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Abstract: In this study, linear vibration of middle supported nanobeam, which is commonly used in nano electro-

mechanical systems, is analyzed. Eringen’s nonlocal elasticity theory is used to capture nanoscale effect. Equation of 

motion of nanobeam is derived with the Hamilton principle. Multiple scale methods, which is one of the perturbation 

techniques, is performed for solving the equation of motion. Support position and nonlocal effect are focused on the 

research. The results are presented with graphs and table. In conclusion, when the nonlocal parameter is getting a 

raise, more nanoscale structure is obtained. Highest rigidity and linear natural frequency are received with mid-

position of the support. 
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Ortadan Destekli Nano Kirişin Doğrusal Titreşim Davranışının İncelenmesi 

 
1. Introduction 

 

 

Öz :  Bu çalışmada, nano elektromekanik sistemlerde yaygın olarak kullanılan ortadan destekli nano kirişin doğrusal 

titreşimi analiz edilmiştir. Nano ölçeği yakalayabilmek için Eringen’in yerel olmayan elastisite teorisi kullanılmıştır. 

Nano kirişin hareket denklemi Hamilton prensibi ile elde edilmiştir. Hareket denklemini çözmek için pertürbasyon 

tekniklerinden biri olan çok ölçekli metot uygulanmıştır. Orta mesnet pozisyonu ve yerel olmayan etki araştırmada 

odak nokta olmuştur. Sonuçlar grafikler ve tablo ile sunulmuştur. Sonuç olarak, yerel olmayan parametre artmasıyla 

daha fazla nano ölçekli yapı elde edilmektedir.  Orta mesnet pozisyonu tam orta konumda iken en yüksek rijitlik ve 

doğrusal doğal frekans değeri elde edilmiştir. 

 

Anahtar Kelimeler: Nanokiriş, doğrusal titreşim, yerel olmayan elastisite, perturbasyon metodu 

When recent studies on technology are examined, it is seen that the technological trend is moving 

towards smaller and faster. The ultimate point of scientific research and technology is that not only 

is product performance faster, but its dimensional parameters are also required to be at the lowest as 

possible level as. For this reason, micro/nano electro-mechanical systems known as MEMS and 

NEMS are frequently seen in scientific research and technological studies in recent years. 

 

Nowadays, due to their importance in technological research, nanoscale structures, nanoparticles 

which are one-billionth of a meter, like beams, bars, plates,  are found their places in many 

application areas such as optics [1,2], electricity [3], energy [4], chemistry [5], health [6], thermal 

[7] biomechanics [8], biology, medicine [9]. 

http://www.teknolojikarastirmalar./
http://www.google.com.tr/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=xz5s9XSyulZkLM&tbnid=oCAfilol35s7FM:&ved=0CAUQjRw&url=http://ahmetatangrafiktasarim.blogspot.com/2011/06/tubiad-kuruldu.html&ei=23GwUZS3GoGbtAaknYHQAQ&bvm=bv.47534661,d.Yms&psig=AFQjCNE6WroNwBybnesv1SG0F_JPplJUQQ&ust=1370604374041622
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Researchers have developed several numerical methods in order to continue their work on nano-

sized due to the difficulty in doing experimental studies in different conditions for nano-sized 

structures and requiring high economic value workstations for simulation studies. These developed 

numerical methods are divided into two parts, basically like continuum mechanics and atomistic 

approaches [10]. The atomistic approach is divided into two different branches like molecular 

dynamics [11], density functional theory [12]. These methods often consume much time and could 

not capture enough small size effect. 

 

Therefore, continuum mechanics theory is used more widely. Different continuum theories are 

derived from catching the nearest effect for nano size. They have modified couple stress theory 

[13], micropolar elasticity theory [14], the strain gradient theory [15], surface elasticity theory [16] 

and Eringen’ s nonlocal elasticity theory [17]. Nonlocal elasticity theory, which is applied in this 

work, is commonly used in the nanostructure. Peddieson et al. [18] have developed a nonlocal Euler 

Bernoulli beam model using the nonlocal elasticity theory. They focused on bending problems for 

the cantilever-free and simple-free supported beams model. Reddy [19] investigated Euler-

Bernoulli, Timoshenko, Reddy and Levinson beam theories by using Eringen’ s nonlocal 

differential constituent relations and Hamilton method. The bending, buckling and vibration 

behaviour of the nonlocal parameter is performed for a simply supported beam. It is observed that 

when the nonlocal effect increases, the bending displacement grow up whereas the buckling load 

and natural frequencies decrease. Nix and Gao [20] show that the indentation size effect for 

crystalline materials can be accurately modelled using the concept of geometrically necessary 

dislocations. Reddy and Pang [21] evaluated the static bending, vibration, and buckling responses 

of Euler-Bernoulli and Timoshenko beams using Eringen’s nonlocal elasticity theory. Simple-

simple, clamped-clamped, clamped-simple, propped clamped-simple boundary conditions were 

examined. Aydoğdu [22] studied bending, buckling and free vibrations of nanobeams such as Euler-

Bernoulli, Timoshenko, Reddy, Levinson beam theories by using nonlocal elasticity theory. It is 

observed when the nonlocal parameter increases, the rigidity of the beam decreases. In addition, the 

bending and buckling rate is increased in a high nonlocal parameter. Bağdatli [23] investigated the 

non-linear vibration behaviour of the Euler-Bernoulli nanobeam model for different boundary 

conditions based on nonlocal elasticity theory. It is stated that with the increase of the nonlocal 

parameter, the linear and non-linear frequency parameters decrease. It is clarified that the highest 

frequency response was obtained for clamped–simple support boundary conditions. 

 

Ghayesh and Farajpour [24] studied vibration behaviour under force by nonlocal strain gradient 

model for nanoscale tubes. The equations of motion of the clamped nanotubes were obtained by 

using the Hamilton principle. The effects of nonlocal parameter, strain gradient parameter, 

dimension parameter on characteristic amplitude and frequency were examined. It has been found 

when the nonlocal parameter increases, the resonance frequency decreases but the transverse 

motion amplitude increases. It is emphasized that the values of the high strain gradient parameter 

significantly increase the resonant frequency. It is stated that the size parameter has little effect on 

vibration amplitudes. Romano et al. [25] investigated elastic nanobeams using nonlocal integral 

models. The boundary effects for nanobeam were explained by theoretical and numerical analysis. 

Arani et al. [26] studied the non-linear vibration response of viscous fluid conveying viscoelastic 

carbon nanotubes based on the nonlocal elasticity theory and modified couple stress theory. 

Nanotubes were modelled using Timoshenko beam theory and placed in a 2-dimensional magnetic 

field. The equations of motion were solved based on the energy method and the Hamilton principle. 

The results are compared with the Galerkin method results. It is realized that the magnetic field has 

a vital role in stability. It is stated that increasing the flow velocity reduces the fundamental natural 

frequencies, and increasing the nonlocal parameter at constant flow speed increases the fundamental 

frequencies. 
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In this paper, three supported nanobeams, which does not coincide in literature, are focused. 

Eringen’s nonlocal theory and Hamilton principle were used to obtain the equation of motion. 

Equations were transformed into non-dimensional form and solved by the help of perturbation 

technics. Thanks to solution the linear vibration behaviour of three supported nanobeam linear 

vibration, which is the main target of this work, is examined. Linear natural frequencies, mode 

shapes were obtained, and the results were compared and interpreted. 

 

2. Materials and Methods 

 

Schematically the three supported nanobeam is shown in Figure 1. The help of the Hamilton 

principle obtained the equations of motion with boundary conditions of the nanobeam. Local 

continuum theory fails to capture the dimension effect for nanostructures. Therefore, Eringen’ s 

nonlocal continuity theory has been used to give nano properties to the structure. The obtained 

equations of motion and boundary conditions were transformed non-dimensional equations to clean 

the material properties and geometric parameters. Then the non-dimensional equation of motion 

was subjected to perturbation analysis, and the dimensionless linear equations of motion were 

obtained. The resulting equations were solved with the help of boundary conditions. The 

fundamental natural frequencies and mode shapes are presented in table and figures. The 

determined natural frequencies values were verified by evaluated with mode shapes. 
 

 
Figure 1. Three supported nanobeam 

 

2.1.  Obtaining Equations of Motion and Boundary Conditions of Three Supported 

Nanobeam 

 

The equations of motion of the nanobeam were obtained using the Hamilton principle. In order to 

apply the Hamilton principle, we need to find the Lagrange of the nanobeam. The system’s 

Lagrange is obtained by subtracting potential energy from its kinetic energy. The potential and 

kinetic energies of the system are as follows: 
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The expressions in the equations of kinetic and potential energy, respectively: xs position of the 

middle support of the nanobeam,  density, A cross-sectional area, w1 transverse displacement in the 

first region of the beam, w2 transverse displacement in the second region of the beam, E elasticity 

module, I the area moment of inertia relative to the neutral axis of the beam, 0e a  nonlocal 

parameter defined by Eringen, N the axial force is acting on the nanobeam. The mathematical 

expression of the Hamilton principle: 

2

1

*δ  dt 0

t

t

L =                                  (3) 

 

where L is Lagrange of the system. When Eq. (1) and Eq. (2) is substituted in the Hamilton 

Principle, the equation of motion of nanobeam is obtained like in Eq. (4) for two-region. Boundary 

conditions of the nanobeam are given in Eq. (6-8) 
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2.2. Non-Dimensioning of Equations of Motion and Boundary Conditions 

 

The ( ) * marked expressions are given in the equations represent dimensional parameters. First, the 

non-dimensioning process starts from variable parameters. The non-dimensional parameters aim to 

study the equations under general form are obtained
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can be written non-dimensional forms are the following, 
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where, (   )̇   refers to the derivative according to time, ( )′ refers to the derivative according to 

location and  represent another form of nonlocal effect. Non-dimensional boundary conditions of 

nanobeam are present in follows: 
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1(0, ) 0w t = , 1 (0, ) 0w t =                                                        (11) 

1( ) 0w  = , 
2 ( ) 0w  = , 1 2( ) ( )w w  = , 1 2( ) ( )w w  =                            (12) 

2 (1, ) 0w t = , 2 (1, ) 0w t =                                                        (13) 

 

2.3. Perturbation Analysis 

 

Perturbation theory is a numerical method applied at the point where the analytic (implicit) solution 

of the interested equation cannot be solved. In this study, the method of multiple scales, one of the 

perturbation methods Nayfeh [27], will be used. In the case of variable amplitude problems in the 

equation concerned, the multi-scale method should be used. In this method, fast (T0=t) and slow 

(T1=t) time scales should be defined. The new time derivatives transform given below: 
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Transverse displacement, which is non-linear term, is transformed of 1,2 1,2w y= . A 

straightforward asymptotic expansion for displacement in two regions of the nanobeam as follows: 

 

( ) 0 1

1 11 0 1 12 0 1, , ( , ; ) ( , ; )y x t y x T T y x T T  = +                                      (18) 

( ) 0 1

2 21 0 1 22 0 1, , ( , ; ) ( , ; )y x t y x T T y x T T  = +                                       (19) 

 

Obtained linear equations of motion for two-part of nanobeam in Eqs. (20)-(21). 

 

First region:  
2 2 2

11 0 11 0 11(1) : 0ivO y D y D y + − =                                             (20) 

Second region:  
2 2 2

21 0 21 0 21(1) : 0ivO y D y D y + − =                                          (21) 

 

2.4. Solving the Linear Problem 

 

In this section, solutions of first-order equations are performed to obtain fundamental linear 

frequencies and mode shapes. The first and second region equations are identical. Therefore, only 

the first region equations solution is clarified. Second region equation is given directly. A solution 

assumption is given as follows: 
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( ) ( ) 0

11 0 1 1 1, ; ( )
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where cc, ω, ( )1A T  represent to the complex conjugate, natural frequency, complex amplitude 

respectively. Eq. (22-23) is substituted in Eq. (20-21), the following form is obtained: 
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2 2 2
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After required mathematical operations are performed, for the first and region solution equation is 

obtained in Eq. (26-27). 
31 2 4

1 1 2 3 4( )
ir xir x ir x ir x

Y x c e c e c e c e= + + +                                          (26) 
 

31 2 4

2 5 6 7 8( )
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Y x c e c e c e c e= + + +                                          (27) 

 

Using the boundary conditions, natural frequencies is found for the three supporting nanobeams. 
 

3. Results and Discussion 

 

The main target of this study is that examination the non-linear vibration of the three supported 

nanobeam. The position of the middle support was monitored by changing its position on the beam. 

In addition, the nonlocal coefficient on the beams was examined. The effects of variable parameters 

on the nanobeam were studied by finding natural frequencies using boundary conditions. Mode 

shapes of the detected natural frequencies were drawn for verification. 

 

The first five-mode shapes of the nanobeam for = 0.1 and η=0.1 are shown in Fig. 2. In order to 

examine the effect of the nonlocal coefficient, three supported nanobeam mode shapes with 

different  values at η=0.5 are shown in Fig. 3 obtained natural frequency results for different  

values are given in Table 1. 

 

When examining the natural frequencies of the three supported nanobeam at different locations and 

 values, it is observed that the natural frequency decrease with the increase of the nonlocal 

coefficient. In addition, amplitudes decrease with the increase of nonlocal coefficient. 

 

When the position of the supports is examined, it is seen that the natural frequencies increase when 

the middle support moves away from the other bearing. As shown in Table 1, the highest linear 

natural frequency is obtained when the middle support is located at η=0.5.  

 

It is seen in Figure 3, the mode shapes at the high natural frequencies have higher amplitudes than 

the mode shapes at the low natural frequencies. When Fig.3 is considered, it is noticed that the 

amplitudes decrease with the increase of nonlocal coefficient. 
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Table 1. Natural frequencies of three supported beams for different  and  values. 

  η 

=  

  0.1 0.2 0.3 0.4 0.5 

ω1 16.766 19.748 23.870 29.316 33.427 

ω2 47.429 54.996 63.410 87.906 98.329 

ω3 83.849 94.907 92.753 132.507 166.514 

ω4 121.492 132.506 163.628 197.437 233.521 

ω5 158.821 161.844 226.075 260.620 299.359 

  η 

    0.1 0.2 0.3 0.4 0.5 

=  

ω1 14.383 16.517 19.256 22.502 24.582 

ω2 33.496 37.386 411.679 39.708 58.380 

ω3 52.281 57.119 56.725 74.935 91.097 

ω4 70.420 74.839 90.227 106.455 123.248 

ω5 88.0875 89.825 106.977 122.522 155.127 

  η 

    0.1 0.2 0.3 0.4 0.5 

=  

ω1 11.976 13.4752 15.305 17.326 18.501 

ω2 24.771 27.188 29.376 28.666 40.487 

ω3 36.870 39.791 39.682 51.219 71.381 

ω4 48.588 51.219 61.430 72.105 83.048 

ω5 60.077 61.2280 72.358 82.705 104.135 

  η 

= 4 

  0.1 0.2 0.3 0.4 0.5 

ω1 10.012 11.117 12.430 13.825 14.595 

ω2 19.398 21.121 22.618 22.180 21.139 

ω3 28.272 30.343 30.306 38.781 46.714 

ω4 36.925 38.781 46.430 54.394 62.523 

ω5 45.445 46.296 54.551 62.310 78.292 

  η 

    0.1 0.2 0.3 0.4 0.5 

=  

ω1 8.499 9.360 10.366 11.413 11.974 

ω2 15.861 17.195 18.324 18.015 24.820 

ω3 22.867 24.468 24.456 31.164 37.488 

ω4 29.731 31.164 37.281 43.635 50.107 

ω5 36.507 37.181 43.747 49.954 62.704 

 

 

Figure 2. The first five mode shapes of the three supported nanobeam for  = 0.1 and η=0.1 
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Figure 3. First linear natural frequency mode shapes for five different   values 

 

4. Conclusions 
 

The present study, the linear vibration behaviour of the three supported nanobeam is investigated. 

The results are presented in tables and graphs. As expected, the reduction of the natural frequency 

and amplitudes of mode shapes is observed with the increase of the nonlocal parameter. It is seen 

that the support position contributes significantly to the natural frequency. It has been shown that 

determining the desired frequency range or distancing at specific frequencies can be carried out 

easily by changing the positions of the supports. It is not found multi supported previous nanobeam 

work. Therefore, it is evaluated that this study will be a new light for this area. 

 

When the results of the three supported nanobeam are examined, the linear natural frequencies tend 

to increase in general by shifting the support to the middle position. However, this trend is not valid 

for all-natural frequencies of the structure. In some cases, it is observed that the natural frequencies 

values do not change or decrease slightly due to the fact that the structure cannot be resonance in 

that mode. Increasing the nonlocal coefficient, reduce to the natural frequencies. The suitability of 

the nanostructure increases with the increase of this coefficient. Nanoscale suitability of structure 

increases with the increase of this coefficient. When the nonlocal parameter for the three supported 

nanobeam is increased from 0.1 to 0.5, a reduction of 50.70% is observed for the first natural 

frequency and a reduction of 64.18% for the fifth natural frequency. 

 

The performed work for the linear behaviour of three supported nanobeams is summarized as 

follows: 

• Increasing nonlocal parameter reduces linear natural frequency and amplitudes. 

• In case the supports are placed in the reinforcement zones of the beams linear natural 

frequencies are increasing, the middle support close to the head and end position of the 

beams, the natural frequency values decrease. 

• The amplitudes of the mode shapes are getting increase at the higher modes of the structure. 
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