
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 50 (3) (2021), 612 – 623

DOI : 10.15672/hujms.740593

Research Article

Pre-Hausdorff and Hausdorff objects in the
category of quantale-valued closure spaces

Muhammad Qasim1, Bin Pang∗2

1Department of Mathematics, School of Natural Sciences (SNS), National University of Sciences and
Technology (NUST), H-12 Islamabad, 44000, Pakistan

2School of Mathematics and Statistics, Beijing Institute of Technology, 100081 Beijing, PR China

Abstract
In previous papers, several T0 and Hausdorff objects in topological categories are intro-
duced and compared. The main objectives of this paper are to characterize T0, T0, T1 and
pre-T2 objects in the category of quantale-valued closure space as well as to examine their
mutual relationship.

Mathematics Subject Classification (2020). 54A05, 54B30, 54D10, 54A40, 18F60

Keywords. V-closure space, V-topological space, topological category, separation,
Hausdorff objects

1. Introduction
It is an established fact that closure operators play a vital role not only in mathematics

including algebra [34], logic [18], calculus [29] and topology [14,23], but also in physics such
as quantum logic and representation theory of physical systems [2,3]. In 1940, G. Birkhoff
[13] found the relations between the collection of closed sets of a closure space and complete
lattice. Afterwards, their interrelations have emerged as the issues of major concerns for
mathematicians [16]. Moreover, G. Aumann [4] investigated the closure structures on
contact relations which have applications in social sciences.

In 1991, Baran [5] introduced T0 and T1 objects in a set-based topological category by
using generic element method [21] which is further elucidated in topos theory. Also, he
introduced pre-Hausdorff objects in an arbitrary topological category which are reduced
to pre-Hausdorff topological space (X, τ), i.e., for each distinct point x, y ∈ X, if the set
{x, y} is not an indiscrete space, then the points x and y have disjoint neighborhoods [10].
The most important use of pre-Hausdorff objects is to define various forms of Hausdorff
objects [11], T3 and T4 objects [8], regular, completely regular and normal objects [9] in
arbitrary topological categories. In 1994, M. V. Mielke [27] showed that the pre-Hausdorff
objects play an important role in general theory of geometric realization. Later, M.V.
Mielke [28] showed that pre-Hausdorff objects are important tools for the characterization
of the decidable objects in topos theory.
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With the development of fuzzy set theory, many mathematical structures have been
equipped with fuzzy sets, such as fuzzy topology [24, 39], fuzzy convexity [32, 33], fuzzy
convergence [30,31,40] and so on. Considering the fuzzy counterparts of closure structures,
it has been generalized by introducing some suitable quantales on closure structures [24,25].
This motivates us to consider separation properties of the topological category of quantale-
valued closure spaces.

The main objectives of this paper are stated as follows:
(i) to characterize T0, T0 and T1 in the category of quantale-valued closure space,
(ii) to provide the characterization of pre-Hausdorff and several forms of Hausdorff

objects in quantale-valued closure space,
(iii) to examine how these separation axioms are related.

2. Preliminaries
In this paper, let V = (V, ⊗, k) be a (unital, but not necessarily commutative) quantale,

i.e., a complete lattice with a monoid structure whose binary operation ⊗ satisfies the
following properties: for all αi, β ∈ V , (

∨
i∈I αi) ⊗ β =

∨
i∈I(αi ⊗ β) and β ⊗ (

∨
i∈I αi) =∨

i∈I(β ⊗ αi), where k is an identity (neutral) element.
A quantale (V, ⊗, k) is called an integral quantale if k = ⊤.
In a quantale (V, ⊗, k), if p ∈ V and p ̸= ⊤, then p is called the prime element if

α ∧ β ≤ p implies α ≤ p or β ≤ p for all α, β ∈ V .
Let X be a nonempty set, PX denotes the power set of X and VX denotes the set of

all maps from X to V.

Definition 2.1 (cf. [25]). A V-valued closure structure on set X is a map c : PX −→ VX

satisfying
(i) ∀x ∈ A ⊆ X : k ≤ (cA)(x) (Reflexivity),
(ii) ∀A, B ⊆ X, x ∈ X: (

∧
y∈B(cA)(y)) ⊗ (cB)(x) ≤ (cA)(x) (Transitivity).

The pair (X, c) is called a V-valued closure space.

Definition 2.2 (cf. [25]). A V-valued topological structure on set X is a map c : PX −→
VX satisfying

(i) c is a V-valued closure structure on X,
(ii) ∀x ∈ X and ∅, the empty set: (c∅)(x) = ⊥,
(iii) ∀x ∈ X and ∀A, B ⊆ X: c(A ∪ B)(x) = (cA)(x) ∨ (cB)(x).

The pair (X, c) is called a V-valued topological space.

A map f : (X, c) −→ (Y, d) is called continuous (or contractive) if (cA)(x) ≤ d(fA)(fx)
for all A ⊆ X and x ∈ X.

Let V-Cls (resp. V-Top) denote the category with V-valued closure spaces (resp.
V-valued topological spaces) as objects and contractive maps as morphisms. Note that
V-Top is the full subcategory of V-Cls.

Remark 2.3 (cf. [25]). A V-valued closure structure c on X satisfies the monotonicity
condition, i.e., ∅ ̸= B ⊆ A ⊆ X =⇒ cB ≤ cA. Furthermore, if V is an integral quantale
or c is finitely additive, then the restriction B ̸= ∅ is not needed.

Example 2.4. (i) For terminal quantale 1, 1-Cls = 1-Top ∼= Set [25].
(ii) Consider V = (2, ∧, ⊤), where 2 = {⊥ < ⊤}. Then 2-Cls ∼= Cls and 2-Top ∼= Top

[25], where Cls is the category of closure spaces and continuous maps [15] and Top
is the category of topological spaces and continuous maps.

(iii) If quantale V = (([0, ∞], ≥), +, 0) (Lawvere′s quantale) [17], then V-Top ∼=
App, where App is the category of approach spaces and contraction maps [26].
Moreover, we have V-Cls ∼= Cls′, where Cls′ is the category considered in [37].
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(iv) Consider the quantale △& = (△, ⊗, k) of all distance distribution functions φ :
[0, ∞] −→ [0, 1] that satisfy φ(β) = sup

α<β
φ(α) for all β ∈ [0, ∞] with (φ ⊗ ξ)(γ) =

sup
α+β<γ

φ(α)&ξ(β), where & is Lukasiewicz operation on [0, 1] defined by α&β =

max{α + β − 1, 0}. The ⊗-neutral function k satisfies k(0) = 0 and k(α) = 1 for
all α > 0. Then, △&-Top ∼= ProbApp& [24, 25] of probabilistic approach spaces
defined in [19].

A functor U : E −→ Set (the category of sets and functions) is called topological if (i)
U is concrete (i.e., faithful and amnestic), (ii) U consists of small fibers and (iii) every
U-source has a unique initial lift or equivalently, each U-sink has a unique final lift [1,35].

Note that a topological functor which has a left adjoint is called the discrete functor.

Lemma 2.5 (cf. [25]). Let V be a quantale, (Xi, ci) be a collection of V-valued closure
spaces and (fi : X −→ (Xi, ci))i∈I be a source. Then, for all x ∈ X and A ⊆ X,

(cA)(x) =
∧
i∈I

ci(fiA)(fix)

is the initial structure on X.

Lemma 2.6 (cf. [25]). Let X be a non-empty set and (X, c) be a V-valued closure space.
(i) The discrete V-valued closure structure on X is given by

∀x ∈ X, ∀A ⊆ X, (cdisA)(x) =
{

k, x ∈ A,
⊥, x /∈ A.

(ii) The indiscrete V-valued closure structure on X is given by (cindA)(x) = ⊤.

Note that for a quantale V, the category V-Cls is a topological category over Set [25].

3. T0 and T1 Quantale-valued closure spaces
Let X be a non-empty set, X2 = X × X and the wedge X2 ∨△ X2 be two disjoint

copies of X2 identified along with the diagonal. In other words, X2 ∨△ X2 is the pushout
of △ : X −→ X2 along itself. More precisely, if i1 and i2 : X2 −→ X2 ∨△ X2 denote the
inclusion of X2 as the first and second factor, respectively, then i1△ = i2△ is the pushout
diagram [5].

A point (x, y) in X2 ∨△ X2 is denoted by (x, y)1 (resp. (x, y)2) if it is in the first (resp.
second) component. Note that (x, y)1 = (x, y)2 iff x = y.

Definition 3.1 (cf. [5]). A map A : X2 ∨△ X2 −→ X3 is called a principal axis map
provided that

A(x, y)i =
{

(x, y, x), i = 1,
(x, x, y), i = 2.

Definition 3.2 (cf. [5]). A map S : X2 ∨△ X2 −→ X3 is called a skewed axis map
provided that

S(x, y)i =
{

(x, y, y), i = 1,
(x, x, y), i = 2.

Definition 3.3 (cf. [5]). A map ∇ : X2 ∨△ X2 −→ X2 is called a folding map provided
that ∇(x, y)i = (x, y) for i = 1, 2.
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Definition 3.4. Let U : E −→ Set be a topological functor and X ∈ Ob(E) with U(X) =
B.

(i) X is called T0 provided that the initial lift of the U -source {A : B2 ∨△ B2 −→
U(X3) = B3 and ∇ : B2 ∨△ B2 −→ UD(B2) = B2} is discrete, where D is the
discrete functor [5].

(ii) X is called T0 provided that X doesn’t contain an indiscrete subspace with at least
two points [38].

(iii) X is called T1 provided that the initial lift of the U -source {S : B2 ∨△ B2 −→
U(X3) = B3 and ∇ : B2 ∨△ B2 −→ UD(B2) = B2} is discrete [5].

Remark 3.5. In Top (the category of topological spaces and continuous maps), T0 and
T0 (resp. T1) are reduced to the following statement: For each x, y ∈ X with x ̸= y,
there exists a neighborhood of x which doesn’t contain y or (resp. and) there exists a
neighborhood of y which doesn’t contain x [7].

Theorem 3.6. Let (X, c) be a V-valued closure space. (X, c) is T0 if and only if for all
x, y ∈ X with x ̸= y, there exist B ⊆ X with x ∈ B, y /∈ B and C ⊆ X with y ∈ C, x /∈ C
such that c(B)(y) ∧ c(C)(x) ∧ k = ⊥, where k is the tensor-neutral element.

Proof. Suppose (X, c) is T0. For all x, y ∈ X with x ̸= y, let {(x, y)1} ⊆ D ⊆ X2 ∨△ X2

and (x, y)2 ∈ X2 ∨△ X2. Note that

cdis(∇D)(∇(x, y)2) = cdis(∇D)(x, y) = k,

k ≤ c(π1AD)(π1A(x, y)2) = c(π1AD)(x),
since x ∈ π1AD,

c(C)(x) = c(π2AD)(π2A(x, y)2) = c(π2AD)(x)
and

c(B)(y) = c(π3AD)(π3A(x, y)2) = c(π3AD)(y).
Since (x, y)2 /∈ {(x, y)1} and (X, c) is T0, by Lemma 2.5,

⊥ =
∧

{cdis(∇D)(∇(x, y)2), c(π1AD)(π1A(x, y)2),
c(π2AD)(π2A(x, y)2), c(π3AD)(π3A(x, y)2)}

=
∧

{k, c(B)(y), c(C)(x)},

and consequently,
∧

{k, c(B)(y), c(C)(x)} = ⊥.
Conversely, let c be an initial structure on the wedge X2 ∨△ X2 induced by A : X2 ∨△

X2 −→ U(X3, c3) = X3 and ∇ : X2 ∨△ X2 −→ U(X2, cdis) = X2, where c3 is the
product V-valued closure structure on X3, cdis is the discrete V-valued closure structure
on X2 ∨△ X2 and πj : X3 → X is the projection map for j = 1, 2, 3.

Suppose u ∈ X2 ∨△ X2 and D is a non-empty subset of X2 ∨△ X2.
Case I: If ∇u = (x, x) ∈ ∇D for some x ∈ X, then u = (x, x)1 or u = (x, x)2 ∈ D, and

it follows that c(D)(u) = k, where k is the tensor neutral element.
Case II: If ∇u = (x, x) /∈ ∇D, then cdis(∇D)(∇u) = ⊥ since cdis is the discrete V-valued

closure structure and consequently, c(D)(u) = ⊥.
Case III: Suppose ∇u = (x, y) for some x, y ∈ X with x ̸= y and it follows that

u = (x, y)i, i = 1, 2.
(i) If u = (x, y)1, (x, y)2 ∈ D, then ∇u ∈ ∇D and πjAu ∈ πjAD for j = 1, 2, 3, and

consequently, c(D)(u) = k.
(ii) If u /∈ D, then ∇u = (x, y) /∈ ∇D, and it follows that

cdis(∇D)(∇u) = cdis(∇D)(x, y) = ⊥,

and consequently, c(D)(u) = ⊥.
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(iii) Suppose that u = (x, y)1 /∈ D but (x, y)2 ∈ D. It follows that

cdis(∇D)(∇(x, y)1) = cdis(∇D)(x, y) = k

and
k ≤ c(π1AD)(π1A(x, y)1) = c(π1AD)(x).

Since x ∈ π1AD, we have

c(B)(y) = c(π2AD)(π2A(x, y)1) = c(π2AD)(y)

and
c(C)(x) = c(π3AD)(π3A(x, y)1) = c(π3AD)(x).

By Lemma 2.5, it follows that

c(D)(u) =
∧

{cdis(∇D)(∇(x, y)1), c(π1AD)(π1A(x, y)1),
c(π2AD)(π2A(x, y)1), c(π3AD)(π3A(x, y)1)}

=
∧

{k, c(B)(y), c(C)(x)} = ⊥.

By the assumption that
∧

{k, c(B)(y), c(C)(x)} = ⊥.
(iv) Similarly, if u = (x, y)2 /∈ D but (x, y)1 ∈ D, it follows that c(D)(u) = ⊥.
Hence, for all u ∈ X2 ∨△ X2 and all non-empty subset D of X2 ∨△ X2, we have

c(D)(u) =
{

k, u ∈ D,
⊥, u /∈ D.

By Lemma 2.6 (i), c is the discrete V-valued closure structure on X2 ∨△ X2. Thus, (X, c)
is T0. �

Corollary 3.7. Let (X, c) be a V-valued closure space, where V is an integral quantale and
V has a prime bottom element. (X, c) is T0 if and only if for all x, y ∈ X with x ̸= y, there
exist B ⊆ X with x ∈ B, y /∈ B and C ⊆ X with y ∈ C, x /∈ C such that c(B)(y) = ⊥ or
c(C)(x) = ⊥.

Proof. It follows from Theorem 3.6 and definitions of prime bottom elements and integral
quantales. �

Theorem 3.8. Let (X, c) be a V-valued closure space. (X, c) is T0 if and only if for all
x, y ∈ X with x ̸= y, c({x})(y) < ⊤ or c({y})(x) < ⊤.

Proof. Suppose (X, c) is T0. Let D = {x, y} and cD be the initial V-valued closure
structure induced by i : D −→ (X, c). For all x, y ∈ X with x ̸= y, cD({x})(y) =
c(i{x})(i(y)) = c({x})(y) or c({y})(x) = c(i{y})(i(x)) = c({y})(x). By Lemma 2.6 (ii), it
follows that c({x})(y) < ⊤ or c({y})(x) < ⊤. Otherwise, c({x})(y) = ⊤ = c({y})(x), and
X contains an indiscrete subspace with at least two elements.

Conversely, let for all x, y ∈ X with x ̸= y, c({x})(y) < ⊤ or c({y})(x) < ⊤. Suppose
D is an indiscrete subspace of X with at least two elements and x, y ∈ D with x ̸= y.
Let cD be the initial V-valued closure structure induced by i : D −→ (X, c). It follows
immediately that ⊤ = cD({x})(y) = c(i{x})(i(y)) = cD({x})(y) and ⊤ = cD({y})(x) =
c(i{y})(i(x)) = cD({y})(x), and consequently, c({x})(y) = ⊤ = c({y})(x), a contradiction
to our assumption. Therefore, X doesn’t contain an indiscrete subspace with at least two
elements. Hence, by Definition 3.4 (ii), (X, c) is T0. �

Theorem 3.9. Let (X, c) be a V-valued closure space. (X, c) is T1 if and only if for all
x, y ∈ X with x ̸= y, there exist B ⊆ X with x ∈ B, y /∈ B and C ⊆ X with y ∈ C, x /∈ C
such that c(B)(y) ∧ k = ⊥ = c(C)(x) ∧ k, where k is the tensor-neutral element.
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Proof. Suppose (X, c) is T1. For all x, y ∈ X with x ̸= y, let {(x, y)1} ⊆ D ⊆ X2 ∨△ X2

and (x, y)2 ∈ X2 ∨△ X2. Note that

cdis(∇D)(∇(x, y)2) = cdis(∇D)(x, y) = k,

k ≤ c(π1SD)(π1S(x, y)2) = c(π1SD)(x),
since x ∈ π1SD,

c(C)(x) = c(π2SD)(π2S(x, y)2) = c(π2SD)(x)
and

k ≤ c(π3SD)(π3S(x, y)2) = c(π3SD)(y),
since y ∈ π3SD. By the assumption that (X, c) is T1 and by Lemma 2.5,

⊥ =
∧

{cdis(∇D)(∇(x, y)2), c(π1SD)(π1S(x, y)2),
c(π2SD)(π2S(x, y)2), c(π3SD)(π3S(x, y)2)}

=
∧

{k, c(C)(x)},

and consequently, c(C)(x) ∧ k = ⊥.
Similarly, if {(x, y)2} ⊆ D ⊆ X2 ∨△ X2 and (x, y)1 ∈ X2 ∨△ X2, then

⊥ =
∧

{cdis(∇D)(∇(x, y)1), c(πjSD})(πjS(x, y)1), j = 1, 2, 3}

=
∧

{k, c(B)(y)},

and consequently, c(B)(y) ∧ k = ⊥.
Conversely, let c be an initial structure on the wedge X2 ∨△ X2 induced by S : X2 ∨△

X2 −→ U(X3, c3) = X3 and ∇ : X2 ∨△ X2 −→ U(X2, cdis) = X2, where c3 is the
product V-valued closure structure on X3, cdis is the discrete V-valued closure structure
on X2 ∨△ X2 and πj : X3 → X is the projection map for j = 1, 2, 3.

Let u ∈ X2 ∨△ X2 and D be a non-empty subset of X2 ∨△ X2, and for all x, y ∈ X
with x ̸= y, there exist B ⊂ X with x ∈ B, y /∈ B and C ⊂ X with y ∈ C, x /∈ C such
that c(B)(y) ∧ k = ⊥ = c(C)(x) ∧ k.

Case I: If ∇u = (x, x) ∈ ∇D for some x ∈ X, then u = (x, x)1 or u = (x, x)2 ∈ D and
consequently, c(D)(u) = k, where k is the tensor neutral element.

Case II: If ∇u = (x, x) /∈ ∇D, then cdis(∇D)(∇u) = ⊥ since cdis is the discrete V-valued
closure structure and consequently, c(D)(u) = ⊥.

Case III: Suppose ∇u = (x, y) for some x, y ∈ X with x ̸= y and it follows that
u = (x, y)i, i = 1, 2.

(i) If u = (x, y)i ∈ D for i = 1, 2, then ∇u ∈ ∇D and πjSu ∈ πjSD for j = 1, 2, 3,
and consequently,

c(D)(u) =
∧

{cdis(∇D)(∇u), c(πjSD)(πjSu) : j = 1, 2, 3} = k.

(ii) If u /∈ D, then ∇u = (x, y) /∈ ∇D, and it follows that

cdis(∇D)(∇u) = cdis(∇D)(x, y) = ⊥,

and consequently, c(D)(u) = ⊥.
(iii) Suppose that u = (x, y)1 /∈ D but {(x, y)2} ∈ D. It follows that

cdis(∇D)(∇u) = cdis(∇D)(∇(x, y)1) = k,

k ≤ c(π1SD)(π1Su) = c(π1SD)((π1S(x, y)1) = c(π1SD)((x)
since x ∈ π1SD,

c(B)(y) = c(π2SD)(π2Su) = c(π2SD)(π2S(x, y)1) = c({x})(y)
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and

k ≤ c(π3SD)(π3Su) = c(π3SD)(π3S(x, y)1) = c(π3SD)(y)

since y ∈ π3SD. By Lemma 2.5,

c(D)(u) =
∧

{cdis(∇D)(∇(x, y)1), c(π1D)(π1S(x, y)1),
c(π2SD)(π2S(x, y)1), c(π3SD)(π3S(x, y)1)}

=
∧

{k, c(B)(y)} = ⊥

since c(B)(y) ∧ k = ⊥.
(iv) Similarly, if u = (x, y)2 /∈ D but (x, y)1 ∈ D, then

c(D)(u) =
∧

{cdis(∇D)(∇(x, y)2), c(π1D)(π1S(x, y)2),
c(π2SD)(π2S(x, y)2), c(π3SD)(π3S(x, y)2)}

=
∧

{k, c(C)(x)} = ⊥

since k ∧ c(C)(x) = ⊥, and consequently, c(D)(u) = ⊥.
Hence, for all u ∈ X2 ∨△ X2 and all non-empty subset D of X2 ∨△ X2, we have

c(D)(u) =
{

k, u ∈ D,
⊥, u /∈ D.

By Lemma 2.6 (i), c is the discrete V-valued closure structure on X2 ∨△ X2. Thus, (X, c)
is T1. �

Corollary 3.10. Let (X, c) be a V-valued closure space, where V is an integral quantale.
(X, c) is T1 if and only if for all x, y ∈ X with x ̸= y, there exist B ⊆ X with x ∈ B,
y /∈ B and C ⊆ X with y ∈ C, x /∈ C such that c(B)(y) = ⊥ = c(C)(x).

Proof. It follows from Theorem 3.9 and the definition of integral quantales. �

Example 3.11. Consider V = [0, 1] (the real unit interval) with ≤ as the partial order,
the product · as the quantale operation and 1 as the identity element. Then V = (([0, 1], ≤
), ·, 1) is a quantale. Let X = {a, b, c} and c : P (X) −→ VX be a map defined by for all
x ∈ X and all non-empty subset A of X,

(cA)(x) =
{

1, x ∈ A,
1/3, x /∈ A.

Clearly, (X, c) is a V-valued closure space. By Theorem 3.8, (X, c) is T0 but by Theorems
3.6 and 3.9, (X, c) is neither T0 nor T1.

4. Pre-Hausdorff and Hausdorff quantale-valued closure spaces
Definition 4.1. Let U : E −→ Set be a topological functor and X ∈ Ob(E) with U(X) =
B.

(i) X is called Pre-T2 provided that the initial lifts of U -sources {A : B2 ∨△ B2 −→
U(X3) = B3 and S : B2 ∨△ B2 −→ U(X3) = B3} coincide [5, 10].

(ii) X is called T2 provided that X is T0 and Pre-T2 [5, 11].
(iii) X is called NT2 provided that X is T0 and Pre-T2 [11].

Remark 4.2. In Top (the category of topological spaces and continuous maps), T2 and
NT2 are reduced to Hausdorff topological space (X, τ), i.e., for each x, y ∈ X with x ̸= y,
there exists a neighborhood Ux of x which doesn’t contain y and there exists a neighbor-
hood Uy of y which doesn’t contain x such that Ux ∩ Uy = ∅ [11].
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Theorem 4.3. Let (X, c) be a V-valued closure space, where V is an integral quantale.
(X, c) is Pre-T2 if and only if for all x, y ∈ X with x ̸= y, there exist B ⊆ X with x ∈ B,
y /∈ B and C ⊆ X with y ∈ C, x /∈ C such that

c(B)(y) ∧ c(C)(x) = c(B)(y) = c(C)(x).

Proof. Suppose (X, c) is Pre-T2. Let πj : X3 −→ X, j = 1, 2, 3 be the projection map.
For all x, y ∈ X with x ̸= y, let u = (x, y)1 ∈ X2 ∨△ X2 and {(x, y)2} ⊆ D ⊆ X2 ∨△ X2.
Note that

c(π1AD)(π1A(x, y)1) = c(π1AD)(x) = k = ⊤ = c(π1SD)(π1S(x, y)1)
since x ∈ π1AD and x ∈ π1SD,

c(π2AD)(π2A(x, y)1) = c(π2AD)(y)
since y /∈ π2AD and x ∈ π2AD,

c(π2SD)(π2S(x, y)1) = c(π2SD)(y)
since y /∈ π2SD and x ∈ π2SD. It follows that

c(π2AD)(π2A(x, y)1) = c(π2AD)(y) = c(π2SD)(π2S(x, y)1) = c(B)(y),

c(C)(x) = c(π3AD)(π3A(x, y)1) = c(π3AD)(x)
and

c(π3SD)(π3S(x, y)1) = c(π3SD)(y) = k = ⊤
since y ∈ π3SD. This implies∧

{c(πjAD)(πjA(x, y)1); j = 1, 2, 3} =
∧

{c(π1AD)(x), c(π2AD)(y), c(π3AD)(x)}

=
∧

{c(B)(y), c(C)(x)}.

Similarly,∧
{c(πjSD)(πjS(x, y)1); j = 1, 2, 3} =

∧
{c(π1SD)(x), c(π2SD)(y), c(π3SD)(y)}

= c(B)(y).

Since (X, c) is Pre-T2, we have∧
{c(πjAD)(πjA(x, y)1); j = 1, 2, 3} =

∧
{c(πjSD)(πjS(x, y)1); j = 1, 2, 3},

and consequently, ∧
{c(B)(y), c(C)(x)} = c(B)(y).

Let u = (x, y)2 ∈ X2 ∨△ X2 and {(x, y)1} ⊆ D ⊆ X2 ∨△ X2. By a similar verification,
we have

∧
{c(B)(y), c(C)(x)} = c(C)(x) and consequently,∧

{c(B)(y), c(C)(x)} = c(C)(x) = c(B)(y).

Conversely, let cA and cS be the two initial V-valued closure structures on X2 ∨△ X2

induced by A : X2 ∨△ X2 −→ U(X3, c3) = X3 and S : X2 ∨△ X2 −→ U(X3, c3) = X3

respectively, where c3 is the product V-valued closure structure on X3 induced by the
projection map πj : X3 −→ X for j = 1, 2, 3. We need to show that for all u ∈ X2 ∨△ X2

and all non-empty subset D of X2 ∨△ X2, cA(D)(u) = cS(D)(u).
Case (I): If u ∈ D, then cA(D)(u) = cS(D)(u) since cA(D)(u) = cS(D)(u) = k = ⊤.
Case (II): Suppose u /∈ D and they are in the same component of X2 ∨△ X2. This

implies that u = (x, y)i, and {(z, w)i} ⊆ D for i = 1, 2, where x, y, z, w ∈ X. For i = 1,
we have

c(π1AD)(π1Au) = c(π1AD)(x),
c(π2AD)(π2Au) = c(π2AD)(π2A(x, y)1) = c(π2AD)(y),
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and
c(π3AD)(π3Au) = c(π3AD)(π3A(x, y)1) = c(π3AD)(x).

Note that

cA(AD)(Au) =
∧

{c(πjAD)(πjAu) : j = 1, 2, 3}

=
∧

{c(π1AD)(π1A(x, y)1), c(π2AD)(π2A(x, y)1),
c(π3AD)(π3A(x, y)1)}

=
∧

{c(π1AD)(x), c(π2AD)(y)}.

and

cS(SD)(Su) =
∧

{c(πjSD)(πjSu) : j = 1, 2, 3}

=
∧

{c(π1SD)(x), c(π2SD)(y)}.

This implies cA(AD)(Au) = cS(SD)(Su).
For i = 2, it follows that

cA(AD)(Au) = cA(AD)(A(x, y)2) = cS(SD)(S(x, y)2) = cS(SD)(Su).

Case (III): Suppose u /∈ D and they are in the different components of X2 ∨△ X2. We
have the following cases.

(a) If u = (x, y)1 or (y, x)1 and {(x, y)2} ⊆ D or {(y, x)2} ⊆ D for all x ̸= y.
Suppose u = (x, y)1 and {(x, y)2} ⊆ D (resp. {(y, x)2} ⊆ D). Then by Remark

2.5, it follows that

cA(AD)(Au) =
∧

{C(πjAD)(πjAu) : j = 1, 2, 3}

=
∧

{c(π1AD)(π1A(x, y)1), c(π2AD)(π2A(x, y)1), c(π3AD)(π3A(x, y)1)}

=
∧

{c(π2AD)(y), c(π3AD)(x), ⊤}
= c(B)(y) ∧ c(C)(x) (resp. c(B)(y))

and

cS(SD)(Su) =
∧

{C(πjSD)(πjSu) : j = 1, 2, 3}

=
∧

{c(π1SD)(π1S(x, y)1), c(π2SD)(π2S(x, y)1), (π3SD)(π3S(x, y)1)}

=
∧

{⊤, c(B)(y)}
= c(B)(y) (resp. c(B)(y) ∧ c(C)(x)).

By the assumption, we have cA(AD)(Au) = cS(SD)(Su).
Similarly, if u = (y, x)1 and {(x, y)2} ⊆ D or {(y, x)2} ⊆ D for all x ̸= y. It

follows that cA(AD)(Au) = cS(SD)(Su).
(b) If u = (x, y)2 or (y, x)2 and {(x, y)1} ⊆ D or {(y, x)1} ⊆ D for all x ̸= y.

Let u = (x, y)2 and {(x, y)1} ⊆ D, (resp. {(y, x)1} ⊆ D). Then it follows from
Remark 2.5 that

cA(AD)(Au) =
∧

{C(πjAD)(πjAu) : j = 1, 2, 3}

=
∧

{c(π1AD)(π1A(x, y)2), c(π2AD)(π2A(x, y)2), c(π3AD)(π3A(x, y)2)}

=
∧

{⊤, c(π2AD)(x), c(π3AD)(y)}
= c(B)(y) ∧ c(C)(x) (resp. c(C)(x))
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and

cS(SD)(Su) =
∧

{C(πjSD)(πjSu) : j = 1, 2, 3}

=
∧

{c(π1SD)(π1S(x, y)2), c(π2SD)(π2S(x, y)2), c(π3SD)(π3S(x, y)2)}

=
∧

{⊤, c(C)(x)}
= c(C)(x) (resp. c(B)(y) ∧ c(C)(x)).

Similarly, if u = (y, x)2 and {(x, y)1} ⊆ D or {(y, x)1} ⊆ D for all x ̸= y, then
it follows that cA(AD)(Au) = cS(SD)(Su).

(c) For any three (resp. four) distinct points x, y, z (resp. w) ∈ X, similar to above
cases, cA(AD)(Au) = cS(SD)(Su).

Therefore, for all u ∈ X2 ∨△ X2 and all non-empty subset D of X2 ∨△ X2, cA(D)(u) =
cS(D)(u). Thus, (X, c) is Pre-T2. �

Theorem 4.4. Let V be an integral quantale, and let (X, c) be a V-valued closure space.
(X, c) is T2 if and only if (X, c) is a discrete V-valued closure space.

Proof. It follows from the definition of integral quantales, Definition 4.1 (ii), Lemma 2.6
(i) and Theorems 3.6 and 4.3. �

Theorem 4.5. Let V be an integral quantale, and let (X, c) be a V-valued closure space.
The followings are equivalent.

(i) (X, c) is T1.
(ii) (X, c) is T2.
(iii) (X, c) is a discrete V-valued closure space.

Proof. The proof follows from Lemma 2.6 (i), and Theorems 3.9 and 4.4. �

Theorem 4.6. Let V be an integral quantale, and let (X, c) be a V-valued closure space.
(X, c) is NT2 if and only if there exist x, y ∈ X with x ̸= y,

c({y})(x) = c({x})(y) < ⊤.

Proof. It follows from Definition 4.1 (iii) and Theorems 3.8 and 4.3. �

Remark 4.7. (I) For any arbitrary topological category, there is no relation between
T0 and T0, and between T2 and NT2. For example,
(a) In category Cls of closure spaces and continuous maps, Pre-T2 = NT2 =

T2 ⇒ T1 = T0 ⇒ T0 [12].
(b) In category CHY of of Cauchy spaces and Cauchy continuous maps, T0 =

T0 = T1 = T2 =⇒ Pre-T2 [22].
(c) In ConFCO (the category of constant filter convergence spaces and continu-

ous maps), T2 = NT2 ⇒ T0 = T0 = T1 but in ConLFCO (the category of con-
stant local filter convergence spaces and continuous maps), T0 =⇒ T0 = T1
and T0 = NT2 =⇒ T2 [6].

(d) In L-App (category of L-gauge space (resp. L-distance approach space) and
contraction maps) [20], local T1, i.e., T1 at p implies local T0, i.e., T0 at p [36].

(II) In V-Cls with V as an integral quantale, by Theorems 3.6-3.9 and 4.5, T2 = T1 =⇒
T0 =⇒ T0 but converse is not true in general by Example 3.11. Moreover, by
Theorems 4.3-4.6, if (X, c) is T2, then it is Pre-T2 and NT2.
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