
AJIT-e: Online Academic Journal of Information Technology
2018 Yaz/Summer – Cilt/Vol: 9 ‐ Sayı/Num: 33
DOI: 10.5824/1309‐1581.2018.3.002.x
Received: 25.01.2018 Editorial Process Begin: 30.07.2018 Published: 05.10.2018

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

Trade-offs Computing Minimum Hub Cover toward Optimized Labeled

Graph Query Processing

Belma YELBAY, Department of Industrial Engineering, Sabancı University, Turkey, byelbay@sabanciuniv.edu,
ORCID: 0000-0002-6609-2775
S. İlker BİRBİL, Econometric Institute, School of Economics, Erasmus University Rotterdam, The Netherlands,
birbil@ese.eur.nl, ORCID: 0000-0001-7472-7032,
Kerem BÜLBÜL, Department of Industrial Engineering, Sabancı University, Turkey, bulbul@sabanciuniv.edu,
ORCID: 0000-0001-8955-0911,

Hasan M. JAMİL, Department of Computer Science, University of Idaho, USA, jamil@uidaho.edu,

ORCID: 0000-0002-3124-3780

ABSTRACT. As techniques for graph query processing mature, the need for optimization is increasingly

becoming an imperative. Indices are one of the key ingredients toward efficient query

processing strategies via cost-based optimization. Due to the apparent absence of a common

representation model, it is difficult to make a focused effort toward developing access

structures, metrics to evaluate query costs, and choose alternatives. In this context, recent

interests in covering-based graph matching appears to be a promising direction of research.

In this paper, our goal is to formally introduce a new graph representation model, called

Minimum Hub Cover, and demonstrate that this representation offers interesting strategic

advantages, facilitates construction of candidate graphs from graph fragments, and helps

leverage indices in novel ways for query optimization. However, like other covering

problems, minimum hub cover is NP-hard, and thus is a natural candidate for optimization.

We claim that computing the minimum hub cover leads to substantial cost reduction for

graph query processing. We present a computational characterization of minimum hub

cover based on integer programming to substantiate our claim and investigate its

computational cost on various graph types.

1 Introduction
Queries over graph databases can be classified broadly into whole graph at-a-time, and node at-

a-time processing, and framed as a subgraph isomorph computation problem (e.g., [29, 51]) under

a set of label mapping constraints, generally known as graph matching. Techniques such as

GraphQL [21], QuickSI [39] and earlier research such as VFLib [12] and Ullmann [44] fall in the

former category while TALE [41], and SAP- PER [56] are representative of the latter. The

advantage of the node at-a-time graph processing approach is its inherent ability to prune search

space based on target node matching conditions. Node indices are the most common pruning aid

used in most of these processing methods although indices on paths [17], frequent structures [54],

mailto:byelbay@sabanciuniv.edu
mailto:birbil@ese.eur.nl,
mailto:bulbul@sabanciuniv.edu
mailto:jamil@uidaho.edu

AJIT-e: Online Academic Journal of Information Technology
2018 Yaz/Summer – Cilt/Vol: 9 ‐ Sayı/Num: 33
DOI: 10.5824/1309‐1581.2018.3.002.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310 40

node distances [29, 54, 52], etc. have also been used. The key difference is in the ways indices are

exploited for the construction of the target database graphs from their parts (i.e., the edges).

The effectiveness of the node at-a-time methods, however, largely depends on the query type

such as subgraph isomorphism, approximate matching, path queries and so on, as well as on the

index structure used. In other words, universal indexing methods are not always suitable for all

queries, and therefore specialized indices are often constructed to process a query (e.g.,

GraphGrep [17], TALE, and SAPPER) and never maintained. Thus, it is not apparent if the index

structure is switched, how an algorithm will perform leaving an open question if generic index

structures can be leveraged in a way similar to relational query processing with popular indices

such as B+ trees, extendible hashing and inverted files.

In order to decouple the index selection from the query expressions, and to subsequently use

indices as a strategic instrument to compute alternative query plans, we focus on a representation

method for graphs that is independent of the underlying access structures. Our goal is to propose

the “hub” as the unit of graph representation that tells us all we need to know about a node or

vertex of a graph. Intuitively, each node in a graph as hub “covers” all the edges involving its

neighbors and itself. For example, the hub u5 in Figure 1(a) covers the edges (u1, u5), (u1, u2), (u2,

u5), (u2, u3), (u3, u5) and (u5, u6) as a unit structure (shown as the purple edges).

Fig. 1. Example: Query graphs q1 and q2, and data graph d.

The concept of hub we have in mind can be thought of as a convenient extension of Ullmann’s

adjacency matrix [44] and feature structure indexing [27, 9] in that we localize the adjacency matrix

at the node level and consider only a single feature, edges among the neighbors. Consequently,

only structures that are part of a hub are stars (neighbors with no shared edge with other

neighbors) and triangles (neighbors sharing edge with other neighbors). In Figure 1(a), vertex u5

has two triangles Δu1u2u5 and Δu2u3u5, and a star (u5, u6) (in this case just an edge). Whereas

vertices v9 and v11 in Figure 1(b) have a star (with two edges (v8, v9) and (v9, v10) with v9 as

their center), and three triangles (Δv4v7v11, Δv8v7v11, and Δv4v8v11) respectively.

Our goal is to use these atomic structural cues to match shapes for the purpose of graph

matching. For example, to match the query graph q1 in Figure 1(a) with the data graph d in Figure

1(b), we look for individual node structures that are identically connected and depending on the

matching requirement, have identical labels. The next step is to piece together these individual

Trade-offs Computing Minimum Hub Cover toward Optimized Labeled Graph Query Processing
B. YELBAY, Ş. İ. BİRBİL, K. BÜLBÜL, H. M. JAMİL

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

 41

matches to see if the composed structure is the target graph. The cost of this search usually is

dominated by the cost of piecing together the components and testing if the process is yielding

the target graph.

In this example, we can contemplate several different types of graph matching that can be

conceived as the variants of subgraph isomorphism though in the literature, only the structural

isomorphs and match isomorphs defined below are prevalent. We therefore will consider only

these two types of matching in the remainder of this paper.

– structural subgraph isomorph, where only the node IDs (not the labels) are

mapped from query graphs to data graphs using and injective function.

– label subgraph isomorph, on the other hand, requires an injective mapping

of both node IDs and node labels from query graph to data graph.

– full subgraph isomorph extends label subgraph isomorphic matching to

include edge labels in the mapping.

– match subgraph isomorph uses an equality function on the definition of full

sub- graph isomorph to achieve exact matching of node and edge labels

while maps node IDs using an injective function1.

Among the above four modes of matching, structural subgraph isomorphism is the least restrictive

or selective, and so most computationally expensive. While the match sub- graph isomorphic

matching (in the literature it is known as labeled graph matching) is the most restrictive/selective,

full and label subgraph isomorphism are increasingly less so. The idea here is that by combining

different selection and mapping constraints, called matching mode, we can capture most popular

graph matching concepts and go beyond current definitions. Traditional deep equality =d operator

[1] in object-oriented databases can be used to test if two graphs (or a subgraph) are equal (or

contained in the other graph) by requiring that node IDs and labels be identical. Finally, by

requiring that the two graphs have equal number of nodes, we can also achieve graph

isomorphism for each case above.

1.1. Main Motivation

The vertex labeled2 graphs in figure 1 show two query graphs q1 and q2, and a data graph d

respectively. In these graphs, each node has a unique node ID such as ui, vj and wk, and a label

such as A, B and C (shown in uppercase with unique color codes). If all the labels are empty, the

graph is considered unlabeled. If we matched query graph q1 with the data graph d for structural

subgraph isomorphism, we will compute the green, brown and red matches, among others, as

we are only required to map node IDs. However, if we were to compute match subgraph

isomorphs, only solution we can compute then is the green subgraph. If label subgraph

isomorphs were being sought instead, the solution will include the brown subgraph where we

1 Injective mapping of node IDs ensures structural match while equality of label mapping ensures that the graphs are identical

even though the node IDs are different

AJIT-e: Online Academic Journal of Information Technology
2018 Yaz/Summer – Cilt/Vol: 9 ‐ Sayı/Num: 33
DOI: 10.5824/1309‐1581.2018.3.002.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310 42

map pink (C) to pink, green (D) to blue (A), mustard (B) to mustard, and blue to green, along with

the obvious green subgraph. Let us illustrate this naive matching process using Figures 1 and 2.

Fig. 2. Candidate generation for query graph hub u2 on data graph d.

Since there are six nodes in the graph q1, a total of six hubs are possible. Similarly, the graph d can

be represented by a total of eleven hubs. Let us first match q1 with d in match subgraph

isomorphism mode. Under this constraint, for hub u5 (shown clock- wise rotated by 180◦C in

purple in Figure 2(a)), we can only find one hub, hub v2 shown in Figure 2(b), in d which is a super-

graph of hub u5 and can produce a structure identical to u5 (shown as red edges) on proper

mapping of the node IDs.

These structures are called candidate graphlets. However, if we choose to match in structural or

label sub-graph isomorphism mode, we can find more hubs as capable of generating candidate

structures. For example, in label subgraph isomorphism mode, hubs v4 and v5 can also generate

candidates (possible candidate structures are shown in red, purple and green) as shown in

Figures 2(c) and 2(d).

To complete the matching, we can continue to match all the other hubs in q1 in a similar way, and

by applying the substitutions generated for each set of previous matches to the candidate hubs to

eventually compute the green match as shown in Figure 1(b). These graphlets can be joined or

pieced together in both bottom-up fashion using a process similar to natural join, or in top-down

manner using a depth-first search2. In both cases, the graphlets that do not stitch to form the target

graph will eventually be eliminated.

Clearly, the dominant cost in this naive algorithm is in candidate generation. Therefore, it would

be prudent to seek opportunities to curtail the candidates that do not have a realistic chance of

contributing to the result or will produce redundant candidates. For example, we can be smarter

and choose to match u4 or u5 only without compromising the outcome. We can further speed up

the process by noticing that u4 is a green D node and there are four such nodes in d, all of which

will generate a total of twelve candidates even though only four will survive the node mapping,

and only one will join with the first candidate to complete the computation. On the other hand, if

2 The complete top-down matching process is shown in algorithm 2. In this algorithm µ is the structure mapping function that

generates the mapping, θ is the substitution list from previous steps, [θ] is the application of the substitution, and • is the
composition function of two substitutions.

Trade-offs Computing Minimum Hub Cover toward Optimized Labeled Graph Query Processing
B. YELBAY, Ş. İ. BİRBİL, K. BÜLBÜL, H. M. JAMİL

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

 43

we decided to use u3, we will generate six candidates (v3 is not one of them) of which only one

will survive the mapping and eventually the response. Furthermore, if we started initially with

u4, and then try to map u5, the number of candidates generated will be even higher although the

response computed will still be the same. Interestingly though, if the query is q2 (note the

similarity of the two queries except that w4 is now purple), it is better to start matching with w4,

because there is only one candidate and it will fail to produce the response in the next step, as

expected.

These observations lead us to devise the following query processing strategy. First, we reduce the

number of hubs or graphlets in the query graph that we must match based on a new notion of

edge covering in graph theory, called the minimum hub cover (MHC). A minimum hub cover

essentially means a subset of the nodes in a graph accounts for all the edges in a graph. Secondly,

the concept of MHC helps exploit available meta-data on nodes to order the nodes in priority

order based on their selectivity to prune search space, that we call a query plan. In ordering the

nodes, we explore the nodes that will most likely produce the least number of candidates first3.

Given the fact that a query graph may have multiple MHCs, it also offers us the opportunity to

choose the best query plan for a database instance. Finally, we are now able to use access

structures such as hash index and set index to find only the nodes that are relevant for expanding

nodes at a given point in a query plan. In fact, the matching Algorithm 2 uses two such indices IH

and IS. The query plan can be implemented as a top-down or bottom-up procedure based on the

expected number of candidates and a choice can be made based on the expected cost. It is also

possible to reorder the query plan in a top-down procedure to prune search space dynamically

in a way like best-first search.

1.2. Significance

In overwhelming majority of graph matching research, the unit of storage and matching is

basically the edge between two vertices. The major cost of such approach is the reconstruction of

target graph from the edge set for the determination of topological concordance. As opposed to

edge-based matching [21], to reduce the cost of reconstruction, several research used indexing to

collate similar fragments of graphs, or graphlets, to speed up retrieval of the target topology [46,

59]. Depending on the query class and types of data graphs, structure indexing has been shown

to prune search space better and thus improve matching cost. One of the methods used to

successfully search for graphlets was based on set or edge coverings [32, 23] to reduce the number

nodes needed to be explored. But, such covering based matching did not exploit the power of

indexing of structural features of graphs.

In one of our recent research, we have explored the idea of exploiting our notion of hub covering

as discussed above and sub-goal ordering to prune search space [23]. This qualitative investigation

suggested that developing scalable algorithms and optimization techniques for efficient graph

query processing based on subgraph isomorphism matching is entirely feasible. We have further

3 The ordering algorithm for query graphlets is shown in algorithm 1.

AJIT-e: Online Academic Journal of Information Technology
2018 Yaz/Summer – Cilt/Vol: 9 ‐ Sayı/Num: 33
DOI: 10.5824/1309‐1581.2018.3.002.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310 44

demonstrated that traditional graph matching algorithms in systems such as Neo4j performs

poorly for queries over disk resident graphs [36]. The impetus for the adoption of graphlet based

tree matching in our re- search on large phylogenetic databases reported in [26] was the

observation that judicial choice of graphlets in the sub-goal processing order pays dividend over

traditional techniques. In [25], we have shown that sub-goal ordering with access support can be

combined to drastically improve query processing time over large disk resident phylogenetic

databases. Finally, we show that for a very large class of general graph queries, our technique

delivers superior performance on many benchmark and real-life data sets [37] over contemporary

approaches.

In all the above research, the common technique used is the minimum hub cover to reduce the

number of graphlets to be processed for matching. As we discuss in this paper, the problem of

minimum hub cover computation is NP-Hard. We have already reported a similar finding in [49]

for planar graph. Such observations led to the adoption of heuristic hub cover computation in all

our previous research [36, 26, 25, 37] because cover computation is query specific and the cost of

processing includes the cost of cover computation. The reason an optimum cover was not sought

in our previous research above was that we wished to avoid a blind attempt at computing

optimum solutions and exacerbate the cost of actual query processing. Because the cost varies

significantly depending on the query graph type as we show in this paper. In this paper, our goal

thus is to develop a formal treatment of minimum hub cover, and quantitatively characterize its

computation costs over various graph types to suggest a theoretical basis for us to judiciously

choose an algorithm for cover computation depending on the graph at hand. We present our

approach to graph query processing based on minimum hub cover using a generic matching

technique in sections 3.2 and 3.4 that are not specific for any database graph type. The examples

of specific algorithms heuristic cover computation can be found in [26, 25, 37].

1.3. Organization of the Paper
Covering based graph matching is proving to be an interesting and emerging research direction

although we are aware of only Sigma [33] which used set covering directly for matching very small

graphs, while [22, 10] indirectly used covering for graph matching tangentially. Our goal in this

paper, however, is to formally introduce the idea of graph representation using graphlets and

graph query processing using the minimum hub cover of query graph graphlets5. Our focus is to

convince the skeptics that these two concepts help achieve the separation in graph representation

and storage, indexing, query plan generation, and query optimization conveniently.

Once this model is accepted in principle, two main computational problem emerge both of which

are computationally hard – computing MHC and graph matching using subgraph isomorphism

as the primary vehicle. In this paper, we only address the first issue, that is the computational

aspects of MHC. But for the sake of completeness, we also briefly present an outline of the cost-

based optimization strategy for the ordering of graphlets in the MHC as a candidate query plan,

and a query processing algorithm that uses indices for the execution of a query plan. By doing so,

we demonstrate that cost-based query optimization is feasible if we can compute the MHC of a

query graph. Finally, we believe that even if algorithms such as SUMMA [55], NOVA [58], TALE,

Trade-offs Computing Minimum Hub Cover toward Optimized Labeled Graph Query Processing
B. YELBAY, Ş. İ. BİRBİL, K. BÜLBÜL, H. M. JAMİL

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

 45

and SAPPER do not use a notion similar to hubs as we do, they do use the notion of neighborhood

and will benefit from the development presented in this paper if they consider a similar covering,

i.e., edge or vertex covers, of the queries. The results in this paper then becomes directly relevant

to those research as well because we show how the cost of covering computation may vary

depending on the type and parameters of the graphs being considered.

The remainder of the paper is organized as follows. We discuss background of the research

related to MHC in Section 2. In this section, we also discuss related research in covering

computation based on which we formulate our characterization of MHC. The formal treatment

of MHC and its application in query plan generation is discussed in Section 3. Similar to other

covering problems such as set cover, and minimum vertex cover, MHC turns out to be an NP-

complete problem as well. Therefore, it can be framed as an optimization problem and made a

candidate for heuristic solutions. In Section 3.5, we discuss an integer programming formulation

of the MHC problem as a prelude to our main results on its computability. We have implemented

the algorithm using the IBM ILOG optimization engine CPLEX. The experimental results in

Section 5 based on the design in Section 4 suggest that solving MHC to optimality is not a concern

for many graph types. A summary of interesting and possible future research issues that are still

outstanding is discussed in Section 6. We finally conclude in Section 7.

2 Background and Related Research

In our earlier research on IsoSearch [23], we have shown that the notion of structural unification

helps to extract all possible matches of two hubs under a mapping function or a substitution list.

While this atomic matching process generates a potentially large candidate pool, we were able to

avoid the large cost related to testing for conformity of the candidate target structure with that of

the query graph that most other algorithms incur. In our case, conformity is an eventuality and

automatic if a match exists. We have also shown that IsoSearch performs significantly better than

traditional algorithms such as Ullmann and VFLib, have a significantly low memory footprint, and

is able to handle arbitrary sized query and data graphs (because we handle only pairs of graphlets

at a time). The concepts of hubs and minimum hub covers also help model various definitions of

exact graph matching along the lines of [43, 53, 54], as well as approximate graph matching in the

spirit of TALE.5

In our recent research on a declarative graph query language called NyQL [24], we have in-

formally introduced the idea of the MHC and discussed how it can be exploited to represent

graphs as nested relations and develop graph query operators in a way similar to the notion of

the deep equality operator [1] in object-oriented databases.

Tangentially to this research, in our recent top-k graph matching algorithm TraM [2], we have

explored the idea of hub matching as a unit of comparison and computed structural distance of

attributed hubs without the need for explicit use of indices. In this approach, we have developed

a quantification for a hub’s structural feature as a random walk score [6]. Since random walk

scores encompass the global topological properties of a node as a hub, from the standpoint of

graph matching, it can be used to compare topological orientation and relative importance of

graph nodes. These scores thus effectively capture the topological likeness and structural cues

AJIT-e: Online Academic Journal of Information Technology
2018 Yaz/Summer – Cilt/Vol: 9 ‐ Sayı/Num: 33
DOI: 10.5824/1309‐1581.2018.3.002.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310 46

shared among the hubs and were effectively exploited for approximate graph matching in TraM.

A similar method was used in [16] to compute computation of similarities of nodes of a graph for

collaborative recommendation. The random walk-based approach, however, does not offer much

opportunity for cost-based query optimization based on the evolving states of the database

extension in ways similar to [57, 42] because it is largely similar in nature to many algorithmic

counterparts such as SUMMA, NOVA, TALE, and SAPPER.

As we shall elaborate in the subsequent part of this section, the MHC problem is closely related

to two well-known combinatorial optimization problems, the set covering problem (SCP) and the

minimum vertex cover (MVC) problem, which are, in turn, share a similar mathematical

programming model. We next discuss the relationship be- tween the MHC problem and the MVC

problem, and then tie this discussion to a general set covering formulation that we also adopt in

this work.

Let us start with the integer programming (IP) model for the MVC problem:

where xj is a binary variable that is equal to 1, if vertex j is in the cover and 0, otherwise. The

objective function (1) evaluates the total number of vertices in the cover. Constraints (2) ensure

that every edge is covered by at least one vertex, and constraints (3) enforce binary restrictions on

the variables. To give a concrete example, suppose that we are trying to find the optimal MVC in

the graph shown in figure 1(a). The corresponding IP model is then given by

The model minimizes the total number of selected vertices while satisfying the coverage

constraints written for each edge. For the sake of clarity, the edge corresponding to a constraint

is designated at the end of each line within the brackets. The first constraint, for example, implies

that the edge (u1, u2) can be covered by vertices u1 and u2. Since an edge can be covered only by

Trade-offs Computing Minimum Hub Cover toward Optimized Labeled Graph Query Processing
B. YELBAY, Ş. İ. BİRBİL, K. BÜLBÜL, H. M. JAMİL

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

 47

the vertices incident to it, each constraint in the IP formulation of the MVC problem involves

exactly two variables. In this example, {u2, u5} is the unique optimal solution.

When it comes to the mathematical programming model of the MHC problem, we need to pay

attention to the fact that a vertex (as a hub) covers not only the edges incident to itself but also

those edges between its immediate neighbors. Using this fact, we obtain the following IP

formulation of the MHC problem for the graph in Figure 1(a):

Notice that unlike the IP formulation of the MVC problem, the number of constraints re- duces

since multiple edges can be covered by the same set of vertices. For instance, the second constraint

shows that vertices u2, u3 and u5 cover the edges (u2, u3), (u2, u5), and (u3, u5). Because of this hub

property, the number of variables appearing in a constraint is greater than or equal to two. In fact,

this number can easily go up to the number of vertices, because the vertices incident to an edge

may be connected to all other vertices forming an abundant number of triangles. Clearly, the

cardinality of the MHC can be far less than that of the cardinality of the MVC due to the additional

non-incident edges covered by those vertices in a triangle. Therefore, for triangle-free graphs, the

optimal solutions for the MHC problem and the MVC problem naturally coincide.

2.1 Minimum Hub Cover: As a Special Case of Set Covering

The above formulations of the MVC and MHC problems show that both problems are just the

special cases of the SCP. Given a fixed number of items and a family of sets collectively including

(covering) all these items, the objective of the SCP is to select the least number of sets (minimum

cardinality collection) such that each item is in at least one of these selected sets. If an edge

corresponds to an item and a set is formed with the edges that can be covered by each vertex, then

the connection between the SCP and the MHC problem as well as the MVC problem can easily

be established. To formalize this discussion, below we give the generic IP formulation for the

MHC problem:

AJIT-e: Online Academic Journal of Information Technology
2018 Yaz/Summer – Cilt/Vol: 9 ‐ Sayı/Num: 33
DOI: 10.5824/1309‐1581.2018.3.002.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310 48

Again, the binary variable xj is equal to 1, if vertex j is in the hub cover, and the objective is to

minimize the number of vertices used in the cover. Constraints (5) ensure that every edge is

covered by at least one hub node in the cover. Finally, the constraints

(6) enforce the binary restrictions on the variables. Although the number of constraints seems

equal to the number of edges, we remind that multiple edges can be covered by the same set of

vertices (see MHC example above).

The introduction of the hub cover concept to the literature is quite recent [24]. Thus, to the best of

our knowledge, the solution methods for the MHC problem have not been examined in the

literature until recently in [50, 48]. However, closely related problems, the MVC problem and the

SCP, have been extensively studied before. Take the MVC problem; approximation algorithms

[18, 19], heuristic solutions [4], evolutionary algorithms [28, 14] can be listed among those

numerous solution methods. The SCP is no different. From approximation algorithms [7, 18] that

have good empirical performances to randomized greedy algorithms [15, 20], and from local

search heuristics [30, 45] to different meta-heuristics [8, 35, 3] have been proposed for solving the

SCP.

3 Minimum Hub Cover: The Formal Model

Trade-offs Computing Minimum Hub Cover toward Optimized Labeled Graph Query Processing
B. YELBAY, Ş. İ. BİRBİL, K. BÜLBÜL, H. M. JAMİL

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

 49

3.1. Hubs as Graph Representation

AJIT-e: Online Academic Journal of Information Technology
2018 Yaz/Summer – Cilt/Vol: 9 ‐ Sayı/Num: 33
DOI: 10.5824/1309‐1581.2018.3.002.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310 50

Trade-offs Computing Minimum Hub Cover toward Optimized Labeled Graph Query Processing
B. YELBAY, Ş. İ. BİRBİL, K. BÜLBÜL, H. M. JAMİL

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

 51

AJIT-e: Online Academic Journal of Information Technology
2018 Yaz/Summer – Cilt/Vol: 9 ‐ Sayı/Num: 33
DOI: 10.5824/1309‐1581.2018.3.002.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310 52

Trade-offs Computing Minimum Hub Cover toward Optimized Labeled Graph Query Processing
B. YELBAY, Ş. İ. BİRBİL, K. BÜLBÜL, H. M. JAMİL

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

 53

The optimal linear programming (LP) and IP solutions are obtained by ILOG IBM CPLEX 12.4

on a personal computer with an Intel Core 2 Dual processor and 3.25 GB of RAM. In all problem

instances, the upper limit on the computation is set at 3,600 seconds. The batch processing of the

instances is carried out through simple C++ scripts. Our data set includes a total of 830 instances.

We have 5 different instances for each combination of a graph type, size, and density parameter

to be able to draw conclusions.

4.1 Selected Graph Types and Problem Classes

We have chosen to use the benchmark database graph instances in [38] and our own synthetically

generated data set for our numerical study. This is a very large database of different graph types

and sizes designed specifically to test the sophistication of (sub)graph isomorphism algorithms.

Since we are using subgraph isomorphism as a basic vehicle for graph matching, the instances

selected are thus representative of the class of queries we are likely to handle when we solve the

MHC problem. The descriptions of the graph instances we have chosen from this collection are

listed below.

Randomly connected graphs These graphs have no special structure and the number of vertices

range from 20 to 1000 (|V | = 20, 60, 100, 200, 600, 1000). The parameter η denotes the probability

AJIT-e: Online Academic Journal of Information Technology
2018 Yaz/Summer – Cilt/Vol: 9 ‐ Sayı/Num: 33
DOI: 10.5824/1309‐1581.2018.3.002.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310 54

ρ ∈ {0.2, 0.4, 0.6}.

of having an edge between any pair of vertices. Thus, this parameter, in a sense, specifies the

sparsity of a graph. In the database, three different values of η (0.01, 0.05, and 0.10) are considered.

Our data set includes a set of graphs of different sizes for each value of η.

Bounded valence graphs The vertices of the graphs in this class have the same degree (fixed valence).

The sizes of the instances are like those of the problem class (a). We use three different values of

valence – 3, 6 and 9 to obtain graphs of different size and valence.

Irregular bounded valence graphs These graphs are generated by introducing irregularities in the

problem class (b). Irregularity comes from randomly deleting edges and adding them elsewhere

in the graph. With this modification, the average degree is again bounded but some of the vertices

may have higher degrees. The sizes of the instances are like those of problem classes (a) and (b).

Regular meshes with 2D, 3D, and 4D In graphs with 2D, 3D, and 4D meshes, each vertex has

connections with 4, 6, and 8 neighbors, and the numbers of vertices range from 16 to 1024, 27 to

1000, and 16 to 1296, respectively. Similar to the problem classes (a), (b), and (c), we have a set of

graphs for each combination of size and dimension.

Irregular meshes As in class (c), irregular meshes are generated by introducing small irregularities

to the regular meshes. Irregularity comes from the addition of a certain number of edges to the

graph. The number of edges added to the graph is ρ x |V|, where The number of

vertices is the same as in problem class (d).

Scale-free graphs This problem class includes the graphs that follow a power-law distribution of

the form
P (k) ∼ ck−α,

where P (k) is the probability that a randomly selected vertex has exactly k edges, c is the

normalization constant, and 2 ≤ α ≤ 3 is a fixed parameter. We employed the scale-free graph

generator of C++ Boost Graph Library. The generator (Power Law Out Degree algorithm) takes

three inputs. These are the number or vertices, α and β. Increasing the value of β increases the

average degree of vertices. On the other hand, increasing the value of α decreases the probability

of observing vertices with high degrees. The sizes of the instances range from 20 to 1000; |V|

∈{20, 60, 100, 200, 600, 1000} to be precise. We considered two values for α ∈{1.5, 2.5} and three

values of β ∈ {100 x |V|, 200 x |V|, 500 x |V|}. Graphs in social networks, protein-protein interaction

networks, and computer networks are examples of this class.

4.2 Solution Methods Used

We choose three solution methods to compute MHC – (i) an exact method to solve the problem

to optimality, (ii) adapt two approximation algorithms from the vertex cover literature capable of

computing feasible solutions fast, and (iii) a mathematical programming-based heuristic

originally proposed for solving the SCP.

Exact algorithm The IP formulation (4) - (6) is solved by an off-the-shelf solver to optimality. Since

the MHC problem is shown to be NP-Hard, this approach may have practical value only for

small-to-medium-scale graphs. However, it sets a definitive benchmark for comparing the

performances of various heuristics.

Trade-offs Computing Minimum Hub Cover toward Optimized Labeled Graph Query Processing
B. YELBAY, Ş. İ. BİRBİL, K. BÜLBÜL, H. M. JAMİL

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

 55

Approximation and greedy algorithms We implemented two different approximation

algorithms. First algorithm selects the vertex with the highest degree at each iteration. The aim is

to cover as many edges as possible. Next, all covered edges as well as the vertices in the cover

are removed from the graph. The algorithm ends when there is no uncovered edge in the graph.

The algorithm is called the H(∆)-approximation algorithm (GR1) for the MVC problem. Here, ∆ is

the maximum degree in the graph, and H(∆) is evaluated by

H(∆) = 1 + 1/2 + . . . + 1/∆.

The second algorithm (GR2), the 2-approximation algorithm, is an adaptation of [5] originally

proposed for computing a near-optimal solution for the MVC problem. Un- like the previous

algorithm, it selects an edge arbitrarily, then both vertices incident to that edge are added to the

cover.

Mathematical programming-based heuristics Yelbay et al. [50] propose a heuristic (MBH) that

uses the dual information obtained from the LP relaxation of the IP model of SCP. They show the

efficacy of the heuristic on a large set of SCP instances. In their work, the dual information is used

to identify the most promising columns and then form a restricted problem with those columns.

Then, an integer feasible solution is found by one of the two approaches. In the first approach

(MBH), the exact IP optimal solution is obtained by solving the restricted problem. In the second

approach, a METARAPS [30] local search heuristic (LSLP) is applied over those promising

columns. We use both approaches.

5 Analysis of Experimental Results

We focus on analyzing and understanding the MHC solution methods in section 4.2 on the

instances in section 4.1 in three different axes: (i) optimal solvability of MHC, (ii) quality of the

solutions, and (iii) computational cost of optimal solution. These analyses are aimed at

understanding which problem classes are inherently more difficult relative to others so that

depending on the application and query, a suitable algorithm can be selected to compute MHC.

We also discuss the factors that increase the complexity of the problems.

5.1 Optimal Solvability of Minimum Hub Covers

Figure 4 (continued in Figure 5) shows how the optimal solution time of CPLEX, an exact method,

varies depending on the problem size, class, and structure. The x-axis and the y-axis represent

the number of vertices and the average computation time, respectively. The right-most data point

on a line shows the size of the largest instance that can be solved to optimality in a group. In

general, its performance is good for small to medium scale graphs. However, in our study, 39 out

of 90, 73 out of 285 and 39 out of 180 instances in problem classes (a), (e) and (f), respectively,

could not be solved optimally using CPLEX within the time limit. This observation opens the door

for heuristics to find acceptable but possibly suboptimal solutions.

Random graphs From Figure 4(a) we conclude that for randomly connected graphs with more than

200 nodes, optimal solution is not achievable within the bounded time. It also suggests that the

AJIT-e: Online Academic Journal of Information Technology
2018 Yaz/Summer – Cilt/Vol: 9 ‐ Sayı/Num: 33
DOI: 10.5824/1309‐1581.2018.3.002.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310 56

density of graphs is a factor that affects the solvability. The solver does increasingly better as the

density η goes down (up to 0.01) for the same number of vertices. Its sensitivity with respect to

the size and density is apparent in the plots for η equal to 0.05 and 0.10, i.e., a 16-fold increase in

solution time.

Bounded valance graphs Compared to random graphs, Figure 4(b) shows an improved performance

on bounded valence graphs solving all instances under 0.3 seconds. The reason for the

performance difference may be due to the considerably higher number of edges in a randomly

connected graph (which forces the number constraints in the IP model to go higher) than that of

a bounded valence graph. However, although we expect higher solution time for graphs with

larger valence, Figure 4(b) shows substantially higher time for valence 3 than valences 6 and 9

suggesting other factors may also be playing a role.

Irregular bounded valance graphs Although the degree distribution is neither constant nor fully

randomly distributed, CPLEX performs similarly to bounded valence graphs. As Figure 4(c)

shows, all solutions are computed in less than 0.25 seconds, and that the computation time

increases with the increase in valence.

Regular mesh graphs Figure 4(d) shows that the size of meshes (2D, 3D or 4D) usually does not have

any influence on the performance barring the abrupt behavior of the 4D mesh graph. In general,

the solution time appears to linearly increase with the increase in graph size, though the increase

in time is extremely small.

Irregular mesh graphs Unlike the irregular bounded valence graphs, mesh graphs are more

susceptible to irregularity and the computation time substantially increases with the degree of

irregularity. Figures 4(e), 4(f) and 5(a) show that the sizes of the problems that can be solved to

optimality decrease and the computation times increase with increasing degree of irregularity.

This result is quite reasonable and expected because increasing irregularity increases the number

of edges, and thus the computation time as well. This is also because randomly adding edges to a

mesh graph makes it structurally more similar to random graphs, which, as discussed earlier, is

inherently hard to solve.

Trade-offs Computing Minimum Hub Cover toward Optimized Labeled Graph Query Processing
B. YELBAY, Ş. İ. BİRBİL, K. BÜLBÜL, H. M. JAMİL

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

 57

AJIT-e: Online Academic Journal of Information Technology
2018 Yaz/Summer – Cilt/Vol: 9 ‐ Sayı/Num: 33
DOI: 10.5824/1309‐1581.2018.3.002.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

58

Fig. 5. Figure 4 continued: Average computation time of CPLEX on problem classes as a
function of the number of vertices in G and the parameters of the problem classes

Scale-free graphs We consider the effect of the two parameters α and β on the solvability of the

problems. On one hand, increasing α makes the degree distribution sharper, i.e., we observe

smaller number of vertices with high degrees. On the other hand, in- creasing the value of β

increases the degrees of non-hub nodes. Figures 5(b) and 5(c) represent the optimal solution

times of scale-free instances. The difficulty of the problem is closely related to parameters α

and β. The figures show that computation times decrease significantly with increasing values

of α. When α = 1.5, the instances with more than 100 vertices cannot be solved to optimality

within the time limit. When α = 2.5, however, all instances can be solved optimally in less than

0.06 seconds. These figures also show that the computation time increases with increasing

values of β. This means that increasing degrees of non-hub nodes makes the problem more

difficult.

5.2 Performance Profile of Solution Methods

To study the quality of solutions generated by other solution methods with respect to the

optimal solutions computed using CPLEX, we refer to figures 6(a) through 6(e). These plots

are called performance profiles of algorithms that depict the fraction of problems for which

the algorithm is within a factor of the best solution [13]. Thus, they compare the performance

of an algorithm s on an instance p with the best performance observed by any other algorithm

on the same instance. The x-axis represents the performance ratio given by

AJIT-e: Online Academic Journal of Information Technology
2018 Yaz/Summer – Cilt/Vol: 9 ‐ Sayı/Num: 33
DOI: 10.5824/1309‐1581.2018.3.002.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

59

where αp,s is the number of hub nodes in the hub cover when the instance p is solved by

algorithm s and S is the set of all benchmark algorithms. The y-axis shows the percentage of

the instances that gives a solution that is less than or equal to τ times the best solution. Recall

that CPLEX cannot solve all instances in problem classes (a), (e) and (f) to optimality.

However, the solver can find feasible solutions for some of those unsolved instances (11 out

of 39, 44 out of 73, and 24 out of 39 in (a), (e), and (f) respectively). Figure 6 includes all

instances except those for which CPLEX cannot find either feasible or optimal solutions within

the time limit.

We first analyze how much we sacrifice from the optimality by employing mathematical

programming-based heuristics MBH and LSLP. Recall that MBH and LSLP solve the same

restricted problem. While MBH tries to solve the problem to optimality, the latter visits

alternate solutions in the feasible region. Figure 6(a) shows that 12% of the instances in class

(a) where both MBH and LSLP find better feasible solutions than that of CPLEX. Note that, this

can happen if and only if CPLEX returns a feasible solution rather than an optimal solution

within the time limit. For other problem classes, the performances of the CPLEX and MBH

are quite similar. Moreover, these figures show that LSLP is outperformed by MBH and

CPLEX on almost 40% and 30% of in- stances in problem classes (b) and (c) respectively. For

the remaining problem classes, the performance of LSLP is also comparable to MBH and

CPLEX.

The greedy algorithms return feasible but sub-optimal solutions quickly. Except the scale-free

networks, the performances of the greedy algorithms do not change with respect to problem

classes. GR2 is known as 2-approximation algorithm for MVC. Figures 6(c) and 6(f) show that

there are some instances for which performance ratios of GR2 are higher than 2. Obviously,

the approximation ratio of GR1 for MHC problem is higher than 2. Intuitively, the performance

of GR1 is supposed to be better when the degree distribution of the vertices is not uniform.

Since the average degrees of the vertices are identical or are quite similar for the instances in

problem classes (a)-(e), the performance of GR1 does not vary for these problem classes.

However, figure 6(f) shows that GR1 finds the optimal or the best solution in 30% of the scale-

free instances. This means that the performance of the GR1 is better for the graphs that follow

the power- law distribution.

5.3 Cost Profile of Solution Methods

The previous two analyses focused on the optimal solvability and the quality of the solu- tions.

In this section we turn our attention to the cost of computing a feasible or optimal MHC

solutions in terms of time. Figures 7(a) through 7(f) summarize the distribution of the average

computation times of the algorithms over the problem classes. In these plots, the instances for

which feasible solutions were not found by any of the algorithm within a time limit are

excluded. Each bar in the figure represents the percentage of the instances that are solved

within the time interval stated in the legend, e.g., the blue bar for 0.0 to 0.05 seconds. Since

LSLP is a local search algorithm, we show both the total computation time and the first time

when the best solution is found.

The results clearly show that the solution times of greedy algorithms (GR1, GR2) are much

shorter than that of the other algorithms. MBH can solve the restricted problem to optimality

Trade-offs Computing Minimum Hub Cover toward Optimized Labeled Graph Query Processing
B. YELBAY, Ş. İ. BİRBİL, K. BÜLBÜL, H. M. JAMİL

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

60

in a reasonable amount of time for a great majority of the instances. We have already discussed

earlier that the performance of the MBH is good in terms of its solution quality. However, the

main drawback for MBH is its inability to solve the restricted problem to optimality.

In such cases, LSLP may serve as an alternative to MBH as it is comparable to MBH in terms

of both solution quality and time, and because LSLP is a local search algorithm, it is also

guaranteed to produce a feasible solution. However, the performance of LSLP is dependent

upon prudent selection of algorithmic parameters, e.g., the total number of iterations, the

number of improvement iterations (see [50] for details). There is a trade-off between solution

time and the solution quality. Decreasing the total number of iterations may result in a

decrease in the total solution time. However, it may increase the optimality gap.

AJIT-e: Online Academic Journal of Information Technology
2018 Yaz/Summer – Cilt/Vol: 9 ‐ Sayı/Num: 33
DOI: 10.5824/1309‐1581.2018.3.002.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

61

{

}

Fig. 6. Performance profiles for the algorithms on the problem classes in terms of solution quality

Fig. 7. Computation time distributions of the solution methods on the problem classes

6 Future Research Opportunities

Constraint solvers such as CPLEX usually do not offer all optimal solutions. Such solutions

also do not exploit database meta-data in computing the most desired solution. For example,

for the graph in figure 1(c), there is no guarantee that the solver will pro- duce the desirable

Trade-offs Computing Minimum Hub Cover toward Optimized Labeled Graph Query Processing
B. YELBAY, Ş. İ. BİRBİL, K. BÜLBÜL, H. M. JAMİL

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

62

solution w5, w4 when the data graph is known to be d. Therefore, we are required to compute

all possible MHCs of q2, i.e., Γ (q2), so that we can identify this least cost query plan.

Unfortunately, it is not guaranteed that solvers can even always compute a solution, let alone

the whole family of solutions Γ (Q) of Q.

The discussion in section 5 also suggests that although the cost of computing MHC is

significantly low for small graphs, it remains high for many graph types when the query graph

is large. Therefore, even though some of the existing solvers may be useful for applications

involving small scale-free graphs such as protein-protein interaction networks, they may not

be a great candidate for big data applications in social networks and world wide web. Though

it may be challenging, we believe the low MHC solution time for many graph types offers

hope that designing algorithms for Γ (Q) is feasible for most practical applications but remains

as an interesting problem.

It is also important to recognize that while developing the least cost MHC using meta-data

may be feasible for a single data graph, devising such algorithm for a large set of data graphs

may not be feasible. It is thus worth investigating if a general but a single optimal query plan

(without computing Γ (Q)), for which we have a solution, can be dynamically adjusted for best

performance over a set of graphs. Finally, it remains an open question if a suboptimal MHC

produced by a greedy algorithm can be improved enough to defeat or match the overall

processing performance using an optimal MHC solution, i.e., total cost of MHC, plan

generation, plan selection and execution.

7 Conclusions
In this paper we have formally introduced the idea of graphlets as a basic unit for graph

representation in a way like RDF triple store, and the concept of minimum hub cover of

graphlets as a basic ingredient toward graph query optimization. We have demonstrated on

intuitive grounds that such an approach can leverage generic access structures such as hash

[11] and set indices [40, 31] for query optimization. Though computationally hard, we have

also demonstrated that query processing and optimization using MHC and subgraph

isomorphism is computationally feasible and intellectually intriguing. We have shown that

for many application domains of cur- rent interest such as social networks, and protein-

protein interaction networks, existing constraint solvers can deliver optimal solutions for

MHC, and therefore can be used to develop optimization strategies. It is our thesis that

covering based graph processing we have presented opens new research directions and holds

enormous promise. The logical next step is to develop a query processor by integrating the

algorithms in sections 3.2 and 3.4, with new algorithms outlined in section 6. These are some

of the tasks we plan to continue as our future research.

8 Acknowledgements
Belma Yelbay’s research was partially supported by TUBITAK 2214 Ph.D. Research

Scholarship Program, and Hasan Jamil’s research was supported in part by NSF grants IIS

0612203 and DRL 1515550.

AJIT-e: Online Academic Journal of Information Technology
2018 Yaz/Summer – Cilt/Vol: 9 ‐ Sayı/Num: 33
DOI: 10.5824/1309‐1581.2018.3.002.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

63

Refefences

1. S. Abiteboul and J. V. den Bussche. Deep equality revisited. In DOOD, pages 213–228, 1995.

2. S. Amin, J. Russell L. Finley, and H. M. Jamil. Top-k similar graph matching

using TraM in biological networks. ACM/IEEE TCBB, 2012.

http://doi.ieeecomputersociety.org/10.1109/TCBB.2012.90.

3. Z. N. Azimi, P. Toth, and L. Galli. An electromagnetism metaheuristic for the unicost set covering

problem. European Journal of Operational Research, 205:290–300, 2010.

4. S. Balaji, V. Swaminathan, and K. Kannan. Optimization of unweighted minimum vertex cover. World

Academy of Science, Engineering and Technology, 67:508–513, 2010.

5. R. Bar-Yehuda and S. Even. A linear-time approximation algorithm for the weighted vertex cover

problem. Journal of Algorithms, 2:198–203, 1981.

6. P. Boldi, M. Santini, and S. Vigna. A deeper investigation of page rank as a function of the damping

factor. In Web Information Retrieval and Linear Algebra Algorithms, 2007.

7. A. Caprara, P. Toth, and M. Fischetti. Algorithms for the set covering problem. Annals of Operations

Research, 98:353–371, 2000.

8.M. Caserta. Metaheuristics: progress in complex systems optimization, chapter 3, pages 43–

63. Springer, Berlin, 2007.

9.C. Chen, X. Yan, P. S. Yu, J. Han, D.-Q. Zhang, and X. Gu. Towards graph containment search and

indexing. In VLDB, pages 926–937, 2007.

10.J. Chen and I. A. Kanj. On approximating minimum vertex cover for graphs with perfect matching.

Theor. Comput. Sci., 337(1-3):305–318, 2005.

11.S. M. Chung. Indexed extendible hashing. Inf. Process. Lett., 44(1):1–6, 1992.

12.L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. Performance evaluation of the vf graph matching

algorithm. In Image Analysis and Processing, pages 1172–1177, 1999.

13.E. Dolan and J. More. Benchmarking optimization software with performance profiles.

Mathematical Programming, 91:201–213, 2002.

14.I. Evans. Evolutionary algorithms for vertex cover. In 7th Annual Conference Evolutionary

Programming, pages 377–386, New York, 1998.

15.T. A. Feo and M. Resende. A probabilistic heuristic for a computationally difficult set covering

problem. Operations Research Letters, 8:67–71, 1989.

http://doi.ieeecomputersociety.org/10.1109/TCBB.2012.90

Trade-offs Computing Minimum Hub Cover toward Optimized Labeled Graph Query Processing
B. YELBAY, Ş. İ. BİRBİL, K. BÜLBÜL, H. M. JAMİL

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

64

16.F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens. Random-walk computation of similarities

between nodes of a graph with application to collaborative recommendation. TKDE, 19(3):355–

369, 2007.

17.R. Giugno and D. Shasha. GraphGrep: A fast and universal method for querying graphs. In

ICPR, volume 2, pages 112–115, 2002.

18.F. Gomes, C. Meneses, P. Pardalos, and G. Viana. Experimental analysis of approximation

algorithms for the veretx cover and set covering problems. Computers and Operations Research,

33:3520–3534, 2006.

19.E. Halperin. Improved approximation algorithms for the vertex cover problem in graphs and

hypergraphs. SIAM Journal on Computing, 31:1608–1623, 2001.

20.M. Haouari and J. S. Chaouachi. A probabilistic greedy search algorithm for combinatorial

optimization with application to the set covering problem. Journal of the Operational Research

Society, 53:792–799, 2002.

21.H. He and A. Singh. Graphs-at-a-time: query language and access methods for graph databases. In

SIGMOD, pages 405–418, 2008.

22.T. Imamura, K. Iwama, and T. Tsukiji. Approximated vertex cover for graphs with perfect

matchings. IEICE Transactions, 89-D (8):2405–2410, 2006.

23.H. M. Jamil. Computing subgraph isomorphic queries using structural unification and minimum

graph structures. In ACM International Symposium on Applied Computing, pages 1053–1058,

Taichung, Taiwan, March 2011.

24.H. M. Jamil. Design of declarative graph query languages: On the choice between value, pattern and

object-based representations for graphs. In ICDE Workshop on Graph Data Management, April

2012.

25.H. M. Jamil. Pruning forests to find the trees. In Proceedings of the 28th International Conference on

Scientific and Statistical Database Management, SSDBM 2016, Budapest, Hungary, July 18-20, 2016,

pages 18:1–18:12, 2016.

26.H. M. Jamil. A visual interface for querying heterogeneous phylogenetic databases.

IEEE/ACM Transactions on Computational Biology and Bioinformatics, pages 1–14, January 2016.

DOI 10.1109/TCBB.2016.2520943.

27.H. Kardes and M. H. Günes. Structural graph indexing for mining complex networks. In

ICDCS Workshops, pages 99–104, 2010.

AJIT-e: Online Academic Journal of Information Technology
2018 Yaz/Summer – Cilt/Vol: 9 ‐ Sayı/Num: 33
DOI: 10.5824/1309‐1581.2018.3.002.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

65

28.S. Khuri and T. Back. An evolutionary heuristic for the minimum vertex cover problem. In Workshop

18th Annual German Conference Artificial Intelligence, pages 86–90, Saarbrucken, Germany, 1994.

29.Y. Kou, Y. Li, and X. Meng. Dsi: A method for indexing large graphs using distance set. In

WAIM, pages 297–308, 2010.

30.G. Lan, G. W. DePuy, and G. E. Whitehouse. An effective and simple heuristic for the set covering

problem. European Journal of Operational Research, 176:1387–1403, 2007.

31.N. Mamoulis. Efficient processing of joins on set-valued attributes. In SIGMOD Conference, pages 157–

168, 2003.

32.M. Mongiov ̀ ı, R. D. Natale, R. Giugno, A. Pulvirenti, A. Ferro, and R. Sharan. Sigma: a set-cover-based

inexact graph matching algorithm. J. Bioinformatics and Computational Biology, 8(2):199–218, 2010.

33.M. Mongiov ̀ ı, R. D. Natale, R. Giugno, A. Pulvirenti, A. Ferro, and R. Sharan. Sigma: a set-cover-based

inexact graph matching algorithm. J. Bioin. and Comp. Bio., 8(2):199–218, 2010.

34.S. Poljak. A note on stable sets and coloring of graphs. Commun. Math. Univ. Carolinae, 15:307–309, 1974.

35.Z. G. Ren, Z. R. Feng, L. J. Ke, and Z. J. Zhang. New ideas for applying ant colony optimization to the

set covering problem. Computers & Industrial Engineering, 58:774–784, 2010.

36.C. R. Rivero and H. M. Jamil. On isomorphic matching of large disk-resident graphs using an xquery

engine. In Workshops Proceedings of the 30th International Conference on Data Engineering

Workshops, ICDE, Chicago, IL, USA, March 31 - April 4, pages 20–27, 2014.

37.C. R. Rivero and H. M. Jamil. Efficient and scalable labeled subgraph matching using SG- Match.

Knowledge and Information Systems, 2016. DOI 10.1007/s10115-016-0968-2.

38.M. Santo, P. Foggia, C. Sansone, and M. Vento. A large database of graphs and its use for benchmarking

graph isomorphism algorithms. Pattern Recognition Letters, 24:1067–1079, 2003.

39.H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hardness: an efficient algorithm for testing

subgraph isomorphism. PVLDB, 1:364–375, 2008.

40.M. Terrovitis, P. Bouros, P. Vassiliadis, T. K. Sellis, and N. Mamoulis. Efficient answering of set

containment queries for skewed item distributions. In EDBT, pages 225–236, 2011.

41.Y. Tian and J. M. Patel. Tale: A tool for approximate large graph matching. ICDE, pages 963–972, 2008.

42.S. Trißl. Cost-based optimization of graph queries. In Workshop on Innovative Database Research,

SIGMOD, 2007.

43.S. Trißl and U. Leser. Fast and practical indexing and querying of very large graphs. In

SIGMOD Conference, pages 845–856, 2007.

44.J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42, 1976.

Trade-offs Computing Minimum Hub Cover toward Optimized Labeled Graph Query Processing
B. YELBAY, Ş. İ. BİRBİL, K. BÜLBÜL, H. M. JAMİL

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

66

45.M. Yagiura, M. Kishida, and T. Ibaraki. A 3-flip neighborhood local search for the set covering problem.

European Journal of Operational Research, 172:472–499, 2006.

46.X. Yan, P. S. Yu, and J. Han. Graph indexing based on discriminative frequent structure analysis. ACM

Trans. Database Syst., 30(4):960–993, 2005.

47.X. Yan, P. S. Yu, and J. Han. Graph indexing based on discriminative frequent structure analysis.

TODS, 30(4):960–993, 2005.

48.B. Yelbay. Minimum hub cover problem: Solution methods and applications. Dissertation, Sabanci

University, Turkey, 2014.

49.B. Yelbay, S. I. Birbil, K. Bülbül, and H. M. Jamil. Approximating the minimum hub cover problem on

planar graphs. Optimization Letters, 10(1):33–45, 2016.

50.B. Yelbay, Ş . ̇I.Birbil, and K. Bülbül. The set covering problem revisited: An empirical

study of the value of dual information. Journal of Industrial and Management Optimization, 11(2):575–594,

2015. DOI 10.3934/jimo.2015.11.575.

51.D. Yuan and P. Mitra. A lattice-based graph index for subgraph search. In WebDB, 2011.

52.L. A. Zager and G. C. Verghese. Graph similarity scoring and matching. Appl. Math. Lett., 21(1):86–94,

2008.

53.S. Zhang, J. Li, H. Gao, and Z. Zou. A novel approach for efficient supergraph query processing on

graph databases. In EDBT, pages 204–215, 2009.

54.S. Zhang, S. Li, and J. Yang. Gaddi: distance index-based subgraph matching in biological networks.

In EDBT, pages 192–203, 2009.

55.S. Zhang, S. Li, and J. Yang. Summa: subgraph matching in massive graphs. In CIKM, pages 1285–1288,

2010.

56.S. Zhang, J. Yang, and W. Jin. Sapper: Subgraph indexing and approximate matching in large graphs.

PVLDB, 3(1):1185–1194, 2010.

57.P. Zhao and J. Han. On graph query optimization in large networks. PVLDB, 3(1):340–351, 2010.

58.K. Zhu, Y. Zhang, X. Lin, G. Zhu, and W. Wang. Nova: A novel and efficient framework for finding

subgraph isomorphism mappings in large graphs. In DASFAA (1), pages 140–154, 2010.

59.L. Zou, L. Chen, H. Zhang, Y. Lu, and Q. Lou. Summarization graph indexing: Beyond frequent

structure-based approach. In DASFAA, pages 141–155, 2008.

AJIT-e: Online Academic Journal of Information Technology
2018 Yaz/Summer – Cilt/Vol: 9 ‐ Sayı/Num: 33
DOI: 10.5824/1309‐1581.2018.3.002.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

67

Trade-offs Computing Minimum Hub Cover toward Optimized Labeled Graph Query Processing
B. YELBAY, Ş. İ. BİRBİL, K. BÜLBÜL, H. M. JAMİL

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310

68

	1 Introduction
	1.1. Main Motivation
	1.3. Organization of the Paper

	2 Background and Related Research
	2.1 Minimum Hub Cover: As a Special Case of Set Covering

	3 Minimum Hub Cover: The Formal Model
	5 Analysis of Experimental Results
	6 Future Research Opportunities
	7 Conclusions
	8 Acknowledgements
	Refefences

