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Article History Abstract − Detection of biological, physical and chemical parameters is needed for the determination of water 

quality. Some of these water quality parameters such as turbidity, chlorophyll-a, harmful algae, suspended sedi-

ment, submerged habitat and temperature, can be derived directly via the satellite remote sensing facilities, particu-

larly through the ocean color sensors. The competitiveness of satellite remote sensing comes from its capability of 

extensive geographical range and temporal coverage. Thus, changes and trends in water quality can be monitored 

and assessed to a greater degree, especially under the dynamic conditions of coastal zones. This study focuses on 

the water quality parameters in the vicinity of Green Ports of Turkey located in the Marmara Sea. There are 12 

certified Green Ports in Turkey, located mostly in the Marmara Sea. Marmara Sea is a semi-enclosed inland sea and 

a passageway, which connects the Black Sea to the Mediterranean. There are 7 cities surrounding the Marmara Sea, 

representing the different anthropogenic aspects of civilization: Population, industry and agriculture. These aspects 

affect the water quality of the coastal zones in the Marmara Sea in different scales. Briefly, the aim of this study is 

to monitor and assess the impact of the Green Ports in the Marmara Sea region, in terms of water quality parameters 

detected via the Earth Observation System. Consequently, it is concluded that remote sensing capabilities of the 

contemporary Earth Observation Systems provide reliable results of water quality parameters when coupled with 

the field measurements in order to use in further decision-making mechanisms. 
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1. Introduction 

Since 1970’s satellite remote sensing has been used in water quality monitoring and assessment studies. 

Remote sensing techniques are getting more popular as a global application of water quality due to the 

advances in its technology such as higher spectral and spatial resolutions in addition to the availability of its 

data in digital forms for further processing. By the help of the sensors mounted on satellites, electromagnetic 

radiation of the water surface reflections can be measured and utilized for the detection of various water 

quality parameters. Thus, spatial and temporal observations of surface waters and the quantification of the 

water quality parameters become possible by means of remote sensing (Alparslan, Aydöner, Tufekci, & 

Tüfekci, 2007; Brando & Dekker, 2003; Gholizadeh, Melesse, & Reddi, 2016; Giardino et al., 2014; 

Hadjimitsis & Clayton, 2009; Hellweger, Schlosser, Lall, & Weissel, 2004; Koponen, Pulliainen, Kallio, & 

Hallikainen, 2002; Morel & Prieur, 1977; Ritchie, Zimba, & Everitt, 2003; Seyhan & Dekker, 1986; Usali & 

Ismail, 2010). Several satellite sensors (e.g. Coastal Zone Color Scanner - CZCS, Sea-viewing Wide Field-

of-view Sensor - SeaWiFS, Medium Resolution Imaging Spectrometer - MERIS, Moderate resolution 

Imaging Spectroradiometer - MODIS) have been used to observe near real-time dynamics of aquatic 

environments (van der Woerd & Wernand, 2015). However, CZCS, SeaWiFS and MERIS completed their 

missions in 1986, 2010 and 2012, respectively and MODIS is in charge for a long period of time, since 2002. 

In addition, none of these ocean color sensors was designed for the purpose of water quality monitoring. 

Thus, Ocean and Land Color Instrument (OLCI), a follow-up project and an imaging spectrometer for the 
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monitoring of open, coastal and inland waters (Toming, Kutser, Tuvikene, Viik, & Nõges, 2016; van der 

Woerd & Wernand, 2015) was designed to be specialized in ocean color remote sensing (Wang, Ling, Yao, 

Liu, & Xu, 2019). OLCI is attached on Sentinel-3A and Sentinel-3B satellites launched on the 16
th
 of 

February, 2016 and 25
th
 of April, 2018 respectively by European Space Agency (ESA). The swath width and 

the spatial resolution of OLCI is 1200 km and 300 m, respectively and it has 21 spectral bands with a wide 

range, from optical to near-infrared wavelengths (Donlon et al., 2012; Petus et al., 2019; Wang et al., 2019). 

Since the design of the OLCI spectral bands was performed considering its specific aims, the images 

obtained via Sentinel-3 OLCI sensor are able to be used in mapping the parameters of the water quality 

(Toming et al., 2016; Wang et al., 2019).    

 

There are many parameters of water quality, including hydrological, biological, physical and chemical 

aspects of the water itself and its constituents (Seyhan & Dekker, 1986). Some of these constituents are able 

to be detected by means of remote sensing technology, depending on their photo-activeness and spectral 

characteristics, by interacting with light and changing the energy spectrum of the reflected electromagnetic 

radiation. The parameters of water quality detected via remote sensing are mostly focused on photo-active 

constituents of water, such as chlorophyll-a, colored dissolved organic matters, total organic carbon, 

dissolved organic carbon, total suspended matters and turbidity in addition to other remotely sensed 

parameters such as secchi disk depth, temperature, sea surface salinity, total phosphorus, ortho-phosphate, 

chemical oxygen demand, biochemical oxygen demand, electrical conductivity and ammonia nitrogen 

(Gholizadeh et al., 2016). The physical principles of light such as scattering, absorption and attenuation assist 

to detect and monitor the color change of the water bodies via ocean color sensors. In this study, three water 

quality parameters are selected to be focused on: Chlorophyll-a (Chl-a), Colored Dissolved Organic Matter 

(CDOM) and Total Suspended Matter (TSM). All of these parameters are photo-active and are accepted as 

important indicators of the water quality. 

Chl-a is a well-known photosynthetic pigment of plants, plankton and cyanobacteria. At the same time, it is 

an essential element of photosynthesis process and it is used to estimate the biomass of phytoplankton in the 

water bodies. Due to its connecting role of nutrients with primary production, it is also evaluated as an im-

portant indicator of the trophic status of the water bodies. Because it reflects mainly green color and absorbs 

mostly violet-blue and orange-red color wavelengths, Chl-a is considered as an essential photo-active con-

stituent of the water bodies (Gholizadeh et al., 2016; Schlichter, Kampmann, & Conrady, 1997). Several 

spectral bands were evaluated for the determination of Chl-a in water bodies by means of different sensors 

(e.g. Landsat 5-TM, Landsat 5-MSS, Landsat 7-ETM+, SPOT, IRS-LISS-III, HICO, PROBA-CHRIS, 

MODIS, MERIS, AISA, EO-1 Hyperion, CASI, Daedalus Airborne Thematic Mapper). Chl-a absorbs light 

between blue (450-475 nm) and red (670 nm), but reflects at green (550 nm) and NIR (near infra-red, 700 

nm). Thus, several studies have been performed to develop Chl-a estimation algorithms by using the ratios of 

different spectral bands of these sensors, varying from blue to NIR (Gitelson et al., 2008; Han & Jordan, 

2005; Hoogenboom, Dekker, & Althuis, 1998), in addition to remote sensing measurements of Chl-a 

(Alparslan, Coskun, & Alganci, 2009; Colella, Falcini, Rinaldi, Sammartino, & Santoleri, 2016; Ekercin, 

2007; Oguz & Gilbert, 2007). Therefore, Chl-a is accepted as one of the main indicators of water quality.  

Another indicator of the water quality is the photo-active component of the dissolved organic matter, Col-

ored Dissolved Organic Matter, CDOM, as it appears from its name. CDOM dissolves in water and is pre-

sent in both fresh and salt water with a range of color from yellow to brown (Gholizadeh et al., 2016). The 

majority of the CDOM consists of humic and fulvic acids. Generally, CDOM is assigned as a measure of 

dissolved organic matter (Brezonik, Olmanson, Finlay, & Bauer, 2015; Toming et al., 2016). However, the 

sources of CDOM can be both indigenous and exogenous. CDOM can originate from the water body itself 

due to the degradation of phytoplankton, and it can also originate from its catchment area (Blix, Pálffy, Tóth, 

& Eltoft, 2018). Besides being an indicator of the water quality, CDOM is also an important parameter of 

carbon dynamics in aquatic ecology studies due to its biogenic and organic structure (Mannino, Russ, & 

Hooker, 2008; Ritchie et al., 2003). It is observed that a correlation occurs between CDOM and dissolved 

organic carbon for both fresh and salt water ecosystems (Del Castillo, Gilbes, Coble, & Müller-Karger, 2000; 
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Del Castillo & Miller, 2008; Ferrari, Hoepffner, & Mingazzin, 1996; Spencer et al., 2007; Stedmon et al., 

2006; Vignudelli, Santinelli, Murru, Nannicini, & Seritti, 2004; Yu et al., 2010).   

Together with Chl-a and CDOM, total suspended matter (TSM) dominate the color of the remotely sensed 

water bodies. TSM represents the particulate materials in the water bodies. They can be both organic and 

inorganic, and the origin of their location can be either in local or distant places, e.g. wind-induced resuspen-

sion or tributaries (Madsen, Chambers, James, Koch, & Westlake, 2001). Water turbidity is an optical char-

acteristic of the water and it is directly related with the suspended mater in the water (Wass, Marks, Finch, 

Leeks, & Ingram, 1997). Absorption, scattering and transmission of light have different drivers in the aquatic 

environment, and while Chl-a and CDOM are responsible for the absorption, mostly scattering occurs in the 

regions of suspended sediment (Myint & Walker, 2002). Mapping of spatial and temporal variations of the 

properties such as turbidity and suspended matter concentration is possible by means of remote sensing, and 

different spectral bands are utilized to represent the variations in the colors of the water bodies (Doxaran, 

Froidefond, Lavender, & Castaing, 2002; Feng, Hu, Chen, & Song, 2014; Nechad, Ruddick, & Park, 2010). 

It is an undeniable fact that the water quality has been adversely affected from the anthropogenic activities, 

urbanization and the industrial growth. Providing economic growth while reducing the adverse effects of port 

infrastructures paved the way for the development of sustainable port infrastructure and the concept of Green 

Port. The definition of Green Port explains well the context of this concept: “A product of the long-term 

strategy for the sustainable and climate-friendly development of the port’s infrastructure” (Pavlic, Cepak, 

Sucic, Peckaj, & Kandus, 2014). European Sea Ports Organization (ESPO) coordinated the EcoPorts project 

since 2011 to put the Green Port concept into operation in the European Union (EU) countries (EcoPorts, 

2019). The establishment purpose of the EcoPorts network is to share the knowledge and experience in port 

environmental management. 25 countries are represented in the EcoPorts network and there are 113 mem-

bers of EcoPorts. Only 2 Turkish ports are in the EcoPorts network: Asyaport Port Inc. with its certificate of 

Port Environmental Review System (PERS, certificate assessed by Lloyds register), and Marport Terminal 

Operators with its ISO 14001 certificate. Both of them are located in the Marmara Sea. There is another non-

profit foundation named as ECO SLC (Sustainable Logistics Chain), which focuses on the environmental 

protection of the ports outside Europe and port terminals worldwide (ECOSLC, 2019). There are 5 Turkish 

ports in the network of ECO SLC: Asyaport Port Inc. (PERS certified), Marport Terminal Operators (ISO 

certified), Altintel Port and Terminal Operators Inc. (ISO certified), Ege Port (Kusadasi Cruise Port) (both 

PERS and ISO certified), and Port Akdeniz (ISO certified). Three of these ports are located in the Marmara 

Sea, one is in the Aegean Sea, and the other one is in the Mediterranean. The Ministry of Transport, Com-

munications and Maritime Affairs, General Directorate of Maritime Trade (DTGM) and Turkish Standards 

Institution (TSE) launched a collaboration project in December 2014 named as “Green Port / Eco Port” for 

the implementation of Green Port concept in Turkish waters. The requirements of having a Green Port certif-

icate from the Ministry of Transport and Maritime Affairs and Communications are to have the certificates 

of TS EN ISO 9001 “Quality Management System”, TS EN ISO 14001 “Environmental Management Sys-

tem” and OHSAS 180001 “Occupational Health and Safety Management System”, in addition to meet the 

requirements of Sectoral Criteria Conformity (Akgul, 2017). 

Currently, there are 12 ports in Turkey, which have Green Port certificate from the Ministry of Transport, 

Maritime Affairs and Communications: Marport in Beylikduzu, Istanbul; Borusan Logistics in Gemlik, Bur-

sa; Evyap Port in Korfez, Kocaeli; Egeports in Kusadasi, Aydin; Aksaport in Yalova; Asyaport in Kumbag, 

Tekirdag; Petkim Port in Aliaga, Izmir; Bodrum Kruvaziyer Port in Bodrum, Mugla; Solventas Port in Dilo-

vasi, Kocaeli; Ford Otosan Port in Golcuk, Kocaeli; Kumport in Beylikduzu, Istanbul and Mardas Port in 

Beylikduzu, Istanbul (Tanzer Satir, personal communication, 15 May 2019). Only 3 of them are located out-

side of the Marmara Sea, and the rest is located mostly in the east and north-west part of the Marmara Sea. 

Marmara Sea is a natural passageway between the Black Sea and the Mediterranean due to its geographical 

location. It composes Turkish Strait System (TSS) together with the Straits of Istanbul and Çanakkale. It is 

surrounded by the cities of the Marmara Region which has the highest population in the country. As a conse-

quence, industrial and agricultural activities are intensive in this region, and Marmara Sea is directly affected 

from these anthropogenic activities. Therefore, it is important to have Green Port certified ports in this region 
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of intense interest. Taking into consideration of the geographical location and geopolitical importance of the 

Marmara Sea together with the high industrial and agricultural activities due to its high population, it is a 

necessity to ensure the Green Port continuity in the Marmara Sea. Development and sustainability of Green 

Ports need extensive research, and monitoring studies of the water quality in the vicinity of Green Ports can 

also be regarded as worthwhile from the perspective of European Union (EU) Framework Directives, be-

cause it is known that each EU country has a must to report their status of water quality due to the Directives 

of Water Framework and the Marine Strategy (Carvalho et al., 2019). Hence, considering the benefits of 

remote sensing techniques on the coastal regions with limited data and funding, this study focuses on the 

selected water quality parameters (Chl-a, CDOM and TSM) in the vicinity of Green Ports located in the 

Marmara Sea.  

2. Materials and Methods 

2.1. Study Area 

 

Marmara Sea is the connection of Black Sea to the Aegean and the Mediterranean Sea through the Straits 

of Istanbul and Çanakkale that form Turkish Strait System. Due to the different salinities and densities of the 

Black Sea and the Aegean Sea, Marmara Sea becomes a typical example of a stratified water body. The 

upper layer of the Marmara Sea represents the properties of the Black Sea, while the lower layer represents 

the characteristics of the Mediterranean. The mixing process and the circulation patterns of this two-layered 

water body have been analyzed in various studies in the perspective of physical and biogeochemical 

parameters (Beşiktepe et al., 1994; Yalçın, Artüz, Pavlidou, Çubuk, & Dassenakis, 2017; Zeri et al., 2014).   

 

Marmara Sea is selected as the focus area of the study, considering the capital intensiveness of the ports 

located in this region of interest. There are 68 member ports of the Ports Operators Association of Turkey 

(http://www.turklim.org/en/turklim-members/), and 39 of these ports are located in the region of the 

Marmara Sea. However, only 9 of these ports are Green Port certified as their locations are indicated in 

Figure 1 with green ellipses. The names, locations and graticules of these ports are listed in Table 1.  

 
 

Figure 1. Locations of the 9 Green Ports in the Marmara Sea are indicated with green ellipses. The region of 

Marmara Sea is enlarged at the right bottom. Three of the ports (Marport, Kumport and Mardas Port) seem 

overlapped, because they are located closely in Beylikduzu, Istanbul, at the north of the Marmara Sea. This 

figure is produced by using QGIS Geographic Information System (https://qgis.org/en/site/). 
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Table 1  

The names and locations of Green Ports in the Marmara Sea, including their graticules. 

Port Name County City Latitude Longitude 

Marport Beylikduzu Istanbul 40 57’ 51’’ 28 40’ 31’’ 

Borusan Logistics Gemlik Bursa 40° 24' 54" 29° 04' 49" 

Evyap Port Korfez Kocaeli 40° 46' 24" 29° 42' 38" 

Aksaport Yalova Yalova 40° 41' 47" 29° 24' 34" 

Asyaport Kumbag Tekirdag 40 54’ 02’’ 27 28’ 15’’ 

Solventas Port Dilovasi Kocaeli 40° 46' 6" 29° 32' 36" 

Ford Otosan Port Golcuk Kocaeli 40° 43' 51" 29° 51' 21" 

Kumport Beylikduzu Istanbul 40° 57' 56" 28° 40' 59" 

Mardas Port Beylikduzu Istanbul 40 57’ 46’’ 28 40’ 11’’ 

 

Although the surface area of the Marmara Sea is relatively small (approximately 11500 km
2
), it is divided 

into 22 Water Management Units depending on their different physical, biological and chemical properties 

(ÇŞB - ÇEDİDGM, 2018). Only 5 of these water management units cover the area of the Green Ports. The 

coverage area of these water management units and related Green Ports are shown in Table 2.  

 

Table 2  

Water Management Units (WMU) which covers the Green Ports in the Marmara Sea.  

WMU Coverage Area Green Ports in the Area 

MAR - 08 South of Tekirdag – Gelibolu Peninsula Asyaport 

MAR - 10  Between Buyukcekmece and Tekirdag  

(in front of Kucukcekmece)  

Marport, Kumport, Mardas Port 

MAR – 16 Izmit Inner Gulf Ford Otosan Port 

MAR – 17 Izmit Outer Gulf Evyaport, Solventas, Aksaport 

MAR - 19 Gemlik Gulf Borusan Logistics 

2.2. Remotely Sensed Data 

The satellite data of the target area are downloaded from the open source of Copernicus Online Data 

Access (CODA - coda.eumetsat.int). The data is selected as Level-2 Full Resolution (spatial resolution of 

300 m) atmospherically corrected ocean color data. Downloaded data are visualized and evaluated using 

the freely accessible SNAP (Sentinel Applications Platform) software of the Science Toolbox Exploita-

tion Platform of ESA (https://step.esa.int/main/toolboxes/snap/). Photo-active water quality parameters 

(Chl-a, CDOM and TSM) are detected via OLCI sensor on Sentinel 3A and 3B satellites and spatial 

maps are generated using its built-in algorithms specialized for the selected parameters. A Neural Net-

work (NN) algorithm is used for the quantification of the monitored parameters (Brockmann et al., 2016; 

Doerffer & Schiller, 2007). Locations of the selected Green Ports were pinned with their latitudes and 

longitudes, and the values of the pinned pixels were extracted for further evaluation. Level 2 water geo-

physical products of full resolution with the pixel size of 300 x 300 m (OL_2_WFR) were used for the 

evaluation of the water quality products. In this product type, cloudy pixels are excluded, and only the 

pixels in water are taken into consideration in the final product. Spring and fall seasons were selected to 

be observed due to the relatively rapid changes of the water parameters in these seasons compared with 

the other seasons. This fact is also observed in the detections of Chl and CDOM absorption performed 

specifically in the Marmara Sea (Bengil & Mavruk, 2018). Selected days were considered as two sets: 

Between 20
th
 of September and 20

th
 of November, 2018 (set 1) and between 20

th
 of March and 20

th
 of 

May 20, 2019 (set 2). Each day was scanned for the satellite data of the target area. However, regarding 

only the non-cloudy days over the target area, only 11 and 5 products were obtained for set 1 and 2, re-

spectively. 
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3. Results and Discussion 

The pixels belonging to the location of the 9 Green Ports were extracted separately using the tools of 

SNAP software and sorted out only for the selected water quality parameters: Chl-a (henceforth named as 

CHL), TSM and CDOM absorption. The results were summed up as set 1 and 2, indicating respectively the 

2018 Fall and 2019 Spring seasons.  

 

3.1. Detected Water Quality Parameters for the 2018 Fall Season 

The detected values for the season of 2018 Fall (set 1) are given for the CDOM absorption, CHL and 

TSM, respectively in Tables 3-5. CDOM is also universally called as Gelb Stoff (yellow substance) due to its 

optical characteristics, and thus a specific wavelength, which is 443 nm, is used for the determination of 

CDOM absorption in aquatic environments. OLCI sensor detects and determines the absorption of detritus 

and Gelb Stoff parameter at the wavelength of 443 nm named as ADG443 by using a neural network (NN) 

algorithm developed for the purpose of ocean color studies. The obtained values of ADG443 is given in 

Table 3, in terms of m
-1

 for each of the Green Ports, covering only the non-cloudy days of set 1. Similarly, 

developed neural network algorithm was used for the determination of the CHL and TSM parameters in the 

vicinity of each Green Port for the non-cloudy days of set 1, as shown in Table 4 in terms of mg m
-3 

and in 

Table 5 in terms of g m
-3

, respectively.  

 

Table 3  

Absorption of Detritus and Gelb Stoff parameter detected at 443 nm wavelength (ADG443), an indicator of 

CDOM parameter. NN: Neural network type of the algorithm. The first column lists the names of the ports, 

and the other head columns indicates the dates as year-month-day format. The unit of the absorption is m
-1

. 

ADG443_NN 20180921 20180922 20181010 20181027 

Asyaport 0.08 0.07 0.03 1.23 

Marport 2.66 3.49 2.79 0.52 

Mardas 0.10 4.80 0.03 0.12 

Kumport 0.13 0.29 0.12 0.07 

Ford Otosan 0.38 0.52 1.29 3.83 

Evyapport 0.12 0.18 0.18 0.40 

Solventas 0.21 0.15 0.24 0.08 

Aksa Port 0.19 2.79 0.06 0.35 

Borusan 0.15 2.91 0.13 0.54 

 

Table 4  

Chlorophyll-a parameter detected by using the neural network type of the algorithm (CHL_NN). The first 

column lists the names of the ports, and the others indicate the dates (year-month-day). The unit is mg m
-3

. 

CHL_NN 20180921 20180922 20181010 20181027 

Asyaport 0.40 0.75 0.19 7.09 

Marport 8.49 12.66 11.35 0.83 

Mardas 0.54 3.56 0.23 0.96 

Kumport 0.80 2.22 0.67 0.42 

Ford Otosan 3.43 1.16 5.70 5.30 

Evyapport 0.28 0.43 0.48 1.55 

Solventas 0.86 0.75 0.83 0.48 

Aksa Port 0.36 15.17 0.27 1.16 

Borusan 0.45 14.11 0.38 1.72 
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Table 5  

Total suspended matter parameter detected by using the neural network type of the algorithm (TSM_NN). 

The first column lists the names of the ports, and the other head columns indicates the dates as year-month-

day format. The unit of TSM is g m
-3

. 

TSM_NN 20180921 20180922 20181010 20181027 

Asyaport 0.26 2.30 0.54 5.91 

Marport 8.81 2.48 2.39 5.91 

Mardas 1.39 13.13 0.42 2.66 

Kumport 1.72 1.55 0.39 1.72 

Ford Otosan 5.70 5.50 1.99 3.08 

Evyapport 1.39 2.39 0.34 0.47 

Solventas 2.97 2.76 0.42 0.80 

Aksa Port 2.14 2.14 0.80 1.11 

Borusan 0.47 1.99 0.50 3.97 

 

3.2. Detected Water Quality Parameters for the 2019 Spring Season 

 

The extracted and summed up data of the pixels in the vicinity of the Green Ports for the spring season of 

2019 are shown in Tables 6-8 for CDOM absorption (ADG443), CHL and TSM, respectively. The number 

of the selected days are higher compared with the fall season, because of the higher number of non-cloudy 

days detected by the ocean color sensors attached on the satellites. Because only the Level 2 geophysical 

water products are interested in this study, cloudiness of the detected day and time is important for the 

evaluation of the data. As a principle, non-cloudy pixels are selected for the Level 2 Water Full Resolution 

products of OLCI ocean color sensor (OL_L2_WFR). Additionally, there are two different detections for the 

same day of 25 March 2019 and 5 April 2019, because these days are detected by both of the Sentinel 3A 

and 3B satellites. The inequality of the data extracted from two satellites draws attention to the importance of 

the field measurements of the water quality parameters. 

 

Table 6  

Absorption of Detritus and Gelb Stoff parameter detected at 443 nm wavelength (ADG443), which can be 

used as an indicator of CDOM parameter. NN extension in the name of the detected parameter shows the 

neural network type of the algorithm. The first column lists the names of the ports, and the other head 

columns indicates the dates as year-month-day format. The unit of the absorption is m
-1

. 

ADG443_NN 2019 

0322 

2019 

0325-

S3B 

2019 

0325 

2019 

0326 

2019 

0329 

2019 

0405-

S3B 

2019 

0417 

2019 

0421 

2019 

0422 

2019 

0430 

2019 

0519 

Asyaport 4.00 0.32 1.29 4.38 3.83 3.66 1.85 3.49 4.00 4.38 1.41 

Marport 3.83 4.19 3.83 3.83 2.66 3.19 0.21 2.03 3.83 3.83 2.66 

Mardas 3.83 0.72 3.34 3.83 1.23 3.66 0.06 0.09 2.12 2.66 0.29 

Kumport 0.94 3.83 0.62 0.30 0.30 0.10 0.04 0.12 0.11 0.50 3.83 

Ford Otosan 0.14 0.11 0.21 0.25 0.62 0.16 0.02 0.09 0.48 1.55 0.45 

Evyapport 2.66 0.60 4.19 5.25 0.02 0.20 0.57 0.02 4.80 4.19 0.28 

Solventas 2.91 0.17 0.75 3.83 0.52 0.18 0.03 1.55 0.28 0.20 0.21 

Aksa Port 0.23 0.23 0.29 3.83 0.15 0.09 0.03 0.35 0.54 1.85 0.43 

Borusan 0.10 0.13 0.30 0.36 0.32 0.12 0.02 0.07 0.52 0.65 0.35 
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Table 7  

Chlorophyll-a parameter detected by using the neural network type of the algorithm (CHL_NN). The first 

column lists the names of the ports, and the other head columns indicates the dates as year-month-day 

format. The unit of CHL is mg m
-3

. 

CHL_NN 2019 

0322 

2019 

0325-

S3B 

2019 

0325 

2019 

0326 

2019 

0329 

2019 

0405-

S3B 

2019 

0417 

2019 

0421 

2019 

0422 

2019 

0430 

2019 

0519 

Asyaport 12.21 2.76 9.82 6.36 6.36 12.21 9.82 7.62 4.59 3.83 7.09 

Marport 12.21 3.69 7.35 12.66 7.62 10.95 0.80 10.56 8.81 11.77 11.35 

Mardas 5.70 5.30 7.09 10.56 6.36 11.77 0.45 0.60 13.61 11.77 0.96 

Kumport 2.97 11.77 3.69 2.39 0.83 0.65 0.34 0.35 0.48 2.57 10.95 

Ford Otosan 1.49 0.56 1.08 1.44 4.27 1.04 0.26 0.32 1.11 7.90 0.78 

Evyapport 10.18 2.22 4.76 0.36 0.08 1.11 2.14 0.14 1.85 4.59 1.04 

Solventas 14.63 1.08 3.83 5.70 1.72 0.96 0.26 9.47 2.30 0.65 2.22 

Aksa Port 0.34 1.79 0.20 11.77 0.17 0.38 0.30 0.38 0.60 11.77 0.48 

Borusan 0.52 0.65 0.72 1.39 0.52 0.65 0.13 0.45 4.11 3.69 1.20 

 

Table 8  

Total suspended matter parameter detected by using the neural network type of the algorithm (TSM_NN). 

The first column lists the names of the ports, and the other head columns indicates the dates as year-month-

day format. The unit of TSM is g m
-3

. 

TSM_NN 2019 

0322 

2019 

0325-

S3B 

2019 

0325 

2019 

0326 

2019 

0329 

2019 

0405-

S3B 

2019 

0417 

2019 

0421 

2019 

0422 

2019 

0430 

2019 

0519 

Asyaport 69.59 1.99 2.76 26.14 17.54 60.19 2.57 20.28 5.91 8.81 1.55 

Marport 62.41 6.59 3.08 69.59 8.19 31.34 0.50 1.66 25.21 50.21 6.83 

Mardas 9.47 0.90 4.93 43.43 1.55 46.70 0.40 0.47 1.55 1.85 0.62 

Kumport 2.66 53.99 0.93 0.96 0.48 1.92 0.29 0.65 1.72 1.20 41.88 

Ford Otosan 4.11 1.20 1.08 2.48 3.83 0.67 0.29 0.28 1.72 1.66 3.83 

Evyapport 5.50 0.54 36.23 45.03 0.08 0.80 0.75 0.11 6.13 4.76 0.39 

Solventas 1.92 1.60 0.80 4.59 0.54 2.76 0.20 2.57 1.92 1.16 7.62 

Aksa Port 1.79 1.55 1.99 55.98 1.04 1.29 0.32 2.48 4.59 1.60 4.93 

Borusan 1.11 1.20 1.00 0.67 1.34 2.22 0.13 0.30 2.86 1.92 1.24 

 

As indicated, it is important to validate the sensor detected data with the field measurements. They have to 

be compatible with each other, and match-up. That is a necessary part of the ocean color studies. However, 

this match-up is out of the scope of the present study. It requires a comprehensive field and laboratory work 

with the necessary equipment such as spectrometer to detect the reflectance, radiance and irradiance of light, 

in addition to the spectrophotometers and filters of 0.7 and 0.2 um pore sizes together with the amber-colored 

water bottles to filter and measure the water properties collected from the vicinity of the selected ports. 

Therefore, this study focuses on only the data of ocean color sensors attached on the satellites. Consequently, 

the average values of the results shown in Tables 3-8 are calculated and presented in Table 9. 

 

3.3. Average Values and Comparisons  

 

The ranges of ADG443, CHL and TSM in set 1 vary between 0.03-4.80 m
-1

, 0.19-15.17 mg m
-3

 and 0.26-

13.13 g m
-3

, respectively. Although there is only 1-day interval for the first two detections of set 1, the 

differences of the CHL values in the vicinity of Aksa Port and Borusan seems as if they are out of ordinary. 

Similarly, for the second non-cloudy day of set 1 (third columns of Tables 3-5), maximum values of 
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ADG443 and TSM were obtained in the vicinity of Mardas port. Moreover, the detected values were higher 

in the vicinity of Aksa Port and Borusan for ADG443 parameter and in the vicinity of Asyaport for TSM 

parameter. However, they are not excluded from the data set used to calculate the average values of the 

selected water quality parameters as shown in Table 9. 

 

The ranges of ADG443, CHL and TSM in set 2 vary between 0.02-4.80 m
-1

, 0.13-14.63 mg m
-3

 and 0.08-

69.59 g m
-3

, respectively. The ranges of set 2 are similar to the ranges of set 1 for the detections of ADG443 

and CHL parameters. On the other hand, the values of TSM in set 2 are widely ranged with a maximum 

value of 69.59 g m
-3

. One reason for this wide variation could be the seasonal effects. Therefore, all of the 

detected values are included for the calculations of average values shown in Table 9.    

 

Table 9  

Average values of the selected water quality parameter in the vicinity of 9 Green Ports located in the 

Marmara Sea for the seasons of Fall 2018 (set 1) and Spring 2019 (set 2). 

 ADG443 (m
-1

) CHL (mg m
-3

) TSM (g m
-3

) 

 2018 Fall 2019 Spring 2018 Fall 2019 Spring 2018 Fall 2019 Spring 

Asyaport 0.35 2.96 2.11 7.51 2.25 19.76 

Marport 2.37 3.10 8.33 8.89 4.90 24.15 

Mardas 1.26 1.98 1.32 6.74 4.40 10.17 

Kumport 0.15 0.97 1.03 3.36 1.35 9.70 

Ford Otosan 1.50 0.37 3.90 1.84 4.07 1.92 

Evyapport 0.22 2.07 0.69 2.59 1.14 9.12 

Solventas 0.17 0.97 0.73 3.89 1.74 2.33 

Aksa Port 0.85 0.73 4.24 2.56 1.55 7.05 

Borusan 0.94 0.27 4.17 1.28 1.73 1.27 

 

The average values of a widespread, global data set is formed by merging field measurement data from 

different sources: NASA NOMAD and COLORS. NOMAD is the acronym of the NASA bio-Optical Marine 

Algorithm Dataset. It is freely accessible via https://seabass.gsfc.nasa.gov/wiki/NOMAD, but available only 

for educational and scientific research. This data set contains more than 3400 stations of both apparent (e.g. 

water-leaving radiances, surface irradiances, diffuse downwelling attenuation coefficients) and inherent (e.g. 

phytoplankton pigments) optical parameters of water (Werdell & Bailey, 2005). COLORS is the abbreviation 

of the project named “Coastal region long-term measurements for colour remote sensing development and 

validation”, funded by European Commission between the years of 1997 and 2000. Information related to the 

COLORS project can be accessed via the websites of Coastal Union Germany (EUCC-D) 

(http://databases.eucc-d.de/plugins/projectsdb/project.php?show=234) and NASA Global Change Master 

Directory (https://gcmd.gsfc.nasa.gov). Optical parameters of both data sets had been combined and 

represented as a global reference data set for the comparison of Baltic Sea to the other aquatic environments 

(Kratzer & Moore, 2018). Inherent optical parameters of water (Chl-a, TSM and CDOM), which are also 

important indicators of water quality studies were collocated by Kratzer & Moore (2018) from this combined 

data set. They grouped the values of 1982 Chl-a, 556 TSM and 860 CDOM absorption measurements with a 

range of 0.02-70.2 ug L
-1

, 0.01-81.2 g m
-3

, and 0.001-0.6 m
-1

, respectively.   

Another dataset used for the comparison is from the database of the GlobColour project funded by ESA 

(http://globcolour.info). It is freely available only for research and educational uses, not for commercial uses, 

and the data has been developed, validated and distributed by ACRI-ST, France 

(http://hermes.acri.fr/index.php?class=acknowledgement). Bengil & Mavruk (2018) evaluated 10 years of 

time period between September 1997 and March 2007 by focusing on the Marmara Sea and generating 235 

composite imaging products from the GlobColour dataset. They divided Marmara Sea into two sub-regions 

as western and eastern due to their different oceanographic characteristics and dynamics (Beşiktepe et al., 
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1994), and calculated the monthly mean averages of 10 years of time period as 1.62 and 1.93 mg m
-3

 with a 

range of 0.42-6.53 and 0.42-7.01 for chlorophyll, and 0.14 and 0.16 m
-1

 with a range of 0.06-0.45 and 0.08-

0.36 for CDOM absorption for the western and eastern Marmara Sea, respectively (Bengil & Mavruk, 2018).  
 

When the average values of the data set of this study, as shown in Table 9, is compared with the mentioned 

data sets above, it is seen that detected CDOM absorption (ADG443) values are higher than the measure-

ments of the global reference data set and the database of the GlobColour project, especially in the vicinity of 

Marport and Mardas. The average values of CHL parameter of this study vary between 0.69-8.89 mg m
-3

, 

and the results
 
are reasonable compared with the other data sets which range between 0.42-7.01 mg m

-3
 for 

the Marmara Sea. Similarly, average values of TSM parameter in the vicinity of Green Ports are within the 

range of the global reference data set, with a minimum and maximum value of 1.14 and 24.15 g m
-3

, respec-

tively. As an overall evaluation of the present study, it is easily said that the remote sensing capabilities of 

the OLCI sensor attached on Sentinel-3 satellites enable reasonable detections for the observation of the wa-

ter quality parameters. However, it is important to emphasize that remote sensing studies should be coupled 

with field measurements for reliable results. This fact comes into prominence in the regions of dominant 

anthropogenic activities such as ports, especially in the vicinity of Green Port certified ports, considering the 

purpose of the certification as sustainable and climate-friendly port development.  

4. Conclusion 

It is apparent that to obtain data via satellites provides a huge advantage for the observations of the water 

quality parameters in the vicinity of certified Green Ports in Marmara Sea, on behalf of being open access 

data on a wide range of geographical area with a high resolution of 300 m to 300 m for inland, coastal and 

open water zones, supported with its neural network algorithms. However, it should be taken into 

consideration that the validation of the data is a must, in order to do for a final evaluation and decision-

making, regarding these two steps as complements of each other. Apart from the match-up of the field and 

the detected data, the values should be compared with the local and global water quality limits, if any of 

them exists for the selected locations. These steps should be seen as the regular studies that need to be done 

for the development and sustainability of Green Ports from the perspective of environmental studies. 
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