
 

Academic Platform Journal of Engineering and Science 8-2, 310-315, 2020 

 

 

 

 

Academic Platform Journal of Engineering and Science 
 

 

journal homepage: http://apjes.com/ 

 

 

 

*Corresponding Author:  Institute of Pure and Applied Science, Marmara University, İstanbul, Turkey, aliosmankabil@gmail.com 

 

Doi: 10.21541/apjes.629374 

 

Optimization of Cutting Parameters for Sustainable Machining of Titanium Ti-5553 

Alloy using Genetic Algorithm 
 

*1Ali Osman Kabil, 2Yusuf Kaynak 
1 Institute of Pure and Applied Science, Marmara University, İstanbul, Turkey, aliosmankabil@gmail.com,  

2 Department of Mechanical Engineering, Marmara University, İstanbul, Turkey, yusuf.kaynak@marmara.edu.tr,  

 
Research Paper Arrival Date: 04.10.2019 Accepted Date: 26.02.2020 

 
Abstract 

 

Titanium Ti-5553 alloys have been considered as difficult-to-machine materials due to the extremely high tool wear, high 

cutting forces, high temperature, and poor surface quality of machined parts. Process parameters needs to be optimized in order 

to improve machining performance and in the meantime reducing manufacturing cost. This study proposes sustainable 

machining process for this new generation Titanium Ti-5553 alloy. Process parameters including depth of cut, cutting speed, 

and feed rate were taken into account to optimize parameters better tool life, material removal rate and surface roughness 

together with energy consumption for the first time in literature. Genetic algorithm was utilized for optimizing the process 

parameters. Obtained results illustrated that optimization using genetic algorithm is a very effective approach to substantially 

improve machining performance of this alloy and make machining process of this alloy more sustainable by reducing energy 

consumption, manufacturing cost and increasing material removal rate in machining process of new generation titanium alloy. 
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1. INTRODUCTION 

 

Titanium alloys are widely used in the aerospace industry, 

the chemical industry and medical engineering [1] because 

of their higher yield strength, excellent fatigue crack growth 

resistance and good hardenability [2]. Among Titanium 

alloys, Ti-5553 (Ti–5Al–5Mo–5V–3Cr) is a recently 

developed near beta Ti alloy that is gathering increasing 

interest in aircraft structural applications, especially in the 

landing gear components [2]. While this alloy gains interest 

due to its superior properties, it is categorized as difficult-

to-machine materials due to its low thermal conductivity, 

low modulus of elasticity, high strength at elevated 

temperature, etc. Therefore, machining processes of this 

alloy needs also special attention, consequently it would be 

possible to control the processing of this alloy. During 

machining process of this alloy both the part quality and 

machining performance and cost of machining processes 

needs to be taken into account. This can be achieved by 

considering the basic elements of sustainable machining 

that includes machining cost, power consumption, waste 

management, personal health, environmental friendliness, 

etc [3]. 

 

Although the ideal approach should consider all basic 

elements to provide sustainable machining operation for 

this difficult-to-machine alloy, it may not be possible to 

take all elements into account. In the meantime, optimizing 

the process allow us to consider more than one element in 

one operation. By implementing optimization approach in 

this study, it is aimed to control energy consumption, 

machining cost and part quality by focusing on cutting 

forces, material removal rate, tool life, and surface quality 

of machined work materials. These outputs are the main 

concern as studies indicate that most of the environmental 

impacts related to machine tools are due to their energy 

consumption [4]. The selection of optimal parameters has 

great effect on achieving reduction in machining cost. 

Referring to this machining process, several works have 

been published regarding the optimization of the cutting 

parameters; many of them employed the surface roughness, 

cutting force, cutting power, tool life and material removal 

rate as optimization criteria [5]. Despite decades of 

optimizing of machining operations based on cost and 

productivity, optimizing energy consumption had not 

received significant attention [6]. Most of the researchers in 

the area of machining have used various techniques for 

finding the optimal machining parameters for single- and 

multi-pass turning operations [7]. 

 

In literature, various optimization techniques have been 

used to find optimum machining conditions including 

artificial neural network [8] and fuzzy set theory-based 

modelling techniques, statistical regression approach, and 

conventional optimization [9] techniques including 

Taguchi, Response Surface Design Methodology, iterative 
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mathematical search technique, and non-conventional 

techniques such as heuristic search techniques. Genetic 

algorithm (GA), etc [10]. The Genetic Algorithm (GA) is 

inspired by the genetic process of biological organisms. GA 

have been demonstrated to converge to the optimal solution 

for many diverse difficult problems, although optimality 

cannot be guaranteed [11]. GAs have been shown in 

practice to be very effective at function optimization; 

efficiently searching large and complex (multimodal, 

discontinuous, etc.) spaces, to find nearly global optima [8]. 

Researchers claimed that GA have significant superiority 

over other optimization techniques for solving the non-

linear optimization problems in machining parameters 

optimization [12]. Researchers used GA to achieve 

optimum machining parameters for considered objective 

which are material removal rate, surface roughness,  

minimum unit production cost, [7] production time,  tool 

life  and cutting power [13]. 

 

In this study, to find optimum machining parameters to 

increase surface quality, material removal rate and tool life 

together with considering energy consumption, Genetic 

Algorithm have been proposed. Our study indicates that 

utilizing this technique has very high potential to contribute 

to make machining process of this new generation titanium 

alloy more sustainable.   

 

2. METHODOLOGY 

 

2.1. Empirical Model 

 

Cutting parameters such as cutting speed, feed rate and 

depth of cut are considered for empirical models due to 

their significant effect on cutting force, surface roughness 

and flank wear in turning operation. The relationship 

between cutting force, surface roughness, flank wear and 

decision variables can be defined as follows [14]: 

 

𝐹𝑐 = 𝐶1𝑉𝑐
𝑎1𝑓𝑏1𝑎𝑝

𝑐1            (1) 

𝑅𝑎 = 𝐶3𝑉𝑐
𝑎3𝑓𝑏3𝑎𝑝

𝑐3               (2) 

𝑉𝐵 = 𝐶3𝑉𝑐
𝑎3𝑓𝑏3𝑎𝑝

𝑐3             (3) 

 

Where Fc, Ra, VB, Vc, f and ap are cutting force, surface 

roughness, flank wear, cutting speed, feed rate and depth of 

cut, also ai, bi, ci and Ci are empirical constants. Forms of 

polynomials which can be approved to represent cutting 

force, surface roughness and flank wear in turning are the 

first order models: 

 

𝑙𝑛𝐹𝑐 = 𝑙𝑛𝐶1 + 𝑎1𝑙𝑛𝑉𝑐 + 𝑏1𝑙𝑛𝑓 + 𝑐1𝑙𝑛𝑎𝑝        (4) 

𝑙𝑛𝑅𝑎 = 𝑙𝑛𝐶2 + 𝑎2𝑙𝑛𝑉𝑐 + 𝑏2𝑙𝑛𝑓 + 𝑐2𝑙𝑛𝑎𝑝        (5) 

𝑙𝑛𝑉𝐵 = 𝑙𝑛𝐶3 + 𝑎3𝑙𝑛𝑉𝑐 + 𝑏3𝑙𝑛𝑓 + 𝑐3𝑙𝑛𝑎𝑝                        (6) 

 

and second order models can be described as: 

 

𝜔1 = 𝜔 − 𝜀1 = 𝑘0 + 𝑘1𝑥1 + 𝑘2𝑥2 + 𝑘3𝑥3 + 𝑘12𝑥1𝑥2 +

𝑘13𝑥1𝑥3 + 𝑘23𝑥2𝑥3 + 𝑘11𝑥1
2 + 𝑘22𝑥2

2 + 𝑘33𝑥3
2             

(7) 

𝜑1 = 𝜑 − 𝜀2 = 𝑙0 + 𝑙1𝑥1 + 𝑙2𝑥2 + 𝑙3𝑥3 + 𝑙12𝑥1𝑥2 +

𝑙13𝑥1𝑥3 + 𝑙23𝑥2𝑥3 + 𝑙11𝑥1
2 + 𝑙22𝑥2

2 + 𝑙33𝑥3
2                  

(8) 

𝛾1 = 𝛾 − 𝜀3 = 𝑚0 +𝑚1𝑥1 +𝑚2𝑥2 +𝑚3𝑥3 +𝑚12
𝑥1𝑥2 +

𝑚13
𝑥1𝑥3 +𝑚23

𝑥2𝑥3 +𝑚11
𝑥1

2 +𝑚22
𝑥2

2 +𝑚33
𝑥3

2       

(9) 

 

Where ω, φ, γ, x1, x2, x3, k, l and m are logarithmic 

transformation of cutting force, surface roughness, flank 

wear, cutting speed, feed rate, depth of cut and empirical 

constants, ε is the experimental error and ω1, φ1 and γ1 are 

estimated cutting force, surface roughness and flank wear.  

 

2.2. Multi-Objective Optimization 

 

Multi-Objective problems usually have more than one 

solution known as pareto-optimal solution [15, 16]. 

Evolutionary multi-objective optimization (EMO) methods 

aim to gain [17] non-dominated points, when shown in a 

diagram, named as Pareto Front [18]. The general multi-

objective optimization problem is conceived as follow: 

Minimize or maximize:    

 

𝑓(𝑥) = [𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝛼(𝑥)]
𝛽       (10) 

 

subject to:     

( ) 0ig x 
          

1,2,...,i k
  

  
( ) 0jh x 

                   
1,2,...,j l

  
 

Where α is the count of objective function, k is the count of 

disequilibrium constraints and l is the count of equilibrium 

constraints [19]. A multi-objective problem with α 

objectives is described as given a z-dimensional decision 

variable vector x={x1,x2,…xz} in the solution area X, 

determine a vector X*  that minimize or maximize given set 

of α objective functions 

M(x*)={M1(x*),M2(x*),…,Ma(x*)} [20]. A solution x is 

called as non-dominated if there is no x׀ such that f(x׀)<f(x) 

for minimization and f(x׀)<f(x) for maximization. The 

illustration of this non-dominated solutions that known as 

Pareto optimal set, is the Pareto front if there are two or 

three objectives [21].   

 

2.3. Genetic Algorithm 

 

All application of genetic algorithm start with procure an 

initial population that was created randomly and  go 

forward with calculate fitness of each individual [22]. Then 

it select individuals which pass next generation and parents 

which are needed for generating other members of next 

population by crossover operator which combine relevant 

feature of parent solutions [23] and mutation operator 

which is the process of random alteration at generated 

individuals with small probability [24]. The algorithm stops 

when any stopping criterion is provided [25]. Previous 

studies already confirmed that this algorithm is very 

efficient to optimize parameters in machining operations. 

Thus, this study also uses this algorithm for optimization.   
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3. APPLICATION IN TURNING 

 

The workpiece used in this work was Ti-5553 bar with a 

diameter of 20 mm, which was hot rolled. The cutting tests 

were conducted on a Doosan CNC turning center at dry 

condition. Uncoated 883 grade carbide inserts were used 

with ISO designation CNMG120408 M1 that is suitable for 

machining of titanium alloys. PTJNL2525M16 tool holder 

with the rake angle of α= -6 degree was used. During 

machining trials, three different feed rates, f, five different 

cutting speeds, Vc, and three different depth of cut, ap, were 

used that are presented in Table 1. Experimental setup is 

presented in Fig.1. The detail of measurements of outputs 

used in this study is presented in elsewhere [26].   

 

The variation of experimentally measured flank wear with 

respects to cutting speed and the variation of surface 

roughness resulting from various feed rates are presented in 

Fig.2. Empirical model was developed to predict these 

experimental data using multiple-nonlinear regression 

analysis.  

 

Table 1. Machining parameters and their levels 

Cutting 

condition 

Cutting speed, 

Vc  

(m/min) 

Depth of 

cut, ap 

(mm) 

Feed rate,  

 f  

(mm/rev) 

Dry 40 0.8 0.1 

 80 1.4 0.15 

 120 2 0.2 

 160   

 200   

 

 
Figure 1. Experimental setup. 

 

The correlations between cutting parameters including 

depth of cut, cutting speed and feed rates and measured 

outputs were achieved by multiple non-linear regression. 

These regression models are presented in equations 11, 12, 

and 13 as shown. Fig. 2 shows the agreement between 

experimentally measured data and results obtained from 

multiple non-linear regression for the outputs of flank wear 

and surface roughness. 

𝜔1 = 6.637 + 0.29𝑥2 − 0.806𝑥3 − 0.053𝑥1𝑥2 +
0.361𝑥1𝑥3 − 0.04𝑥2𝑥3 − 0.003𝑥1

2 − 0.162𝑥2
2 +

0.328𝑥3
2          (11) 

𝜑1 = 5.682 + 0.538𝑥1 + 5.943𝑥2 − 0.305𝑥3 +
0.035𝑥1𝑥2 − 0.058𝑥1𝑥3 − 0.328𝑥2𝑥3 − 0.058𝑥1

2 +
1.264𝑥2

2 + 0.144𝑥3
2         (12) 

𝛾1 = 8.483 − 7.137𝑥1 − 2.295𝑥2 − 1.833𝑥3 −
0.415𝑥1𝑥2 + 0.948𝑥1𝑥3 + 0.75𝑥2𝑥3 + 0.865𝑥1

2 −
1.104𝑥2

2 − 0.269𝑥3
2         (13) 

 

It is obvious that the model is capable of well predicting the 

data obtained by experimental work. The R square statistics 

are equal to 0.9896 for cutting force, 0.8512 for surface 

roughness and 0.8163 for flank wear.  

 

4. RESULT AND DISCUSSIONS 

4.1. Minimizing Flank Wear and Maximizing Material 

Removal Rate 

 

Considering the cost of cutting tools used in machining, it 

can be considered as a significant contribution if tool life 

can be increased by controlling tool wear. Besides, in mass 

production, the manufacturing time directly influence the 

cost of production. Therefore, it is always desired to 

decrease the machining time by increasing material removal 

rate. Thus, we aim to optimize cutting parameters by using 

multi-objective optimization approach to minimize flank 

wear and maximize material removal rate when maximum 

surface roughness is kept as 0.8 µm in this part of study. 

The constraint of flank wear is 0.3 mm that is equal to tool 

life according to ISO 3685:1993 [27, 28]. The unit of 

material removal rate is taken as mm3/min in the following 

well-known equation. 

 

1000 c pMRR V fa
    (14) 

0

0,1

0,2

0,3

0,4

0,5

40 80 120 160 200

F
la

n
k

 W
ea

r,
  

V
B

(m
m

)

Cutting Speed, Vc (m/min)

Measured

Calculated

End of tool life

0,5

0,7

0,9

1,1

1,3

1,5

0,1 0,15 0,2

S
u

rf
ac

e 
R

o
u

g
h

n
es

s,
 R

a
(µ

m
)

Feed Rate,  f (mm/rev)

Measured

Calculated

Figure 2. (a) Flank wear at various cutting speeds; (b) surface roughness at various feed rates. 
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Minimize:               VB  

Maximize:             MRR 

Subject to:   Ra< 0.8 mm 

   VB < 0.3 µm 

    40 m/min < Vc < 200 m/min 

    0.1 mm/rev < f < 0.2 mm/rev 

    0.8 mm < ap < 2 mm 

 

The obtained result is represented in Fig. 3. Constraint of 

surface roughness prevents to increase cutting parameters 

for all non-dominated solutions. The maximum material 

removal rate is obtained as 20658 mm3/min when flank 

wear reaches the upper limit, that consequently the end of 

the tool life. While flank wear at the lowest value, the most 

desirable value occur for maximum tool life that designated 

by the value of flank wear. While material removal rate at 

lowest as 6592 mm3/min, the minimum value of flank wear 

occurs as 0.0419 mm. This part of study shows that in 

machining process of this alloy, there is a strong 

relationship in between material removal rate and flank 

wear. Table 2 shows selected optimum parameters 

including feed rate, depth of cut and cutting speed taken 

from Fig.3 (the Pareto front) corresponding measured 

outputs (Flank wear, Material removal rate, Surface 

roughness).  

 

Table 2. Some selected optimal cutting parameters 

Vc 
(m/min) 

f 
(mm/rev) 

ap 

(mm) 

VB 

(mm) 

MRR 
(mm3/min) 

Ra 
(µm) 

63.12 0.102 1.50 0.066 9655 0.7994 

79.10 0.109 1.42 0.096 12138 0.7947 

95.66 0.105 1.44 0.155 15473 0.7962 

117.95 0.108 1.43 0.223 18367 0.7997 

130.53 0.105 1.50 0.298 20658 0.7990 

 

 
Figure 3. The Pareto front of non-dominated solutions for 

machining parameters. 

 

4.2. Minimizing Power Consumption 

 

Power consumption plays an important role to evaluate the 

sustainability of process. Reducing power consumption is 

one of the element of sustainable machining process [3]. 

Thus, it is aimed to minimize power consumption while 

there are constraints for flank wear, surface roughness and 

material removal rate in this part of study. The constraint of 

material removal rate is 104 mm3/min that provides most of 

non-dominated flank wear values as shown in Fig. 3. Power 

consumption as kW is calculated by using following well-

known equation. 

360 10

c cFV
P

x


        (15) 

The optimization model for this case can be stated as 

follow: 

Minimize:   P 

Subject to:     VB < 0.3 mm 

     Ra < 0.8 µm 

     MRR > 104 mm3/min 

    80 m/min < Vc < 160 m/min 

     0.1 mm/rev < f < 0.2 mm/rev 

    0.8 mm < ap< 2 mm 

 

Boundaries of constraints and feasible region are shown in 

Fig. 4. To achieving minimum power consumption that is 

0.454 kW, the lowest values of feed rate and depth of cut 

must be selected. Cutting speed is 124 m/min at optimum 

point for fulfil the constraint of material removal rate. 

Optimum power consumption is obtained when flank wear 

(VB) is 0.136 mm and surface roughness (Ra) is 0.689 μm. 

Feasible region illustrated at fixed feed rate that must be 0.1 

mm because of constraint of surface roughness that was 

taken as 0.8 µm. Optimum parameters for minimum power 

consumption was illustrated as optimum point in Fig.4. 

 

 
Figure 4. Illustration of feasible region and optimum point 

for power consumption at 1 mm/rev of feed rate. 

 

5. CONCLUSIONS 

 

Ti-5553 alloy is considered as difficult-to-machine 

material. Therefore, randomly selected parameters or 

parameters based on experience does not help to improve 

machining performance of this new generation titanium 

alloy. Therefore, this study focuses on the optimizing 

process parameters in machining process of Ti-5553 alloy. 

In this study, two cases are taken into account. In the case 

study I, a set of optimum cutting parameters are obtained 

for minimum flank wear and maximum material removal 

rate under constraint of surface roughness (0.8 µm) in 

turning of Ti-5553 using multi-objective genetic algorithm. 

This optimization study provided the possible maximum 

material removal rate. From this part of study, constraint 
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value of material removal rate is also determined. In the 

case study II, cutting parameters were optimized to 

minimize power consumption taken constraint value of 

material removal rate into account. This study demonstrated 

that power consumption can be substantially reduced by 

optimizing process parameters.   

 

ACKNOWLEDGMENT 

 

Financial support from TUBITAK (The Scientific and 

Technological Research Council of Turkey) under project 

number 214M068 is gratefully acknowledged. 

 

REFERENCE 

 

[1] M. Ozkutuk and Y. Kaynak, "The effect of 

material parameters on chip formation in orthogonal cutting 

simulation of Ti-5553 Alloy," Procedia CIRP, vol. 58, pp. 

305-310, 2017. 

[2] K. Hua, X. Xue, H. Kou, J. Fan, B. Tang, and J. Li, 

"Characterization of hot deformation microstructure of a 

near beta titanium alloy Ti-5553," Journal of Alloys and 

Compounds, vol. 615, pp. 531-537, 2014. 

[3] A. Jayal, F. Badurdeen, O. Dillon Jr, and I. 

Jawahir, "Sustainable manufacturing: Modeling and 

optimization challenges at the product, process and system 

levels," CIRP Journal of Manufacturing Science and 

Technology, vol. 2, no. 3, pp. 144-152, 2010. 

[4] C. Camposeco-Negrete, J. d. D. C. Nájera, and J. 

C. Miranda-Valenzuela, "Optimization of cutting 

parameters to minimize energy consumption during turning 

of AISI 1018 steel at constant material removal rate using 

robust design," The International Journal of Advanced 

Manufacturing Technology, vol. 83, no. 5-8, pp. 1341-

1347, 2016. 

[5] C. Camposeco-Negrete, "Optimization of cutting 

parameters using Response Surface Method for minimizing 

energy consumption and maximizing cutting quality in 

turning of AISI 6061 T6 aluminum," Journal of cleaner 

production, vol. 91, pp. 109-117, 2015. 

[6] R. K. Bhushan, "Optimization of cutting 

parameters for minimizing power consumption and 

maximizing tool life during machining of Al alloy SiC 

particle composites," Journal of Cleaner Production, vol. 

39, pp. 242-254, 2013. 

[7] P. Asokan, R. Saravanan, and K. Vijayakumar, 

"Machining parameters optimisation for turning cylindrical 

stock into a continuous finished profile using genetic 

algorithm (GA) and simulated annealing (SA)," The 

International Journal of Advanced Manufacturing 

Technology, vol. 21, no. 1, pp. 1-9, 2003. 

[8] D. Venkatesan, K. Kannan, and R. Saravanan, "A 

genetic algorithm-based artificial neural network model for 

the optimization of machining processes," Neural 

Computing and Applications, vol. 18, no. 2, pp. 135-140, 

2009. 

[9]  M. Cong, T. Han, and Q. Zhao, "Fuzzy multi-

objective optimization of sliding rack based on six sigma 

and goal driven," in 2010 International Conference on 

Mechanic Automation and Control Engineering, 2010: 

IEEE, pp. 556-559.  

[10] I. Mukherjee and P. K. Ray, "A review of 

optimization techniques in metal cutting processes," 

Computers & Industrial Engineering, vol. 50, no. 1-2, pp. 

15-34, 2006. 

[11] D. W. Coit and A. E. Smith, "Reliability 

optimization of series-parallel systems using a genetic 

algorithm," IEEE Transactions on reliability, vol. 45, no. 2, 

pp. 254-260, 1996. 

[12] Z. Khan, B. Prasad, and T. Singh, "Machining 

condition optimization by genetic algorithms and simulated 

annealing," Computers & Operations Research, vol. 24, no. 

7, pp. 647-657, 1997. 

[13] A. R. Yildiz, "Cuckoo search algorithm for the 

selection of optimal machining parameters in milling 

operations," The International Journal of Advanced 

Manufacturing Technology, vol. 64, no. 1-4, pp. 55-61, 

2013. 

[14] I. Jawahir and X. Wang, "Development of hybrid 

predictive models and optimization techniques for 

machining operations," Journal of Materials Processing 

Technology, vol. 185, no. 1-3, pp. 46-59, 2007. 

[15] K. Deb, M. Mohan, and S. Mishra, "Evaluating the 

ε-domination based multi-objective evolutionary algorithm 

for a quick computation of Pareto-optimal solutions," 

Evolutionary computation, vol. 13, no. 4, pp. 501-525, 

2005. 

[16] S. Kuriakose and M. Shunmugam, "Multi-

objective optimization of wire-electro discharge machining 

process by non-dominated sorting genetic algorithm," 

Journal of materials processing technology, vol. 170, no. 1-

2, pp. 133-141, 2005. 

[17] K. Deb and D. K. Saxena, "On finding pareto-

optimal solutions through dimensionality reduction for 

certain large-dimensional multi-objective optimization 

problems," Kangal report, vol. 2005011, 2005. 

[18]  D. A. Van Veldhuizen and G. B. Lamont, 

"Evolutionary computation and convergence to a pareto 

front," in Late breaking papers at the genetic programming 

1998 conference, 1998, pp. 221-228.  

[19] R. T. Marler and J. S. Arora, "Survey of multi-

objective optimization methods for engineering," Structural 

and multidisciplinary optimization, vol. 26, no. 6, pp. 369-

395, 2004. 

[20] A. Konak, D. W. Coit, and A. E. Smith, "Multi-

objective optimization using genetic algorithms: A 

tutorial," Reliability Engineering & System Safety, vol. 91, 

no. 9, pp. 992-1007, 2006. 

[21] T. Goel, R. Vaidyanathan, R. T. Haftka, W. Shyy, 

N. V. Queipo, and K. Tucker, "Response surface 

approximation of Pareto optimal front in multi-objective 

optimization," Computer methods in applied mechanics and 

engineering, vol. 196, no. 4-6, pp. 879-893, 2007. 

[22] D. J. Zwickl, "Genetic algorithm approaches for 

the phylogenetic analysis of large biological sequence 

datasets under the maximum likelihood criterion," 2006.  



A O KABİL                                                                                      Academic Platform Journal of Engineering and Science 8-3, 310-315, 2020 

 

315 

 

[23] P. W. Poon and J. N. Carter, "Genetic algorithm 

crossover operators for ordering applications," Computers 

& Operations Research, vol. 22, no. 1, pp. 135-147, 1995. 

[24]  N. M. Razali and J. Geraghty, "Genetic algorithm 

performance with different selection strategies in solving 

TSP," in Proceedings of the world congress on engineering, 

2011, vol. 2: International Association of Engineers Hong 

Kong, pp. 1134-1139.  

[25]  M. Safe, J. Carballido, I. Ponzoni, and N. 

Brignole, "On stopping criteria for genetic algorithms," in 

Brazilian Symposium on Artificial Intelligence, 2004: 

Springer, pp. 405-413.  

[26] E. Tascioglu, A. Gharibi, and Y. Kaynak, "High 

speed machining of near-beta titanium Ti-5553 alloy under 

various cooling and lubrication conditions," The 

International Journal of Advanced Manufacturing 

Technology, vol. 102, no. 9-12, pp. 4257-4271, 2019. 

[27] E. Ezugwu, J. Bonney, D. Fadare, and W. Sales, 

"Machining of nickel-base, Inconel 718, alloy with ceramic 

tools under finishing conditions with various coolant supply 

pressures," Journal of materials processing technology, vol. 

162, pp. 609-614, 2005. 

[28] A. Altin, M. Nalbant, and A. Taskesen, "The 

effects of cutting speed on tool wear and tool life when 

machining Inconel 718 with ceramic tools," Materials & 

design, vol. 28, no. 9, pp. 2518-2522, 2007. 

 


