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ABSTRACT.  As techniques for graph query processing mature, the need for optimization is increasingly 

becoming an imperative. Indices are one of the key ingredients toward efficient query 

processing strategies via cost-based optimization. Due to the apparent absence of a common 

representation model, it is difficult to make a focused effort toward developing access 

structures, metrics to evaluate query costs, and choose alternatives. In this context, recent 

interests in covering-based graph matching appears to be a promising direction of research. 

In this paper, our goal is to formally introduce a new graph representation model, called 

Minimum Hub Cover, and demonstrate that this representation offers interesting strategic 

advantages, facilitates construction of candidate graphs from graph fragments, and helps 

leverage indices in novel ways for query optimization. However, like other covering 

problems, minimum hub cover is NP-hard, and thus is a natural candidate for optimization. 

We claim that computing the minimum hub cover leads to substantial cost reduction for 

graph query processing. We present a computational characterization of minimum hub 

cover based on integer programming to substantiate our claim and investigate its 

computational cost on various graph types. 

 

1 Introduction 
Queries over graph databases can be classified broadly into whole graph at-a-time, and node at-

a-time processing, and framed as a subgraph isomorph computation problem (e.g., [29, 51]) under 

a set of label mapping constraints, generally known as graph matching. Techniques such as 

GraphQL [21], QuickSI [39] and earlier research such as VFLib [12] and Ullmann [44] fall in the 

former category while TALE [41], and SAP- PER [56] are representative of the latter. The 

advantage of the node at-a-time graph processing approach is its inherent ability to prune search 

space based on target node matching conditions. Node indices are the most common pruning aid 

used in most of these processing methods although indices on paths [17], frequent structures [54], 
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node distances [29, 54, 52], etc. have also been used. The key difference is in the ways indices are 

exploited for the construction of the target database graphs from their parts (i.e., the edges). 

The effectiveness of the node at-a-time methods, however, largely depends on the query type 

such as subgraph isomorphism, approximate matching, path queries and so on, as well as on the 

index structure used. In other words, universal indexing methods are not always suitable for all 

queries, and therefore specialized indices are often constructed to process a query (e.g., 

GraphGrep [17], TALE, and SAPPER) and never maintained. Thus, it is not apparent if the index 

structure is switched, how an algorithm will perform leaving an open question if generic index 

structures can be leveraged in a way similar to relational query processing with popular indices 

such as B+ trees, extendible hashing and inverted files. 

In order to decouple the index selection from the query expressions, and to subsequently use 

indices as a strategic instrument to compute alternative query plans, we focus on a representation 

method for graphs that is independent of the underlying access structures. Our goal is to propose 

the “hub” as the unit of graph representation that tells us all we need to know about a node or 

vertex of a graph. Intuitively, each node in a graph as hub “covers” all the edges involving its 

neighbors and itself. For example, the hub u5 in Figure 1(a) covers the edges (u1, u5), (u1, u2), (u2, 

u5), (u2, u3), (u3, u5) and (u5, u6) as a unit structure (shown as the purple edges).  

 

 

 

 

 

 

Fig. 1. Example: Query graphs q1 and q2, and data graph d. 

The concept of hub we have in mind can be thought of as a convenient extension of Ullmann’s 

adjacency matrix [44] and feature structure indexing [27, 9] in that we localize the adjacency matrix 

at the node level and consider only a single feature, edges among the neighbors. Consequently, 

only structures that are part of a hub are stars (neighbors with no shared edge with other 

neighbors) and triangles (neighbors sharing edge with other neighbors). In Figure 1(a), vertex u5 

has two triangles Δu1u2u5 and Δu2u3u5, and a star (u5, u6) (in this case just an edge). Whereas 

vertices v9 and v11 in Figure 1(b) have a star (with two edges (v8, v9) and (v9, v10) with v9 as 

their center), and three triangles (Δv4v7v11, Δv8v7v11, and Δv4v8v11) respectively. 

 

Our goal is to use these atomic structural cues to match shapes for the purpose    of graph 

matching. For example, to match the query graph q1 in Figure 1(a) with the data graph d in Figure 

1(b), we look for individual node structures that are identically connected and depending on the 

matching requirement, have identical labels. The next step is to piece together these individual 
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matches to see if the composed structure is the target graph. The cost of this search usually is 

dominated by the cost of piecing together the components and testing if the process is yielding 

the target graph. 

In this example, we can contemplate several different types of graph matching that can be 

conceived as the variants of subgraph isomorphism though in the literature, only the structural 

isomorphs and match isomorphs defined below are prevalent. We therefore will consider only 

these two types of matching in the remainder of this paper. 

 

– structural subgraph isomorph, where only the node IDs (not the labels) are 

mapped from query graphs to data graphs using and injective function. 

– label subgraph isomorph, on the other hand, requires an injective mapping 

of both node IDs and node labels from query graph to data graph. 

– full subgraph isomorph extends label subgraph isomorphic matching to 

include edge labels in the mapping. 

– match subgraph isomorph uses an equality function on the definition of full 

sub- graph isomorph to achieve exact matching of node and edge labels 

while maps node IDs using an injective function1. 

 

Among the above four modes of matching, structural subgraph isomorphism is the least restrictive 

or selective, and so most computationally expensive. While the match sub- graph isomorphic 

matching (in the literature it is known as labeled graph matching) is the most restrictive/selective, 

full and label subgraph isomorphism are increasingly less so. The idea here is that by combining 

different selection and mapping constraints, called matching mode, we can capture most popular 

graph matching concepts and go beyond current definitions. Traditional deep equality =d   operator 

[1] in object-oriented databases can be used to test if two graphs (or a subgraph) are equal (or 

contained in the other graph) by requiring that node IDs and labels be identical. Finally, by 

requiring that the two graphs have equal number of nodes, we can also achieve graph 

isomorphism for each case above. 

 
1.1. Main Motivation 

The vertex labeled2 graphs in figure 1 show two query graphs q1 and q2, and a data graph d 

respectively. In these graphs, each node has a unique node ID such as ui, vj and wk, and a label 

such as A, B and C (shown in uppercase with unique color codes). If all the labels are empty, the 

graph is considered unlabeled. If we matched query graph q1 with the data graph d for structural 

subgraph isomorphism, we will compute the green, brown and red matches, among others, as 

we are only required to map node IDs. However, if we were to compute match subgraph 

isomorphs, only solution we can compute then is the green subgraph. If label subgraph 

isomorphs were being sought instead, the solution will include the brown subgraph where we 

                                                           
1 Injective mapping of node IDs ensures structural match while equality of label mapping ensures that the graphs are identical 

even though the node IDs are different 
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map pink (C) to pink, green (D) to blue (A), mustard (B) to mustard, and blue to green, along with 

the obvious green subgraph. Let us illustrate this naive matching process using Figures 1 and 2. 

 

 

 

 

 

 

 

Fig. 2. Candidate generation for query graph hub u2 on data graph d. 

Since there are six nodes in the graph q1, a total of six hubs are possible. Similarly, the graph d can 

be represented by a total of eleven hubs. Let us first match q1 with d in match subgraph 

isomorphism mode. Under this constraint, for hub u5 (shown clock- wise rotated by 180◦C in 

purple in Figure 2(a)), we can only find one hub, hub v2 shown in Figure 2(b), in d which is a super-

graph of hub u5 and can produce a structure identical to u5 (shown as red edges) on proper 

mapping of the node IDs.  

These structures are called candidate graphlets. However, if we choose to match in structural or 

label sub-graph isomorphism mode, we can find more hubs as capable of generating candidate 

structures. For example, in label subgraph isomorphism mode, hubs v4 and v5 can also generate 

candidates (possible candidate structures are shown in red, purple and green) as shown in 

Figures 2(c) and 2(d). 

To complete the matching, we can continue to match all the other hubs in q1 in a similar way, and 

by applying the substitutions generated for each set of previous matches to the candidate hubs to 

eventually compute the green match as shown in Figure 1(b). These graphlets can be joined or 

pieced together in both bottom-up fashion using a process similar to natural join, or in top-down 

manner using a depth-first search2. In both cases, the graphlets that do not stitch to form the target 

graph will eventually be eliminated. 

Clearly, the dominant cost in this naive algorithm is in candidate generation. Therefore, it would 

be prudent to seek opportunities to curtail the candidates that do not have a realistic chance of 

contributing to the result or will produce redundant candidates. For example, we can be smarter 

and choose to match u4 or u5 only without compromising the outcome. We can further speed up 

the process by noticing that u4 is a green D node and there are four such nodes in d, all of which 

will generate a total of twelve candidates even though only four will survive the node mapping, 

and only one will join with the first candidate to complete the computation. On the other hand, if 

                                                           
2 The complete top-down matching process is shown in algorithm 2. In this algorithm µ is the structure mapping function that 

generates the mapping, θ is the substitution list from previous steps, [θ] is the application of the substitution, and • is the 
composition function of two substitutions. 
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we decided to use u3, we will generate six candidates (v3 is not one of them) of which only one 

will survive the mapping and eventually the response. Furthermore, if we started initially with 

u4, and then try to map u5, the number of candidates generated will be even higher although the 

response computed will still be the same. Interestingly though, if the query is q2 (note the 

similarity of the two queries except that w4 is now purple), it is better to start matching with w4, 

because there is only one candidate and it will fail to produce the response in the next step, as 

expected. 

These observations lead us to devise the following query processing strategy. First, we reduce the 

number of hubs or graphlets in the query graph that we must match based on a new notion of 

edge covering in graph theory, called the minimum hub cover (MHC). A minimum hub cover 

essentially means a subset of the nodes in a graph accounts for all the edges in a graph. Secondly, 

the concept of MHC helps exploit available meta-data on nodes to order the nodes in priority 

order based on their selectivity to prune search space, that we call a query plan. In ordering the 

nodes, we explore the nodes that will most likely produce the least number of candidates first3. 

Given the fact that a query graph may have multiple MHCs, it also offers us the opportunity to 

choose the best query plan for a database instance. Finally, we are now able to use access 

structures such as hash index and set index to find only the nodes that are relevant for expanding 

nodes at a given point in a query plan. In fact, the matching Algorithm 2 uses two such indices IH 

and IS. The query plan can be implemented as a top-down or bottom-up procedure based on the 

expected number of candidates and a choice can be made based on the expected cost. It is also 

possible to reorder the query plan in a top-down procedure to prune search space dynamically 

in a way like best-first search.  

 

1.2. Significance 

In overwhelming majority of graph matching research, the unit of storage and matching is 

basically the edge between two vertices. The major cost of such approach is the reconstruction of 

target graph from the edge set for the determination of topological concordance. As opposed to 

edge-based matching [21], to reduce the cost of reconstruction, several research used indexing to 

collate similar fragments of graphs, or graphlets, to speed up retrieval of the target topology [46, 

59]. Depending on the query class and types of data graphs, structure indexing has been shown 

to prune search space better and thus improve matching cost. One of the methods used to 

successfully search for graphlets was based on set or edge coverings [32, 23] to reduce the number 

nodes needed to be explored. But, such covering based matching did not exploit the power of 

indexing of structural features of graphs. 

In one of our recent research, we have explored the idea of exploiting our notion of hub covering 

as discussed above and sub-goal ordering to prune search space [23]. This qualitative investigation 

suggested that developing scalable algorithms and optimization techniques for efficient graph 

query processing based on subgraph isomorphism matching is entirely feasible. We have further 

                                                           
3 The ordering algorithm for query graphlets is shown in algorithm 1. 
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demonstrated that traditional graph matching algorithms in systems such as Neo4j performs 

poorly for queries over disk resident graphs [36]. The impetus for the adoption of graphlet based 

tree matching in our re- search on large phylogenetic databases reported in [26] was the 

observation that judicial choice of graphlets in the sub-goal processing order pays dividend over 

traditional techniques. In [25], we have shown that sub-goal ordering with access support can be 

combined to drastically improve query processing time over large disk resident phylogenetic 

databases. Finally, we show that for a very large class of general graph queries, our technique 

delivers superior performance on many benchmark and real-life data sets [37] over contemporary 

approaches. 

In all the above research, the common technique used is the minimum hub cover to reduce the 

number of graphlets to be processed for matching. As we discuss in this paper, the problem of 

minimum hub cover computation is NP-Hard. We have already reported a similar finding in [49] 

for planar graph. Such observations led to the adoption of heuristic hub cover computation in all 

our previous research [36, 26, 25, 37] because cover computation is query specific and the cost of 

processing includes the cost of cover computation. The reason an optimum cover was not sought 

in our previous research above was that we wished to avoid a blind attempt at computing 

optimum solutions and exacerbate the cost of actual query processing. Because the cost varies 

significantly depending on the query graph type as we show in this paper. In this paper, our goal 

thus is to develop a formal treatment of minimum hub cover, and quantitatively characterize its 

computation costs over various graph types to suggest a theoretical basis for us to judiciously 

choose an algorithm for cover computation depending on the graph at hand. We present our 

approach to graph query processing based on minimum hub cover using a generic matching 

technique in sections 3.2 and 3.4 that are not specific for any database graph type. The examples 

of specific algorithms heuristic cover computation can be found in [26, 25, 37].  

 

1.3. Organization of the Paper 
Covering based graph matching is proving to be an interesting and emerging research direction 

although we are aware of only Sigma [33] which used set covering directly for matching very small 

graphs, while [22, 10] indirectly used covering for graph matching tangentially. Our goal in this 

paper, however, is to formally introduce the idea of graph representation using graphlets and 

graph query processing using the minimum hub cover of query graph graphlets5. Our focus is to 

convince the skeptics that these two concepts help achieve the separation in graph representation 

and storage, indexing, query plan generation, and query optimization conveniently. 

Once this model is accepted in principle, two main computational problem emerge both of which 

are computationally hard – computing MHC and graph matching using subgraph isomorphism 

as the primary vehicle. In this paper, we only address the first issue, that is the computational 

aspects of MHC. But for the sake of completeness, we also briefly present an outline of the cost-

based optimization strategy for the ordering of graphlets in the MHC as a candidate query plan, 

and a query processing algorithm that uses indices for the execution of a query plan. By doing so, 

we demonstrate that cost-based query optimization is feasible if we can compute the MHC of a 

query graph. Finally, we believe that even if algorithms such as SUMMA [55], NOVA [58], TALE, 
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and SAPPER do not use a notion similar to hubs as we do, they do use the notion of neighborhood 

and will benefit from the development presented in this paper if they consider a similar covering, 

i.e., edge or vertex covers, of the queries. The results in this paper then becomes directly relevant 

to those research as well because we show how the cost of covering computation may vary 

depending on the type and parameters of the graphs being considered. 

The remainder of the paper is organized as follows. We discuss background of the research 

related to MHC in Section 2. In this section, we also discuss related research in covering 

computation based on which we formulate our characterization of MHC. The formal treatment 

of MHC and its application in query plan generation is discussed in Section 3. Similar to other 

covering problems such as set cover, and minimum vertex cover, MHC turns out to be an NP-

complete problem as well. Therefore, it can be framed as an optimization problem and made a 

candidate for heuristic solutions. In Section 3.5, we discuss an integer programming formulation 

of the MHC problem as a prelude to our main results on its computability. We have implemented 

the algorithm using the IBM ILOG optimization engine CPLEX. The experimental results in 

Section 5 based on the design in Section 4 suggest that solving MHC to optimality is not a concern 

for many graph types. A summary of interesting and possible future research issues that are still 

outstanding is discussed in Section 6. We finally conclude in Section 7. 

 

2 Background and Related Research 

In our earlier research on IsoSearch [23], we have shown that the notion of structural unification 

helps to extract all possible matches of two hubs under a mapping function or a substitution list. 

While this atomic matching process generates a potentially large candidate pool, we were able to 

avoid the large cost related to testing for conformity of the candidate target structure with that of 

the query graph that most other algorithms incur. In our case, conformity is an eventuality and 

automatic if a match exists. We have also shown that IsoSearch performs significantly better than 

traditional algorithms such as Ullmann and VFLib, have a significantly low memory footprint, and 

is able to handle arbitrary sized query and data graphs (because we handle only pairs of graphlets 

at a time). The concepts of hubs and minimum hub covers also help model various definitions of 

exact graph matching along the lines of [43, 53, 54], as well as approximate graph matching in the 

spirit of TALE.5  

In our recent research on a declarative graph query language called NyQL [24], we have in- 

formally introduced the idea of the MHC and discussed how it can be exploited to represent 

graphs as nested relations and develop graph query operators in a way similar to the notion of 

the deep equality operator [1] in object-oriented databases. 

Tangentially to this research, in our recent top-k graph matching algorithm TraM [2], we have 

explored the idea of hub matching as a unit of comparison and computed structural distance of 

attributed hubs without the need for explicit use of indices. In this approach, we have developed 

a quantification for a hub’s structural feature as a random walk score [6]. Since random walk 

scores encompass the global topological properties of a node as a hub, from the standpoint of 

graph matching, it can be used to compare topological orientation and relative importance of 

graph nodes. These scores thus effectively capture the topological likeness and structural cues 
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shared among the hubs and were effectively exploited for approximate graph matching in TraM. 

A similar method was used in [16] to compute computation of similarities of nodes of a graph for 

collaborative recommendation. The random walk-based approach, however, does not offer much 

opportunity for cost-based query optimization based on the evolving states of the database 

extension in ways similar to [57, 42] because it is largely similar in nature to many algorithmic 

counterparts such as SUMMA, NOVA, TALE, and SAPPER. 

As we shall elaborate in the subsequent part of this section, the MHC problem is closely related 

to two well-known combinatorial optimization problems, the set covering problem (SCP) and the 

minimum vertex cover (MVC) problem, which are, in turn, share a similar mathematical 

programming model. We next discuss the relationship be- tween the MHC problem and the MVC 

problem, and then tie this discussion to a general set covering formulation that we also adopt in 

this work. 

 

Let us start with the integer programming (IP) model for the MVC problem: 

 

 

 

 

where xj is a binary variable that is equal to 1, if vertex j is in the cover and 0, otherwise. The 

objective function (1) evaluates the total number of vertices in the cover. Constraints (2) ensure 

that every edge is covered by at least one vertex, and constraints (3) enforce binary restrictions on 

the variables. To give a concrete example, suppose that we are trying to find the optimal MVC in 

the graph shown in figure 1(a). The corresponding IP model is then given by 

 

 

 

 

 

 

 

The model minimizes the total number of selected vertices while satisfying the coverage 

constraints written for each edge. For the sake of clarity, the edge corresponding to a constraint 

is designated at the end of each line within the brackets. The first constraint, for example, implies 

that the edge (u1, u2) can be covered by vertices u1 and u2. Since an edge can be covered only by 
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the vertices incident to it, each constraint in the IP formulation of the MVC problem involves 

exactly two variables. In this example, {u2, u5} is the unique optimal solution. 

When it comes to the mathematical programming model of the MHC problem, we need to pay 

attention to the fact that a vertex (as a hub) covers not only the edges incident to itself but also 

those edges between its immediate neighbors. Using this fact, we obtain the following IP 

formulation of the MHC problem for the graph in Figure 1(a): 

 

 

 

 

 

Notice that unlike the IP formulation of the MVC problem, the number of constraints re- duces 

since multiple edges can be covered by the same set of vertices. For instance, the second constraint 

shows that vertices u2, u3 and u5 cover the edges (u2, u3), (u2, u5), and (u3, u5). Because of this hub 

property, the number of variables appearing in a constraint is greater than or equal to two. In fact, 

this number can easily go up to the number of vertices, because the vertices incident to an edge 

may be connected to all other vertices forming an abundant number of triangles. Clearly, the 

cardinality of the MHC can be far less than that of the cardinality of the MVC due to the additional 

non-incident edges covered by those vertices in a triangle. Therefore, for triangle-free graphs, the 

optimal solutions for the MHC problem and the MVC problem naturally coincide. 

2.1 Minimum Hub Cover: As a Special Case of Set Covering 

The above formulations of the MVC and MHC problems show that both problems are just the 

special cases of the SCP. Given a fixed number of items and a family of sets collectively including 

(covering) all these items, the objective of the SCP is to select the least number of sets (minimum 

cardinality collection) such that each item is in at least one of these selected sets. If an edge 

corresponds to an item and a set is formed with the edges that can be covered by each vertex, then 

the connection between the SCP and the MHC problem as well as the MVC problem can easily 

be established. To formalize this discussion, below we give the generic IP formulation for the 

MHC problem: 
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Again, the binary variable xj is equal to 1, if vertex j is in the hub cover, and the objective is to 

minimize the number of vertices used in the cover. Constraints (5) ensure that every edge is 

covered by at least one hub node in the cover. Finally, the constraints 

(6) enforce the binary restrictions on the variables. Although the number of constraints seems 

equal to the number of edges, we remind that multiple edges can be covered by the same set of 

vertices (see MHC example above).  

The introduction of the hub cover concept to the literature is quite recent [24]. Thus, to the best of 

our knowledge, the solution methods for the MHC problem have not been examined in the 

literature until recently in [50, 48]. However, closely related problems, the MVC problem and the 

SCP, have been extensively studied before. Take the MVC problem; approximation algorithms 

[18, 19], heuristic solutions [4], evolutionary algorithms [28, 14] can be listed among those 

numerous solution methods. The SCP is no different. From approximation algorithms [7, 18] that 

have good empirical performances to randomized greedy algorithms [15, 20], and from local 

search heuristics [30, 45] to different meta-heuristics [8, 35, 3] have been proposed for solving the 

SCP. 

 

 

3 Minimum Hub Cover: The Formal Model 
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3.1. Hubs as Graph Representation 
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The optimal linear programming (LP) and IP solutions are obtained by ILOG IBM CPLEX 12.4 

on a personal computer with an Intel Core 2 Dual processor and 3.25 GB of RAM. In all problem 

instances, the upper limit on the computation is set at 3,600 seconds. The batch processing of the 

instances is carried out through simple C++ scripts. Our data set includes a total of 830 instances. 

We have 5 different instances for each combination of a graph type, size, and density parameter 

to be able to draw conclusions. 

 

4.1 Selected Graph Types and Problem Classes 

We have chosen to use the benchmark database graph instances in [38] and our own synthetically 

generated data set for our numerical study. This is a very large database of different graph types 

and sizes designed specifically to test the sophistication of (sub)graph isomorphism algorithms. 

Since we are using subgraph isomorphism as a basic vehicle for graph matching, the instances 

selected are thus representative of the class of queries we are likely to handle when we solve the 

MHC problem. The descriptions of the graph instances we have chosen from this collection are 

listed below. 

 

Randomly connected graphs These graphs have no special structure and the number of vertices 

range from 20 to 1000 (|V | = 20, 60, 100, 200, 600, 1000). The parameter η denotes the probability 
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ρ ∈ {0.2, 0.4, 0.6}. 

of having an edge between any pair of vertices. Thus, this parameter, in a sense, specifies the 

sparsity of a graph. In the database, three different values of η (0.01, 0.05, and 0.10) are considered. 

Our data set includes a set of graphs of different sizes for each value of η. 

Bounded valence graphs The vertices of the graphs in this class have the same degree (fixed valence). 

The sizes of the instances are like those of the problem class (a). We use three different values of 

valence – 3, 6 and 9 to obtain graphs of different size and valence. 

Irregular bounded valence graphs These graphs are generated by introducing irregularities in the 

problem class (b). Irregularity comes from randomly deleting edges and adding them elsewhere 

in the graph. With this modification, the average degree is again bounded but some of the vertices 

may have higher degrees. The sizes of the instances are like those of problem classes (a) and (b). 

Regular meshes with 2D, 3D, and 4D In graphs with 2D, 3D, and 4D meshes, each vertex has 

connections with 4, 6, and 8 neighbors, and the numbers of vertices range from 16 to 1024, 27 to 

1000, and 16 to 1296, respectively. Similar to the problem classes (a), (b), and (c), we have a set of 

graphs for each combination of size and dimension. 

Irregular meshes As in class (c), irregular meshes are generated by introducing small irregularities 

to the regular meshes. Irregularity comes from the addition of a certain number of edges to the 

graph. The number of edges added to the graph is ρ x |V|, where     The number of 

vertices is the same as in problem class (d). 

Scale-free graphs This problem class includes the graphs that follow a power-law distribution of 

the form 
P (k) ∼ ck−α, 

where P (k) is the probability that a randomly selected vertex has exactly k edges, c is the 

normalization constant, and 2 ≤ α ≤ 3 is a fixed parameter. We employed the scale-free graph 

generator of C++ Boost Graph Library. The generator (Power Law Out Degree algorithm) takes 

three inputs. These are the number or vertices, α and β. Increasing the value of β increases the 

average degree of vertices. On the other hand, increasing the value of α decreases the probability 

of observing vertices with high degrees. The sizes of the instances range from 20 to 1000; |V| 

∈{20, 60, 100, 200, 600, 1000} to be precise. We considered two values for α ∈{1.5, 2.5} and three 

values of β ∈ {100 x |V|, 200 x |V|, 500 x |V|}. Graphs in social networks, protein-protein interaction 

networks, and computer networks are examples of this class. 

 

4.2 Solution Methods Used 

We choose three solution methods to compute MHC – (i) an exact method to solve the problem 

to optimality, (ii) adapt two approximation algorithms from the vertex cover literature capable of 

computing feasible solutions fast, and (iii) a mathematical programming-based heuristic 

originally proposed for solving the SCP. 

Exact algorithm The IP formulation (4) - (6) is solved by an off-the-shelf solver to optimality. Since 

the MHC problem is shown to be NP-Hard, this approach may have practical value only for 

small-to-medium-scale graphs. However, it sets a definitive benchmark for comparing the 

performances of various heuristics. 
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Approximation and greedy algorithms We implemented two different approximation 

algorithms. First algorithm selects the vertex with the highest degree at each iteration. The aim is 

to cover as many edges as possible. Next, all covered edges as well as    the vertices in the cover 

are removed from the graph. The algorithm ends when there is no uncovered edge in the graph.  

The algorithm is called the H(∆)-approximation algorithm (GR1) for the MVC problem. Here, ∆ is 

the maximum degree in the graph, and H(∆) is evaluated by 

H(∆) = 1 + 1/2 + . . . + 1/∆. 

The second algorithm (GR2), the 2-approximation algorithm, is an adaptation of [5] originally 

proposed for computing a near-optimal solution for the MVC problem. Un- like the previous 

algorithm, it selects an edge arbitrarily, then both vertices incident to that edge are added to the 

cover. 

Mathematical programming-based heuristics Yelbay et al. [50] propose a heuristic (MBH) that 

uses the dual information obtained from the LP relaxation of the IP model of SCP. They show the 

efficacy of the heuristic on a large set of SCP instances. In their work, the dual information is used 

to identify the most promising columns and then form a restricted problem with those columns. 

Then, an integer feasible solution is found by one of the two approaches. In the first approach 

(MBH), the exact IP optimal solution is obtained by solving the restricted problem. In the second 

approach, a METARAPS [30] local search heuristic (LSLP) is applied over those promising 

columns. We use both approaches. 

 

5 Analysis of Experimental Results 

We focus on analyzing and understanding the MHC solution methods in section 4.2 on the 

instances in section 4.1 in three different axes: (i) optimal solvability of MHC, (ii) quality of the 

solutions, and (iii) computational cost of optimal solution. These analyses are aimed at 

understanding which problem classes are inherently more difficult relative to others so that 

depending on the application and query, a suitable algorithm can be selected to compute MHC. 

We also discuss the factors that increase the complexity of the problems. 

5.1 Optimal Solvability of Minimum Hub Covers 

Figure 4 (continued in Figure 5) shows how the optimal solution time of CPLEX, an exact method, 

varies depending on the problem size, class, and structure. The x-axis and the y-axis represent 

the number of vertices and the average computation time, respectively. The right-most data point 

on a line shows the size of the largest instance that can be solved to optimality in a group. In 

general, its performance is good for small to medium scale graphs. However, in our study, 39 out 

of 90, 73 out of 285 and 39 out of 180 instances in problem classes (a), (e) and (f), respectively, 

could not be solved optimally using CPLEX within the time limit. This observation opens the door 

for heuristics to find acceptable but possibly suboptimal solutions. 

Random graphs From Figure 4(a) we conclude that for randomly connected graphs with more than 

200 nodes, optimal solution is not achievable within the bounded time. It also suggests that the 
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density of graphs is a factor that affects the solvability. The solver does increasingly better as the 

density η goes down (up to 0.01) for the same number of vertices. Its sensitivity with respect to 

the size and density is apparent in the plots for η equal to 0.05 and 0.10, i.e., a 16-fold increase in 

solution time. 

Bounded valance graphs Compared to random graphs, Figure 4(b) shows an improved performance 

on bounded valence graphs solving all instances under 0.3 seconds. The reason for the 

performance difference may be due to the considerably higher number of edges in a randomly 

connected graph (which forces the number constraints in the IP model to go higher) than that of 

a bounded valence graph. However, although we expect higher solution time for graphs with 

larger valence, Figure 4(b) shows substantially higher time for valence 3 than valences 6 and 9 

suggesting other factors may also be playing a role. 

Irregular bounded valance graphs Although the degree distribution is neither constant nor fully 

randomly distributed, CPLEX performs similarly to bounded valence graphs. As Figure 4(c) 

shows, all solutions are computed in less than 0.25 seconds, and that the computation time 

increases with the increase in valence. 

Regular mesh graphs Figure 4(d) shows that the size of meshes (2D, 3D or 4D) usually does not have 

any influence on the performance barring the abrupt behavior of the 4D mesh graph. In general, 

the solution time appears to linearly increase with the increase in graph size, though the increase 

in time is extremely small. 

Irregular mesh graphs Unlike the irregular bounded valence graphs, mesh graphs are more 

susceptible to irregularity and the computation time substantially increases with the degree of 

irregularity. Figures 4(e), 4(f) and 5(a) show that the sizes of the problems that can be solved to 

optimality decrease and the computation times increase with increasing degree of irregularity. 

This result is quite reasonable and expected because increasing irregularity increases the number 

of edges, and thus the computation time as well. This is also because randomly adding edges to a 

mesh graph makes it structurally more similar to random graphs, which, as discussed earlier, is 

inherently hard to solve. 
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Fig. 5. Figure 4 continued: Average computation time of CPLEX on problem classes as a 
function of the number of vertices in G and the parameters of the problem classes 

Scale-free graphs We consider the effect of the two parameters α and β on the solvability of the 

problems. On one hand, increasing α makes the degree distribution sharper, i.e., we observe 

smaller number of vertices with high degrees. On the other hand, in- creasing the value of β 

increases the degrees of non-hub nodes. Figures 5(b) and 5(c) represent the optimal solution 

times of scale-free instances. The difficulty of the problem is closely related to parameters α 

and β. The figures show that computation times decrease significantly with increasing values 

of α. When α = 1.5, the instances with more than 100 vertices cannot be solved to optimality 

within the time limit. When α = 2.5, however, all instances can be solved optimally in less than 

0.06 seconds. These figures also show that the computation time increases with increasing 

values of β. This means that increasing degrees of non-hub nodes makes the problem more 

difficult. 

 

5.2 Performance Profile of Solution Methods 

To study the quality of solutions generated by other solution methods with respect to the 

optimal solutions computed using CPLEX, we refer to figures 6(a) through 6(e). These plots 

are called performance profiles of algorithms that depict the fraction of problems for which 

the algorithm is within a factor of the best solution [13]. Thus, they compare the performance 

of an algorithm s on an instance p with the best performance observed by any other algorithm 

on the same instance. The x-axis represents the performance ratio given by 
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where αp,s is the number of hub nodes in the hub cover when the instance p is solved by 

algorithm s and S is the set of all benchmark algorithms. The y-axis shows the percentage of 

the instances that gives a solution that is less than or equal to τ times the best solution. Recall 

that CPLEX cannot solve all instances in problem classes (a), (e) and (f) to optimality. 

However, the solver can find feasible solutions for some of those unsolved instances (11 out 

of 39, 44 out of 73, and 24 out of 39 in (a), (e), and (f) respectively). Figure 6 includes all 

instances except those for which CPLEX cannot find either feasible or optimal solutions within 

the time limit. 

We first analyze how much we sacrifice from the optimality by employing mathematical 

programming-based heuristics MBH and LSLP. Recall that MBH and LSLP solve the same 

restricted problem. While MBH tries to solve the problem to optimality, the latter visits 

alternate solutions in the feasible region. Figure 6(a) shows that 12% of the instances in class 

(a) where both MBH and LSLP find better feasible solutions than that of CPLEX. Note that, this 

can happen if and only if CPLEX returns a feasible solution rather than an optimal solution 

within the time limit. For other problem classes, the performances of the CPLEX and MBH 

are quite similar. Moreover, these figures show that LSLP is outperformed by MBH and 

CPLEX on almost 40% and 30% of in- stances in problem classes (b) and (c) respectively. For 

the remaining problem classes, the performance of LSLP is also comparable to MBH and 

CPLEX. 

The greedy algorithms return feasible but sub-optimal solutions quickly. Except the scale-free 

networks, the performances of the greedy algorithms do not change with respect to problem 

classes. GR2 is known as 2-approximation algorithm for MVC. Figures 6(c) and 6(f) show that 

there are some instances for which performance ratios of GR2 are higher than 2. Obviously, 

the approximation ratio of GR1 for MHC problem is higher than 2. Intuitively, the performance 

of GR1 is supposed to be better when the degree distribution of the vertices is not uniform. 

Since the average degrees of the vertices are identical or are quite similar for the instances in 

problem classes (a)-(e), the performance of GR1 does not vary for these problem classes. 

However, figure 6(f) shows that GR1 finds the optimal or the best solution in 30% of the scale-

free instances. This means that the performance of the GR1 is better for the graphs that follow 

the power- law distribution. 

 

5.3 Cost Profile of Solution Methods 

The previous two analyses focused on the optimal solvability and the quality of the solu- tions. 

In this section we turn our attention to the cost of computing a feasible or optimal MHC 

solutions in terms of time. Figures 7(a) through 7(f) summarize the distribution of the average 

computation times of the algorithms over the problem classes. In these plots, the instances for 

which feasible solutions were not found by any of the algorithm within a time limit are 

excluded. Each bar in the figure represents the percentage of the instances that are solved 

within the time interval stated in the legend, e.g., the blue bar for 0.0 to 0.05 seconds. Since 

LSLP is a local search algorithm, we show both the total computation time and the first time 

when the best solution is found. 

The results clearly show that the solution times of greedy algorithms (GR1, GR2) are much 

shorter than that of the other algorithms. MBH can solve the restricted problem to optimality 



Trade-offs Computing Minimum Hub Cover toward Optimized Labeled Graph Query Processing 
B. YELBAY, Ş. İ. BİRBİL, K. BÜLBÜL, H. M. JAMİL 

 

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=310 

 
 

60 

in a reasonable amount of time for a great majority of the instances. We have already discussed 

earlier that the performance of the MBH is good in terms of its solution quality. However, the 

main drawback for MBH is its inability to solve the restricted problem to optimality.  

In such cases, LSLP may serve as an alternative to MBH as it is comparable to MBH in terms 

of both solution quality and time, and because LSLP is a local search algorithm, it is also 

guaranteed to produce a feasible solution. However, the performance of LSLP is dependent 

upon prudent selection of algorithmic parameters, e.g., the total number of iterations, the 

number of improvement iterations (see [50] for details). There is a trade-off between solution 

time and the solution quality. Decreasing the total number of iterations may result in a 

decrease in the total solution time. However, it may increase the optimality gap. 
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Fig. 6. Performance profiles for the algorithms on the problem classes in terms of solution quality 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Computation time distributions of the solution methods on the problem classes 

 

6 Future Research Opportunities 
 

Constraint solvers such as CPLEX usually do not offer all optimal solutions. Such solutions 

also do not exploit database meta-data in computing the most desired solution. For example, 

for the graph in figure 1(c), there is no guarantee that the solver will pro- duce the desirable 
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solution w5, w4 when the data graph is known to be d. Therefore, we are required to compute 

all possible MHCs of q2, i.e., Γ (q2), so that we can identify this least cost query plan. 

Unfortunately, it is not guaranteed that solvers can even always compute a solution, let alone 

the whole family of solutions Γ (Q) of Q. 

The discussion in section 5 also suggests that although the cost of computing MHC is 

significantly low for small graphs, it remains high for many graph types when the query graph 

is large. Therefore, even though some of the existing solvers may be useful for applications 

involving small scale-free graphs such as protein-protein interaction networks, they may not 

be a great candidate for big data applications in social networks and world wide web. Though 

it may be challenging, we believe the low MHC solution time for many graph types offers 

hope that designing algorithms for Γ (Q) is feasible for most practical applications but remains 

as an interesting problem. 

It is also important to recognize that while developing the least cost MHC using meta-data 

may be feasible for a single data graph, devising such algorithm for a large set of data graphs 

may not be feasible. It is thus worth investigating if a general but a single optimal query plan 

(without computing Γ (Q)), for which we have a solution, can be dynamically adjusted for best 

performance over a set of graphs. Finally, it remains an open question if a suboptimal MHC 

produced by a greedy algorithm can be improved enough to defeat or match the overall 

processing performance using an optimal MHC solution, i.e., total cost of MHC, plan 

generation, plan selection and execution. 

 

7 Conclusions 
In this paper we have formally introduced the idea of graphlets as a basic unit for graph 

representation in a way like RDF triple store, and the concept of minimum hub cover of 

graphlets as a basic ingredient toward graph query optimization. We have demonstrated on 

intuitive grounds that such an approach can leverage generic access structures such as hash 

[11] and set indices [40, 31] for query optimization. Though computationally hard, we have 

also demonstrated that query processing and optimization using MHC and subgraph 

isomorphism is computationally feasible and intellectually intriguing. We have shown that 

for many application domains of cur- rent interest such as social networks, and protein-

protein interaction networks, existing constraint solvers can deliver optimal solutions for 

MHC, and therefore can be used to develop optimization strategies. It is our thesis that 

covering based graph processing we have presented opens new research directions and holds 

enormous promise. The logical next step is to develop a query processor by integrating the 

algorithms in sections 3.2 and 3.4, with new algorithms outlined in section 6. These are some 

of the tasks we plan to continue as our future research. 
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