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Abstract  

  

Significant advances in digital technology and advanced analytical tools have had a substantial impact on the production 

environment and laid the foundation for Industry 4.0 and intelligent production concepts. Predictive engineering is one of the 

key pillars of smart manufacturing that necessitates the collection and analysis of real-time data with an anticipatory point of 

view through advanced analytical techniques. In the literature, machine learning-based methods have received a great deal of 

attention to extract valuable information from process data for fault detection. In this study, fault prediction problem was 

addressed in a molding process that includes successive steps by applying machine learning methods with dimension reduction 

techniques. The techniques of Principal Component Analysis (PCA), and Isometric Feature Mapping (Isomap) were first utilized 

for dimension reduction. Then, the data was analyzed for fault prediction with several machine learning techniques, namely, 

Support Vector Machine (SVM), Neural Network (NN), and Logistic Regression (LR). The dataset for our analysis includes 

sensor data captured during the molding process of a wheel rim manufacturer. Several criteria, including accuracy, area under 

curve (AUC), Type I, and Type II error, were employed to assess the predictive performance of the methods applied, including 

and the model variants reinforced with PCA and Isomap. Our study demonstrates that all predictive model variants have 

performed with high accuracy, ranging between 92.16% (LR) and 98.04% (PCA-NN). PCA and Isomap improved the accuracy 

and Type-I error measures of all models; however, no such improvement was obtained on the Type-II error rates. 
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1. INTRODUCTION  

 

Industry 4.0 and smart manufacturing, which have originated 

based on technological advancements, have enabled more 

intelligent and interconnected production systems [1]. The 

intelligence in smart manufacturing stems from data. 

Collecting real-time, accurate data, analyzing it in a way to 

provide value, data-driven manufacturing, predictive 

engineering, and ensuring product quality based on 

evaluation of real-time product data are among the most 

critical points of smart manufacturing [2-5]. 

 

In the current interconnected and complex manufacturing 

environments, faults in processes might affect other 

processes and lead up to significant losses for manufacturers. 

The use of fault prediction techniques based on real-time 

processes and machinery data might help to prevent faults, 

avoid critical breakdowns, and provide insights that help to 

                                                           
 

 

enhance the utilization of machinery, reduce machine 

breakdown times, and improve the process and product 

quality [6]. Real-time monitoring of manufacturing 

processes and fault prediction has received significant 

attention both from the practitioners and the researchers over 

the recent years, depending on the recognition of the 

magnitude of such possible losses and opportunities [7]. 

 

Machine learning methods, especially supervised machine 

learning methods have stood out in prior research within the 

context of the failure prediction problem based on the 

analysis of process data in manufacturing [8,9]. In some of 

those studies, it has been preferred to apply machine learning 

methods solely [10,11]. In contrast, some studies have 

introduced models with a dimension reduction step prior to 

machine learning methods, mostly due to the complexity of 

problems and/or availability of an excessive number of 

variables in process data [12,13]. 
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In this study, the fault prediction problem is addressed in a 

wheel-rim manufacturer’s molding process with binary 

classification. In the previous study of Kabasakal et al. [14], 

the problem was handled with a pure LR model applied to 

the analysis of 29 process parameters. In this study, the same 

problem is readdressed by increasing the number of process 

parameters, expanding the training dataset size, and applying 

SVM and NN in addition to LR. Moreover, dimension 

reduction has been carried out considering the potential 

challenges in modeling due to the complex structure of the 

molding process that encompasses various sequential sub-

processes. For dimension reduction, our approach involves 

PCA, one of the most frequently used dimension reduction 

techniques, and Isomap, a technique that has attracted 

considerable attention in machine learning recently. This 

study aims to compare the predictive performance of the 

machine learning models, both standalone and with 

dimension reduction beforehand. The supervised machine 

learning methods and dimension reduction techniques 

employed in our model are introduced in the next two 

sections. Subsequently, our review of the literature on the 

fault prediction problem is presented. Afterward, the 

characteristics of the problem, the initial dataset, and the data 

preparation steps are explained in detail in the case study 

section. The findings of the application and their analysis are 

presented in the application and findings section. Finally, the 

results are evaluated, and the potential use of machine 

learning models are discussed within the context of our case. 

 

2. SUPERVISED MACHINE LEARNING  

 

Supervised machine learning methods are widely applied in 

prediction problems based on the use of process data often 

obtained as labeled from manufacturing [15]. In this study, 

popular supervised machine learning methods SVM, NN, 

and LR have been utilized for fault prediction. In the next 

subsections, these applied methods have been introduced. 

 

2.1. Support Vector Machine  

 

SVM is a supervised machine learning method capable of 

handling nonlinear mapping [12] and dealing with complex 

and large-scale problems. The technique attempts to find an 

optimal hyperplane separating dependent variables’ 

categories on each side of the plane with a structural risk 

minimization objective [16, 17]. Nonlinear classification 

models with SVM often utilize kernel functions. Radial basis 

function (RBF) is among the most preferred ones [18]. 

 

The classical unbiased Least Square SVM (LSSVM) 

involves optimization of the relationship between inputs Y 

and outputs Q in the space of feature 𝑄 = 𝜔𝑇𝑓(𝑌) + 𝑏, 

where 𝜔 is the weight vector, and the nonlinear mapping 

function and the bias vector are denoted by f(.) and b, 

respectively. The objective function in LSSVM is [12, 19]: 

 

{
min 𝐽(𝜔, 𝜉) =

1

2
𝜔𝑇𝜔 +

𝛾

2
∑ 𝜉𝑖

2𝑛
𝑖=1

𝑠. 𝑡.  𝑄𝑖 = 𝜔𝑓(𝑦𝑖) + 𝑏 + 𝜉𝑖

                                    (1) 

 

where 𝜉 indicates the variance of the error, and 𝛾 > 0 is the 

penalty coefficient. 

 

The optimal regression function to convert this model to a 

dual optimization problem and the kernel function F(.) is as 

follows [12,19]: 

 

{
𝑄 = ∑ 𝛼𝑖𝐹(𝑌, 𝑦𝑖)𝑛

𝑖=1 + 𝑏

𝐹(𝑌, 𝑦𝑖) = exp (−
𝑌−𝑦𝑖

2𝜎2 )
                                                 (2) 

where 𝛼𝑖 is the Lagrange multiplier.   

 

2.2. Neural Network 

 

NN, one of the popular supervised machine learning 

methods, is based on network structures that are connected 

via weighted links [20,21]. NNs are network structures 

mainly based on computing units called neurons and using 

activation values and a set of weighted inputs [22]. NNs 

include a series of interconnected inputs and outputs, in 

which the weights of the connections are adjusted by the 

network during the training stage to predict the correct class 

labels [23]. A multilayer neural network comprises a high 

number of units connected in a pattern. These units include 

input units where the information is received for processing, 

output units containing the processing findings, and hidden 

units between these two units [24]. 

 

The output of each neuron j in the hidden layer is calculated 

by using a function of activation f as follows [25]:  

 

𝑦𝑗 = 𝑓(∑ 𝑤𝑗𝑖𝑥𝑖)           (3) 

 

where 𝑤𝑗𝑖  denotes the connection weight between units j and 

i, and 𝑥𝑖 represents the input node activation rule.   

 

The resulting weighted sum value is transferred to the 

activation value of the hidden node using a proper transfer 

function [26]. 

 

2.3. Logistic Regression 

 

LR, a relatively easy-to-apply approach with a wide range of 

applications, allows the prediction of dependent variables 

having two or more categories using categorical or 

continuous independent variables [27]. 

 

Since our case involves the prediction of a binary dependent 

variable, we adopt binary logistic regression in our model. 

The logit function for this technique is [28]: 

 

𝑙𝑜𝑔𝑖𝑡 = 𝑙𝑛 (
𝜋(𝑥)

1−𝜋(𝑥)
) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝                 (4) 

 

where 
𝜋(𝑥)

1−𝜋(𝑥)
 is odds that ranges from (0;+∞) and 

𝛽0,𝛽1, … , 𝛽𝑝 are the regression coefficients.  
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Then the logistic function is obtained by the inverse of the 

logit function as follows [28]: 

 

𝜋(𝑥) =
exp (𝛽0+𝛽1𝑥1+⋯+𝛽𝑝𝑥𝑝)

1+exp (𝛽0+𝛽1𝑥1+⋯+𝛽𝑝𝑥𝑝)
         (5) 

 

where 𝜋(𝑥) ranges from (0;1). 

 

3. DIMENSION REDUCTION  

 

Dimension reduction is frequently applied as an initial step 

when creating a prediction model to capture patterns in 

complex data sets and to reduce the difficulties that may arise 

in modeling [29]. Accordingly, this section briefly 

introduces two dimension reduction techniques involved in 

our study, namely PCA and Isomap. 

 

3.1. Principal Component Analysis 

 

PCA, a linear based and multivariate reduction technique, 

transforms the variables in the initial data set into variables 

called principal components [30]. The steps of PCA are as 

follows [13]: 

 

Step 1 Calculation the correlation coefficient matrix (R) 

 

𝑋 = [

𝑥11 ⋯ 𝑥1𝑚

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑚

]                       (6) 

 

R = Cor(i, j) =
(n−1).Cov(i,j)

√∑ (xi(k)−μi)2n
k=1 ∑ (xj(k)−μj)

2n
k=1

  

                      = (𝑟𝑖𝑗)𝑚𝑥𝑛                                     (7) 

 

𝐶𝑜𝑣(𝑖, 𝑗) =
1

(𝑛−1)
(𝑥𝑖 − 𝜇𝑖)(𝑥𝑗 − 𝜇𝑗)      𝑖, 𝑗 = 1,2, … , 𝑚  (8) 

 

where X is a matrix including n rows (samples) and m 

columns (features), 𝜇𝑖 and 𝜇𝑗 denote X matrix’s ith and jth 

rows averages, respectively. 

Step 2 Computation of the eigenvectors (𝑉𝑖) and eigenvalues 

(𝜆𝑖) of the matrix R.  

 

𝐴𝑉𝑖 = 𝜆𝑖𝑉𝑖 𝑖 = 1,2, … , 𝑚                                       (9) 

 

where 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑚, A is a mxn correlation matrix, 

and 𝑉𝑖 is the vector 𝑉𝑖 = [𝑉1𝑖,𝑉2𝑖, … , 𝑉𝑚𝑖]. 
 

Step 3 Calculation of a new set of the uncorrelated 

multivariate vector. 

 

𝑋𝑛𝑒𝑤 = 𝑉𝑇 . 𝑋         (10) 

 

where X is the original correlated, and 𝑋𝑛𝑒𝑤 is the new 

uncorrelated multivariate vector. V denotes the matrix of 

eigenvectors. Depending on the selected threshold variance 

value, all or some components of 𝑋𝑛𝑒𝑤 are used as principal 

components [13]. 

 

3.2. Isometric Feature Mapping 

 

Isomap is a nonlinear and noniterative dimension reduction 

method based on revealing the nonlinear degrees of freedom 

that lie behind the complex observations [31]. The 

emergence of machine learning studies that utilize this 

technique for dimension reduction is relatively more recent 

[12]. Given a manufacturing multi-parameter set 𝑋 =
[𝑥1,𝑥2,…,𝑥𝑛] with dimension n, a low-dimensional space with 

dimension k 𝑌 = [𝑦1,𝑦2,…,𝑦𝑘]; the algorithm consists of the 

following steps [12, 31, 32]: 

 

Step 1 Determination of the neighbor points on the manifold 

M. 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗 can be considered as neighbors if the distance 

𝑑(𝑥𝑖 , 𝑥𝑗) between 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗  is less than 𝜀 or 𝑥𝑖 is one of the 

k nearest neighbors of 𝑥𝑗. 

 

Step 2 Estimation of the geodesic distances between points 

and defining the graph G. If 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗 are neighbors, 

𝑑𝐺(𝑥𝑖 , 𝑥𝑗) = 𝑑(𝑥𝑖 , 𝑥𝑗), otherwise 𝑑𝐺(𝑥𝑖 , 𝑥𝑗) = ∞. 

 

Step 3 Constructing a k-dimensional embedding to the 

computed distances in Step 2 using multi-dimensional 

scaling. 𝜆𝑝 is the p-th eigenvalue of the matrix 𝜏(𝐷𝐺) =

−𝐻𝑆𝐻/2. The squared geodesic distances matrix 𝑆𝑖𝑗 =

[𝑑𝐺(𝑥𝑖 , 𝑥𝑗)]2, and H = I − (1/N)EE𝑇 is the centering 

matrix. In this matrix, I indicates the N-dimensional unit 

matrix, and E the vector of all ones. The p-th component of 

the coordinate vector with k dimension is 𝑦𝑖 = √𝜆𝑝𝑣𝑝
𝑖 , 

where 𝑣𝑝
𝑖  denotes p-th eigenvector’s i-th component. 

 

4. LITERATURE REVIEW  

 

Industry 4.0 and smart manufacturing have forced 

companies to an inevitable transformation process. In this 

transformation, one of the key points is to collect accurate, 

real-time process and machinery data through sensors and 

networks, and manage these data in a way to provide value 

with advanced analytical tools. The objective is to gain the 

ability to predict the faults or abnormal behaviors, and 

ultimately to prevent more significant losses [33]. Therefore, 

continuous monitoring of manufacturing processes and 

machinery, fault diagnosis and prediction, and application of 

data-driven methods have received a great deal of attention 

in the recent literature [34-36]. In the context of fault 

prediction, various studies have reported substantial results 

through the use of machine learning methods [37]. 

 

In the literature, there have been studies addressing the fault 

diagnosis and prediction problems by applying SVM, NN, 

and LR, with and without dimension reduction techniques. 

In one of the studies implementing machine learning 

methods solely, Kankar et al. [38] analyzed ball bearing 

vibration data and developed a classification model to 

predict faults with NN and SVM. The authors predicted five 

fault categories by analyzing fourteen features, including 
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process parameters and computed statistical measures using 

vibration data. Kusiak and Li [39] proposed a machine-

learning model with NN and SVM to predict whether faults 

will occur and their types, if any. 

 

PCA has been a frequently used technique in the studies 

aiming to predict faults based on process data; on the other 

hand, Isomap has been increasingly used in recent years. 

Benkedjouh et al. [32] applied Isomap and a non-linear 

version of PCA with Support Vector Regression to predict 

the remaining useful life of a machining tool. Zhang et al. 

[13] analyzed a dataset that contains equipment vibration 

signals with PCA and Artificial Neural Network (ANN) for 

maintenance-related decisions. Sakthivel et al. [40] dealt 

with the fault diagnosis problem based on vibration signals. 

They have applied various dimension reduction methods, 

including PCA, Isomap, Diffusion maps, Local linear 

embedding, and classified the features obtained from each 

dimension reduction method by using a decision tree, kNN, 

Bayes Net, and Naive Bayes. Jin et al. [41] applied 

dimension reduction methods, including PCA and Isomap, to 

classify machine faults based on the data sets of machine 

health conditions. Gao and Hou [34] dealt with the fault 

diagnosis problem using the Tennessee Eastman process data 

set; and utilized PCA for dimension reduction before SVM. 

Bai et al. [12] addressed the problem of quality prediction by 

applying PCA, ISOMAP, and Locally Linear Embedding 

with SVM. The authors reported that Isomap-SVM had the 

best predictive performance among the techniques 

employed. 

 

In the literature, there have been also studies addressing the 

fault prediction problem with machine learning-based 

methods in molding processes that have similar features with 

the wheel-rim molding process analyzed in this study. Most 

of these studies have applications in the plastic injection 

molding process. Sadeghi [42] provided a backpropagation 

NN model to predict the injected parts’ strength by using 

temperatures of mold and melt, the pressure of injection, and 

material grade as key variables. One of the other studies 

addressing the fault prediction in the same process, Ribeiro 

[43] used more than two fault categories such as unfilled 

parts, stains, burn marks, warped parts by considering 

explanatory variables including metering, injection, and 

cycle times, injection velocity, and cushion. He applied C-

SVM and v-SVM classifiers and compared their 

performances with RBF NN. In other studies that address 

defect prediction in the plastic injection molding process; 

Kim et al. [44] proposed a recursive neural network model, 

Nasiri and Khosravani [45] applied a fuzzy case-based 

reasoning approach by considering 19 features under 

temperature, pressure, time, speed, and size categories. 

Taghizadeh et al. [46] provided an ANN-based prediction 

model for the warpage of molded parts by analyzing a variety 

of process parameters such as melt temperature, mold 

temperature, ejection temperature, thermal conductivity, and 

specific heat. Additionally, Kabasakal et al. [14] addressed 

the fault detection problem of a wheel-rim manufacturer’s 

molding process with LR, and our study revisits this case by 

applying several machine learning techniques, occasionally 

reinforced with prior dimension reduction. 

 

5. CASE STUDY 

 

This study addresses a fault prediction problem through a 

dataset, including actual measurements captured during the 

molding process in a wheel rim manufacturer. The data 

recorded involves measurements regarding the faults and a 

list of parameters that can affect the process quality. The 

molding process consists of a series of sub-processes, 

including pouring the melted aluminum alloy into a tank that 

is kept at a certain temperature, pressurizing the tank, 

blowing out the melted alloy, pouring it into a mold and 

cooling the alloy in the mold. 

 

The initial dataset involves 137 parameters for 594 products 

manufactured on the same casting machine by using a single 

mold for 5 days. The fault rate of the analyzed batch is 6.9% 

(41 units). 

 

The faults defined by the company are in three forms: Start-

up scrap, shrinkage, and visual scrap. In this study, binary 

classification is used, and a unit is classified as “faulty” or 

“normal”. Most of the measurements in the dataset relate to 

the steps of the cooling phase. The company recorded both 

the ideal and actual temperatures/ pressures for many of the 

steps. As in [14], we consider the deviations from ideal 

values as potential causes for faults; thus, those differences 

are also included in the dataset for analysis. 

 

Another step before our analyses was the removal of 

redundant columns. Several parameters within the dataset 

were excluded since they involved constant values in all 

records. As a result, our final data set involved 594 rows with 

32 attributes that consist of 31 inputs and a class variable. 

 

Table 1. Descriptions of the discrete variables in the dataset 

No Variable Name  Categories 

1 Shift  1-2-3 

2 aluminium_transfer  0 – 1 – 5 

3 phase_2_time  25-35-40 

4 phase_4_time  23- 203-210 

 

Table 2. Descriptions of the continuous variables in the 

dataset 

No Variable Name  Range 

1 Hour (hr) [0-23] 

2 Humidity (hmd) [21.8-34.2] 

3 Temperature (tmp) [29.4-52.2] 

4 metal_temperature_diff (mtd) [-11-4] 

5 maximum_pressure_value 

(mpv) 
[5.8-7.2] 

6 cooling_temperature (wt) [21-30] 

7 cycle_time (ct) [295-37009] 

8 thermocouple_1_diff (t1d)  [-113-55] 

9 thermocouple_2_diff (t2d) [-192-29] 
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10 thermocouple_4_actual_valu

e (t4a)  
[468.79-509] 

11 thermocouple_5_actual_valu

e (t5a) 
[445.5-526] 

12 phase_1_pressure (ph1p)  [131.3-149.5] 

13 phase_2_pressure (ph2p) [301.3-516.9] 

14 h1_flow_average_value 

(h1f):  
[0-1205.2] 

15 h2_flow_average_value (h2f) [0-602.4] 

16 h3_flow_average_value (h3f) [0-624.8] 

17 h7_flow_average_value (h7f) [1200.6-1204.8] 

18 h8_flow_average_value (h8f) [785.2-798.4] 

19 h9_flow_average_value (h9f) [795.9-800.8] 

20 h10_flow_average_value 

(h10f) 
[795.8-800.6] 

21 h11_flow_average_value 

(h11f) 
[0-770.6] 

22 h12_flow_average_value 

(h12f) 
[0-604.8] 

23 s1.1_side_core_cooling_flow

_diff (s1.1sd)  
[-16-0.4] 

24 s1.2_side_core_cooling_flow

_diff (s1.2sd) 
[-16-0.1] 

25 s1.3_side_core_cooling_flow

_average_value (s1.3sa) 
[0-15.4] 

26 s1.4_side_core_cooling_flow

_average_value (s1.4sa) 
[0-16.3] 

27 s2_bottom_core_cooling_flo

w_average_value (s2ba) 
[0-17] 

 

6. APPLICATION AND FINDINGS  

 

In this study, fault prediction problem in molding process is 

addressed. A challenge in our problem was the high number 

of process parameters that complicate modeling for 

prediction. In such cases, dimension reduction is often 

involved as an initial step to construct prediction models over 

complex datasets [29]. In accordance, our approach involves 

the application of PCA and Isomap for dimension reduction 

prior to predictive modelling with LR, SVM, and NN 

techniques. The results are compared with the individual 

application of LR, SVM, and NN to evaluate the effects of 

these dimension reduction techniques on the predictive 

performance. As detailed in the previous section, each row 

in our dataset has 31 attributes that represent potential causes 

of faults, accompanied by a final attribute that denotes a 

class. 

 

3/4 of the total dataset is randomly separated as the training 

set and the remaining part (1/4 of the total dataset) as the 

testing set to evaluate the considered methods’ 

performances. Features of the training and testing sets are 

given in Table 3. 

Table 3. Features of the training and testing sets 

Training set size 441 

Testing set size 153 

Number (percentage) of faults in 

training set 

30 (6.80%) 

Number (percentage)  of faults in 

testing set 

11 (7.19%) 

 

The performances of all model variants are presented in 

Tables 4 and 5. The Isomap has been run in R, all the other 

models in SPSS Modeler. The 31 variables considered in the 

prediction models have been reduced to 5 dimensions by the 

PCA and 9 dimensions by the Isomap. In the implementation 

of SVM, RBF is used as the kernel function. 

 

Table 4. Comparison of the Prediction Performances of the 

Models 

Model 

Performance 

Overall 

accuracy 

Area Under 

Curve 

SVM 96.08% 0.95 

NN 95.43% 0.83 

LR 92.16% 0.90 

PCA-SVM 96.73% 0.85 

PCA-NN 98.04% 0.96 

PCA-LR 97.39% 0.88 

ISOMAP-SVM 97.39% 0.90 

ISOMAP-NN 97.39% 0.93 

ISOMAP-LR 94.12% 0.93 

 

Table 5. Comparison of False Results of the Models 

Model Type I 

Error 

Type II 

Error 

Total false 

SVM 4/142 

(2.82%) 

2/11 

(18.18%) 

6/153 

(3.92%) 

NN 3/142 

(2.11%) 

4/11 

(36.36%) 

7/153 

(4.58%) 

LR 8/142 

(5.63%) 

4/11 

(36.36%) 

12/153 

(7.84%) 

PCA-SVM 1/142 

(0.70%) 

4/11 

(36.36%) 

5/153 

(3.27%) 

PCA-NN 1/142 

(0.70%) 

2/11 

(18.18%) 

3/153 

(1.96%) 

PCA-LR 0/142 

(0.00%) 

4/11 

(36.36%) 

4/153 

(2.61%) 

ISOMAP-

SVM 

0/142 

(0.00%) 

4/11 

(36.36%) 

4/153 

(2.61%) 

ISOMAP-

NN 

0/142 

(0.00%) 

4/11 

(36.36%) 

4/153 

(2.61%) 

ISOMAP-

LR 

5/142 

(3.52%) 

4/11 

(36.36%) 

9/153 

(5.88%) 

 

The results indicate that applying PCA or Isomap before 

SVM, NN, and LR models have improved the prediction 

accuracy of these models' single applications. PCA-NN has 

the lowest total false rate (1.96%) (highest overall accuracy 

(98.04%)) among all considered models, followed by PCA-

LR, ISOMAP-SVM, and ISOMAP-NN with 2.61% total 

false rate (97.39% overall accuracy). Also, LR model 

performance has increased compared to [14] when 

considering more process parameters and larger training 

dataset size (overall accuracy increased from 90.50% to 

92.16%, and Type II error reduced from 46.20% to 36.36%). 

The occurrence probability of Type II error, which means 

incorrectly predicting a fault part to be a non-fault part is the 

lowest in PCA-NN and SVM, but still at a high rate of 
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18.18%. PCA-NN also has the highest performance in AUC 

criterion. 

 

Additionally, the k-fold cross-validation, one of the most 

widely applied approaches to assessing models’ prediction 

performance and validity [47], has been carried out to 

evaluate the validity of all model variants. By taking into 

consideration of the dataset size and number of faulty 

observations, it is preferred to divide the whole dataset into 

3 groups, including an approximately equal number of faulty 

observations. In Table 6, 3-fold cross-validation results of all 

model variants are given. 

 

Table 6. k-fold Cross Validation Test Results (k=3) 

Model 

                                                      

Performance 

Overall 

accuracy 

Type I 

Error 

Type II 

Error 

SVM 95.45% 0.36% 61.09% 

NN 94.44% 2.36% 47.46% 

LR 92.93% 4.13% 45.83% 

PCA-SVM 96.11% 0.18% 51.58% 

PCA-NN 95.62% 1.45% 43.07% 

PCA-LR 95.79% 0.36% 54.09% 

ISOMAP-

SVM 95.29% 1.27% 51.28% 

ISOMAP-NN 94.95% 0.54% 65.26% 

ISOMAP-LR 94.28% 1.99% 54.98% 

 

3-fold cross-validation results imply that the overall 

accuracy of all model variants is between 92.93% (LR) and 

96.11% (PCA-SVM). PCA has improved the performances 

of all model variants in terms of overall accuracy and Type I 

error rate. PCA has also decreased the Type II error rate in 

predictions with SVM and NN.  

 

Our findings on the benefits of dimension reduction with 

Isomap were less apparent. Isomap has not improved the 

predictive performance of SVM in terms of overall accuracy 

and Type I error rate. However, the overall accuracy of NN 

and LR have been increased, with a reduction in Type I error 

rate. In contrast, Type II error rate has been found higher 

with Isomap dimension reduction. In fact, Type II error rate 

was quite high in all models, with a range of 43.07% (PCA-

NN) to 65.26% (ISOMAP-NN). 

 

7. CONCLUSION 

 

Real-time collection and utilization of process data for 

predictive analysis is an essential prerequisite of the 

manufacturing concept in the era of Industry 4.0. This paper 

aims to compare both the individual application 

performances of machine learning methods for fault 

prediction in the molding process. Moreover, our study 

explores the benefits of linear and non-linear based 

dimension reduction in the predictive performance of those 

methods. Specifically, our study employs machine learning 

methods of SVM, NN, and LR; and dimension reduction 

techniques of PCA and Isomap. 

 

The case examined in this study is the problem of a wheel-

rim manufacturer that contains multiple process parameters 

and fault categories for 594 products obtained from the 

molding process. The dimensionality of the initial dataset 

was reduced to 31 parameters in data preprocessing. Three 

predefined fault types come out as the result of the molding 

process, namely, the start-up scrap, shrinkage, and visual 

scrap. However, our primary objective was limited to predict 

the occurrence of a fault, independent from its type. The 

techniques employed in the model have been trained and 

tested by randomly picking ¾ and ¼ of our dataset, 

respectively. 

 

To compare the performances of the models applied in this 

study; prediction accuracy, AUC, Type I and Type II error 

measures are used. Prediction accuracy of the models is 

obtained within a high range of 92.16% (LR) and 98.04% 

(PCA-NN), where PCA and Isomap led to an increase in the 

accuracy of all predictive models. PCA and Isomap have also 

reduced the Type I error rate for all models, but they do not 

have the same performance at the models’ Type II errors. 3-

fold cross-validation test has also provided similar results. 

AUC, which is an important measure of the extent to which 

models can distinguish fault categories, is obtained in the 

range of 0.83 (NN) to 0.96 (PCA-NN). PCA was only able 

to increase the AUC of NN, while Isomap was able to 

improve the AUC of NN and LR. 

 

The primary finding of our study demonstrates that all model 

variants evaluated in this study have had remarkable overall 

prediction accuracy. However, the Type II errors of their 

predictions are considerably high. Nevertheless, the models 

might further be tested on larger datasets that include 

sufficient fault observations from the same process, to reduce 

the Type II error. 
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