V =
1
2

(
4

∑
i=1

e2
i + e2

A1

)
. (3.12)

Obviously, V is a positive semi-definite function on R5.
The time derivative of V along the error system (3.11) is:

V̇ =
4

∑
i=1

eiėi + eA1 ėA1

=
4

∑
i=1

eiD1−αi(Dαi ei)+ eA1 ėA1

= e1(−k1e1)− e2(θeA1 x2 + k2e2)+ e3(−k3e3)+ e4(−k4e4)+ eA1(−0.03ṁexp(−m)− ˙̂A1)

=−(k1e2
1 + k2e2

2 + k3e2
3 + k4e2

4)+ eA1(−θe2x2−0.03ṁexp(−m)− ˙̂A1). (3.13)

Substituting the adaptation law(3.10) in (3.13), we have:

V̇ =−(k1e2
1 + k2e2

2 + k3e2
3 + k4e2

4), (3.14)

which is negative semi-definite on R5. Therefore, according to Lyapunov stability theory, the synchronization errors ei, i = 1,2,3,4 converge
asymptotically to zero, i.e. the PS between the master system (3.2) and the slave system (3.3)is achieved. This completes the proof.
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Remark 3.2. According to the proposed transformation function (3.1), the recovered signal message should be defined by:

m̂(t) = ln
(

0.03
Â1(t)−0.16

)
. (3.15)

Once the synchronization errors ei, i = 1,2,3,4 approaches zero, it means:

Â1(t)→ A1(t), when t→ ∞. (3.16)

Hence, we have:

m̂(t) = ln
(

0.03
Â1(t)−0.16

)
→ m(t) = ln

(
0.03

A1(t)−0.16

)
, when t→ ∞. (3.17)

Therefore, it can be concluded that the message signal can be finally recovered precisely by the identified parameter and the corresponding
demodulation method.

4. Numerical simulations

In this section, computer simulations will be provided to verify the feasibility of the proposed communication system. The Adams-Bashforth-
Moulton method is used to solve the fractional systems.

4.1. Case of a bounded information signal

Here, the hidden message signal in the slave system is given by:

m(t) = 3− cos(2t)−2cos(3t). (4.1)

Obviously, 0≤ m(t)≤ 6. According to the equation (3.1), we can select A1(t) as follows:

A1(t) = 0.03e(−3+cos(2t)+2cos(3t))+0.16. (4.2)

It follows that A1(0) = 0.19.
The initial condition for the adaptation law is given by: Â1(0) = 0.19.
So the initial condition of the estimation error is given by: eA1(0) = 0.
The initial conditions of the two systems (3.2) and (3.3) are selected respectively as:

x1(0) =−0.02, x2(0) =−0.01, x3(0) =−0.046, x4(0) = 0.02. (4.3)
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Figure 4.1: Projections of phase portraits of the resulting system (3.2). Case of the bounded information signal: m(t) = 3− cos(2t)−2cos(3t)

y1(0) =−0.08, y2(0) =−0.08, y3(0) = 0.128, y4(0) = 0.07 (4.4)

The parameter θ is selected randomly as:

θ = 3. (4.5)

As a result, the initial system error conditions are given by:

e1(0) =−0.02, e2(0) =−0.05, e3(0) = 0.01, e4(0) = 0.01. (4.6)
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Figure 4.2: Time evolution of the synchronization errors. Case of the bounded information signal: m(t) = 3− cos(2t)−2cos(3t)
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Figure 4.3: Time evolution of the parameter, the estimated parameter and the error of the estimated parameter. Case of the bounded information signal:
m(t) = 3− cos(2t)−2cos(3t)
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Figure 4.4: Time evolution of the original message, the retrieved message and the error of retrieved message. Case of the bounded information signal:
m(t) = 3− cos(2t)−2cos(3t)

The gain (design) parameters are chosen as follows:

k1 = k2 = k4 = k4 = 0.1. (4.7)

The orders of fractional derivatives are chosen as:

(α1,α2,α3,α4) = (0.98,0.98,0.97,0.97). (4.8)
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Figure 4.1 illustrates the projections of phase portraits of the resulting system (3.2). The simulation results of the proposed communication
system are shown in Figures 4.2, 4.3 and 4.4.

Remark 4.1. From the Figure 4.2, we can easily see that the errors synchronisation ei, i = 1,2,3,4 converge asymptotically towards zero
quickly, i.e., the PS between the master system and the slave system is obtained.
On the other hand, Figure 4.4 describes the original message signal m(t), the recovered message signal m̂(t) and the signal error via the
demodulator (3.15).
From these figures, we can easily see that the error of the parameter converges quickly to zero, when t ≥ 100s, which shows that the
reconstructed signal m̂(t) coincides with the original message signal m(t) with good precision, and the goal of secure communication is
achieved.

4.2. Case of an unbounded information signal
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Figure 4.5: Different hyperchaotic attractors of the resulting system (3.2). Case of unbounded information signal: m(t) = 0.05(t + sin(t))
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Figure 4.6: Time evolution of the synchronization errors. Case of unbounded information signal: m(t) = 0.05(t + sin(t))

In this case, the message signal is taken as follows:

m(t) = 0.05(t + sin(t)), (4.9)

According to the equation(3.1), A1(t) can be obtained as follows:

A1(t) = 0.03e(−0.05(t+sin(t)))+0.16. (4.10)

It follows that A1(0) = 0.19.
The initial condition for the adaptation law is given by: Â1(0) = 0.19.
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So the initial condition of the estimation error is given by eA1(0) = 0.
The initial conditions of the two systems (3.2) and (3.3) are selected respectively as:

x1(0) = 0.1, x2(0) =−0.1, x3(0) =−0.2, x4(0) = 0.2. (4.11)

y1(0) = 0.3, y2(0) = 0, y3(0) =−0.6, y4(0) = 0.6. (4.12)

The scale parameter θ is randomly selected as:

θ = 2. (4.13)

Therefore, the initial system error conditions are given by:

e1(0) = 0.1, e2(0) = 0.2, e3(0) =−0.2, e4(0) = 0.2. (4.14)

The gain parameters are chosen as follows:

k1 = k3 = k4 = 0.25, k2 = 0.5. (4.15)

The orders of fractional derivatives are chosen as:

(α1,α2,α3,α4) = (0.98,0.98,0.98,0.97). (4.16)

The different hyperchaotic attractors of the resulting system (3.2) is shown in Figure 4.5 . The simulation results of the proposed
communication system are shown in Figures 4.6, 4.7 and 4.8.

Remark 4.2. From the Figure 4.6 , its easy to show that all of the synchronization errors ei i = 1, 2, 3, 4, approach to zero quickly. Therefore,
the proposed systems are globally synchronized.
The original message signal m(t), the recovered message signal m̂(t) and the signal error m̂(t)−m(t) are shown in Figure 4.8, which shows
that the reconstructed signal m̂(t) coincides with the original message signal m(t) with good precision, and the goal of secure communication
is achieved.
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5. Conclusion

In the present paper, a new approach for hyperchaotic secure communication method is included by using the parametric modulation
technique. Two kinds of secure communication schemes in the case that the hidden message is bounded or unbounded are presented for the
possible application in real engineering. We think that we have achieved two important goals. First one, using Lyapunov method, a modified
adaptative controller and update law for a parameter estimate are introduced to achieve PS of fractional-order hyperchaotic systems. In
particular, the errors system converge to zero quickly, which helps to find the time required. The most important part of this analysis is the
proper design of modulation technique so that the message signals in both cases (bounded or unbounded) can be successfully and secretly
transmitted via four main elements, namely: modulation, master system, slave system and demodulation. Finally, numerical simulations
were provided to verify the effectiveness and feasibility of the proposed secure communication scheme.
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