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FIRST ORDER MAXIMAL DISSIPATIVE SINGULAR
DIFFERENTIAL OPERATORS

PEMBE IPEK AL AND ZAMEDDIN I. ISMAILOV

Abstract. In this paper, using the Calkin-Gorbachuk method, the general
form of all maximal dissipative extensions of the minimal operator generated by
first order linear multipoint symmetric singular differential-operator expression
in the direct sum of Hilbert space of vector-functions has been found. Later
on, the structure of spectrum of these extensions is researched. Finally, the
results are supported by an application.

1. Introduction

Operator theory is important to understand the nature of the spectral properties
of an operator associated with a boundary value problem acting on a Hilbert space.
To obtain such an information as is well known that the corresponding inner product
is useful. A linear closed densely defined operator T : D(T ) ⊂ X → X in a Hilbert
space X is called to be dissipative if and only if

Im(Tψ, ψ)X ≥ 0, ψ ∈ D(T ),

where Im( . , . ) and D(T ) denote the imaginary part of the inner product and
the domain of the operator T , respectively (see [3]). If a dissipative operator has
no any proper dissipative extension, then it is called maximal dissipative [3]. A
direct result on dissipative operators is that their spectrum lies in the closed upper
half-plane. Therefore, open lower half-plane does not belong to the spectrum of
T . Maximal dissipative operators play a very important role in mathematics and
physics. In physics, there are many interesting applications of the dissipative oper-
ators in areas like hydrodynamic, laser and nuclear scattering theories.
Remember that the general theory of self-adjoint extensions of linear densely-

defined closed symmetric operators in any Hilbert space was mentioned in the well-
known work of Neumann [9]. The complete informations of Vishik’s and Birman’s
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investigations on the all non-negative selfadjoint extensions of a positive closed
symmetric operator have been given by Fischbacher in [2].
The functional model theory of Nagy and Foias [6] is a basic method for inves-

tigation the spectral properties of dissipative operators. The maximal dissipative
extensions and their spectral analysis of the minimal operator having equal defi-
ciency indices generated by formally symmetric differential-operator expression in
one finite or infinite interval case in the Hilbert space of vector-functions have been
researched by Gorbachuk [3]. This method has been generalized in terms of bound-
ary values by Rofe-Beketov, Kholkin in [8].
In the present study, in Section 3, using the Calkin-Gorbachuk method, the rep-

resentation of all maximal dissipative extensions of the minimal operator generated
by the first order linear symmetric differential-operator expression in the direct sum
of Hilbert spaces of vector-functions in two infinite interval case is obtained. Later
on, in Section 4, we also investigate the structure of spectrum of these dissipative
extensions.

2. Statement of the problem

Let X be a separable Hilbert space and a1, a2 ∈ R such that a1 < a2. In the
Hilbert spaces

X = L2(X, (−∞, a1))⊕ L2(X, (a2,∞))

of vector-functions on (−∞, a1) ∪ (a2,∞), consider the following linear multipoint
differential operator expression for first order of the form

l(ν) = (l1(ν1), l2(ν2)), ν = (ν1, ν2),

where

l1(ν1) = iν′1 + Ω1ν1,

l2(ν2) = iν′2 + Ω2ν2,

where Ωm : D(Ωm) ⊂ X → X, m = 1, 2 are linear selfadjoint operators.
The minimal Υ1

0 and Υ2
0 operators corresponding to differential operator expres-

sion l1( . ) and l2( . ) in L2(X, (−∞, a1)) and L2(X, (a2,∞)) can be constructed
by using the same technique in [4], respectively. The operators Υ1 = (Υ1

0)
∗, Υ2 =

(Υ2
0)
∗ are maximal operators corresponding to l1( . ) and l2( . ) in L2(X, (−∞, a1))

and L2(X, (a2,∞)), respectively. In this case, the operators

Υ0 = Υ1
0 ⊕Υ2

0 and Υ = Υ1 ⊕Υ2

in the Hilbert space X are called minimal and maximal operators corresponding to
differential operator expression l( . ), respectively.
We have that the domains of the operators Υ and Υ0 are of the form

D(Υ) = {ν ∈ X : l(ν) ∈ X},
D(Υ0) = {ν ∈ D(Υ) : ν1(a1) = ν2(a2) = 0}.
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Our aim in this paper is to obtain all maximal dissipative extensions of the minimal
operator Υ0 in X in terms of boundary values and investigate the spectrum of them.
Then, we give an application of obtained results to the concrete model.

3. Representation of maximal dissipative extensions

In this section, we will study the abstract representation of all maximal dissi-
pative extensions of Υ0 in terms of boundary values using the Calkin-Gorbachuk
method.
Firstly, let us define the deficiency indices of any symmetric operator in a Hilbert

space.

Definition 1. [7] Let T be a symmetric operator, λ be an arbitrary non-real number
and X be a Hilbert space. We denote by Rλ and Rλ the ranges of the operator(
T − λI

)
and (T − λI), respectively, where I is identity operator on X. Clearly,

Rλ and Rλ are subspaces of X, which need not necessarily be closed. We call(
X−Rλ

)
and (X−Rλ), which are their orthogonal complements, the deficiency

spaces of the operator T and we denote them by Nλ and Nλ, respectively: thus
Nλ = X−Rλ, Nλ = X−Rλ.

The numbers
nλ = dimNλ, nλ = dimNλ

are called deficiency indices of the operator T.

Let us prove the following auxiliary result we will need:

Lemma 2. The deficiency indices of Υ0 are of the form

(n+(Υ0), n−(Υ0)) = (dimX, dimX).

Proof. Here, without loss generality it will be assumed that Ω1 = Ω2 = 0. The
general solution of the differential equations can be given as follows:

iν′1±(ξ) = ∓iν1±(ξ), ξ < a1,

iν′2±(ξ) = ∓iν2±(ξ), ξ > a2

where

ν1±(ξ) = exp (∓(ξ − a1))κ1, κ1 ∈ X, ξ < a1,

ν2±(ξ) = exp (∓(ξ − a2))κ2, κ2 ∈ X, ξ > a2,

respectively. Hence, we have

n+(Υ1
0) = dimKer(Υ1 + iI) = 0,

n−(Υ1
0) = dimKer(Υ1 − iI) = dimX,

n+(Υ2
0) = dimKer(Υ2 + iI) = dimX,

n−(Υ2
0) = dimKer(Υ2 − iI) = 0,
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where I is identity operator in the corresponding space. Therefore, we get

n+(Υ0) = n+(Υ1
0) + n+(Υ2

0) = dimX,

n−(Υ0) = n−(Υ1
0) + n−(Υ2

0) = dimX.

�

Consequently, the operator Υ0 has a maximal dissipative extension (see [3]). In
order to describe all maximal dissipative extensions of Υ0, it is necessary to con-
struct a space of boundary values for it.

Definition 3. [3] Let X be any Hilbert space and S : D(S) ⊂ X → X be a closed
densely defined symmetric operator on the Hilbert space having equal finite or in-
finite deficiency indices. A triplet (X, β1, β2), where X is a Hilbert space, β1 and
β2 are linear mappings from D(S∗) into X, is called a space of boundary values for
the operator S, if for any η, κ ∈ D(S∗)

(S∗η, κ)X − (η, S∗κ)X = (β1(η), β2(κ))X − (β2(η), β1(κ))X

while for any G1,G2 ∈ X, there exists an element η ∈ D(S∗) such that β1(η) = G1
and β2(η) = G2.

Lemma 4. The triplet (X,β1, β2), where

β1 : D(Υ)→ X, β1(ν) =
1√
2

(ν1(a1)− ν2(a2)) and

β2 : D(Υ)→ X, β2(ν) =
1

i
√

2
(ν1(a1) + ν2(a2)) , ν = (ν1, ν2) ∈ D(Υ)

is a space of boundary values of the minimal operator Υ0 in X .

Proof. For any ν = (ν1, ν2), ϑ = (ϑ1, ϑ2) from D(Υ), one can easily check that

(Υν, ϑ)X − (ν,Υϑ)X = (Υ1ν1, ϑ1)L2(X,(−∞,a1)) + (Υ2ν2, ϑ2)L2(X,(a2,∞))

− (ν1,Υ
1ϑ1)L2(X,(−∞,a1)) − (ν2,Υ

2ϑ2)L2(X,(a2,∞))

=
[
(iν′1 + Ω1ν1, ϑ1)L2(X,(−∞,a1)) − (ν1, iϑ

′
1 + Ω1v1)L2(X,(−∞,a1))

]
+
[
(iν′2 + Ω2ν2, ϑ2)L2(X,(a2,∞)) − (ν2, iϑ

′
2 + Ω2ϑ2)L2(X,(a2,∞))

]
=
[
(iν′1, ϑ1)L2(X,(−∞,a1)) − (ν1, iϑ

′
1)L2(X,(−∞,a1))

]
+
[
(iν′2, ϑ2)L2(X,(a2,∞)) − (ν2, iϑ

′
2)L2(X,(a2,∞))

]
= i
[
(ν′1, ϑ1)L2(X,(−∞,a1)) + (ν1, ϑ

′
1)L2(X,(−∞,a1))

]
+ i
[
(ν′2, ϑ2)L2(X,(a2,∞)) + (ν2, ϑ

′
2)L2(X,(a2,∞))

]
= i [(ν1(a1), ϑ1(a1))X − (ν2(a2), ϑ2(a2))X ]

= (β1(ν), β2(ϑ))X − (β2(ν), β1(ϑ))X .
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Now let f1, f2 ∈ X. Let us find the function ν = (ν1, ν2) ∈ D(Υ) such that

β1(ν) =
1√
2

(ν1(a1)− ν2(a2)) = f1

and

β2(ν) =
1

i
√

2
(ν1(a1) + ν2(a2)) = f2.

Hence, we can obtain

(ν1)(a1) = (if2 + f1)/
√

2, (ν2)(a2) = (if2 − f1)/
√

2.

If we choose the functions ν1( . ) and ν2( . ) as

ν1(τ) = eτ−a1(if2 + f1)/
√

2, τ < a1 and

ν2(τ) = ea2−τ (if2 − f1)/
√

2, τ > a2,

then we have ν = (ν1, ν2) ∈ D(Υ) and β1(ν) = f1, β2(ν) = f2. �

With the use of the Calkin-Gorbachuk method [3], we obtain the following:

Theorem 5. If Υ̃ is a maximal dissipative extension of Υ0 in X , then it is generated
by the differential operator expression l( . ) and the boundary condition

ν2(a2) = Kν1(a1),

where K : X → X is a contraction operator. Moreover, the contraction operator K
in X is uniquely determined by the extension Υ̃, i.e. Υ̃ = ΥK , and vice versa.

Proof. Each maximal dissipative extension Υ̃ of Υ0 is described by the differential
operator expression l( . ) with the boundary condition

(C − I)β1(ν) + i(C + I)β2(ν) = 0, ν ∈ D(Υ),

where C : X → X is a contraction operator and I is identity operator in corre-
sponding space. Therefore, from Lemma 4, we obtain

(C − E) (ν1(a1)− ν2(a2)) + (C + E) (ν1(a1) + ν2(a2)) = 0, ν = (ν1, ν2) ∈ D(Υ̃).

Hence it is obtained that

ν2(a2) = −Cν1(a1).

Choosing K = −C in the last boundary condition we have

ν2(a2) = Kν1(a1).

�
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4. The spectrum of the maximal dissipative extensions

In this section, we will investigate the structure of the spectrum of the maximal
dissipative extensions ΥK of the minimal operator Υ0 in X .

Theorem 6. The point spectrum σp(ΥK) of any maximal dissipative extension ΥK

is of the form:
(1) If KerK 6= {0}, then σp(ΥK) ⊃ H+, where H+ = {λ ∈ C : Imλ > 0};
(2) If KerK = {0}, then σp(ΥK) = ∅.

Proof. Let us consider the following eigenvalue problem defined by

l(ν) = λν, λ = λr + iλi, ν ∈ X , λ ∈ H+,

with the boundary condition

ν2(a2) = Kν1(a1).

Then, we have

ν′1(ξ) = i(Ω1 − λ)ν1, ξ < a1,

ν′2(ξ) = i(Ω2 − λ)ν2, ξ > a2,

ν2(a2) = Kν1(a1).

The general solutions of these differential equations are as follows:

ν1(ξ;λ) = exp (i(Ω1 − λ)(ξ − a1)) f1, ξ < a1, f1 ∈ X,
ν2(ξ;λ) = exp (i(Ω2 − λ)(ξ − a2)) f2, ξ > a2, f2 ∈ X

with the boundary condition

ν2(a2;λ) = Kν1(a1;λ).

Moreover, f1 = ν1(a1;λ), f2 = ν2(a2;λ).
It is clear that for any f1 ∈ X, we can write

ν1(ξ;λ) = exp (i(Ω1 − λr)(ξ − a1)) exp (λi(ξ − a1)) f1 ∈ L2(X, (−∞, a1))
and for f2 ∈ X such that f2 6= 0, we get

ν2(ξ;λ) = exp (i(Ω2 − λr)(ξ − a2)) exp (λi(ξ − a2)) f2 /∈ L2(X, (a2,∞)).

(1) If we choose the function ν ∈ X of the following special form

ν∗(ξ;λ) = (exp (i(Ω1 − λr)(ξ − a1)) exp (λi(ξ − a1)) f, 0) , f ∈ KerK,
then we obtain ΥKν

∗(ξ;λ) = λν∗(ξ;λ) and ν∗2(a2;λ) = Kν∗1(a1;λ), for any λ ∈ H+.
(2) If KerK = {0}, then from the boundary condition 0 = Kν1(a1;λ) we have
ν1(a1;λ) = f1 = 0. Hence, the boundary value problem ΥKν = λν, λ ∈ H+, ν ∈ X
have a zero solution once.
Now, let us consider the eigenvalue problem defined by

ΥKν = λν, ν ∈ X , λ ∈ R.
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Then we have

ν′1(ξ) = i(Ω1 − λ)ν1, ξ < a1,

ν′2(ξ) = i(Ω2 − λ)ν2, ξ > a2,

ν2(a2) = Kν1(a1).

The general solutions of these differential equations are as follows:

ν1(ξ;λ) = exp (i(Ω1 − λ)(ξ − a1)) f1 /∈ L2(X, (−∞, a1)), f1 ∈ X
ν2(ξ;λ) = exp (i(Ω2 − λ)(ξ − a2)) f2 /∈ L2(X, (a2,∞)), f2 ∈ X.

Consequently, for KerK 6= {0} we have
σp(ΥK) ⊃ H+

and for KerK = {0} we get
σp(ΥK) = ∅.

�

Theorem 7. The residual spectrum σr(ΥK) of any maximal dissipative extension
ΥK is empty, i.e.

σr(ΥK) = ∅.

Proof. From Theorem 6 we get σr(ΥK) ⊂ R for KerK 6= {0}, and σr(ΥK) ⊂
R∩H+ forKerK = {0}. In order to prove this theorem we will investigate the point
spectrum of the adjoint operator Υ∗K of ΥK in X . Let us consider the eigenvalue
problem defined by

Υ∗Kϑ = λϑ, λ ∈ R, ϑ = (ϑ1, ϑ2) ∈ X .
In this case, we have

iϑ′1(ξ) + Ω1ϑ1(ξ) = λϑ1(ξ), ξ < a1,

iϑ′2(ξ) + Ω2ϑ2(ξ) = λϑ2(ξ), ξ > a2

with the boundary condition

ϑ1(a1) = K∗ϑ2(a2).

Hence, it is obtained

ϑ1(ξ;λ) = exp (i(Ω1 − λ)(ξ − a1)) g1, ξ < a1

ϑ2(ξ;λ) = exp (i(Ω2 − λ)(ξ − a2)) g2, ξ > a2, g1, g2 ∈ X.
Therefore for any g1, g2 ∈ X and for each λ ∈ R, we get

ϑ1(
. ;λ) /∈ L2(X, (−∞, a1)),

ϑ2(
. ;λ) /∈ L2(X, (a2,∞)).

Now, let us consider the residual spectrum of ΥK , namely,

Υ∗Kϑ = λϑ, λ ∈ C, λi = Imλ > 0, ϑ = (ϑ1, ϑ2) ∈ X .
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We have

ϑ1(ξ;λ) = exp ((iΩ1 − iλr + λi)(ξ − a1)) g1, ξ < a1

ϑ2(ξ;λ) = exp ((iΩ2 − iλr + λi)(ξ − a2)) g2, ξ > a2.

As a result, we get ϑ1( . ;λ) ∈ L2(X, (−∞, a1)) and ν2( . ;λ) /∈ L2(X, (a2,∞)) for
any g2 = ϑ2(a2) 6= 0.
The necessary and suffi cient condition for ϑ2( . ;λ) ∈ L2(X, (a2,∞)) is g2 =

ϑ2(a2) = 0. From the boundary condition we get

ϑ1(a1) = K∗ϑ2(a2)

which implies ϑ1(a1) = 0. Then, Ker(Υ∗K) = {0}.
Consequently, we have λ /∈ σr(ΥK) for any λ ∈ C with Imλ > 0. �

By the general theory of linear closed operators in a Hilbert spaces and Theorem
6-Theorem 7, one can immediately obtain the following:

Theorem 8. If KerK 6= {0}, then the continuous spectrum σc(ΥK) of any maxi-
mal dissipative extension ΥK in X coincides with R, i.e.

σc(ΥK) = R.

Moreover, σ(ΥK) = {λ ∈ C : Imλ ≥ 0} .

With the use of Theorem 6-Theorem 8, the following result can be obtained.

Corollary 9. If KerK 6= {0}, then the point spectrum σp(ΥK) of any maximal
dissipative extension ΥK in X is of the form σp(ΥK) = {λ ∈ C : Imλ > 0} .

Theorem 10. If KerK = {0}, then the spectrum of any maximal dissipative ex-
tension ΥK in X is of the form

σ(ΥK) = σc(ΥK) = R.

Proof. Let us consider the following spectrum problem defined by

ΥKν = λν + f, λ ∈ C, Imλ = λi > 0, ν = (ν1, ν2), f = (f1, f2) ∈ X .

Then, we have

iν′1(ξ) + Ω1ν1(ξ) = λν1(ξ) + f1(ξ), ξ < a1,

iν′2(ξ) + Ω2ν2(ξ) = λν2(ξ) + f2(ξ), ξ > a2,

ν2(a2) = Kν1(a1).

Hence, the general solutions of the following differential equations

ν′1(ξ) = i(Ω1 − λE)ν1(ξ)− if1(ξ), ξ < a1,

ν′2(ξ) = i(Ω2 − λE)ν2(ξ)− if2(ξ), ξ > a2
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are of the forms

ν1(ξ;λ) = exp (i(Ω1 − λE)(ξ − a1)) fλ + i

a1∫
ξ

exp (i(Ω1 − λE)(ξ − τ)) f1(τ)dτ,

ξ < a1, fλ ∈ X,

ν2(ξ;λ) = i

∞∫
ξ

exp (i(Ω2 − λE)(ξ − τ)) f2(τ)dτ, ξ > a2.

Additionally, from the boundary condition we have
∞∫
a2

exp (i(Ω2 − λE)(a2 − τ)) f2(τ)dτ = Kfλ.

Consequently, the solution of above considered spectrum problem can be expressed
by

ν1(ξ;λ) = exp (i(Ω1 − λE)(ξ − a1))

K−1 ∞∫
a2

exp (i(Ω2 − λE)(a2 − τ)) f2(τ)dτ


+i

a1∫
ξ

exp (i(Ω1 − λE)(ξ − τ)) f1(τ)dτ, ξ < a1,

ν2(ξ;λ) = i

∞∫
ξ

exp (i(Ω2 − λE)(ξ − τ)) f2(τ)dτ, ξ > a2

in the spaces L2(X, (−∞, a1)) and L2(X, (a2,∞)), respectively.
As a result, we have H+ ⊂ ρ(ΥK). Since for λ ∈ R the problem

ΥKν = λν, ν ∈ X
has zero solution once, σp(ΥK) = ∅ in case that KerK = {0}.
For λ ∈ C, λi = Imλ > 0 and f = (f1, f2) ∈ X the resolvent operator Rλ(ΥK)

in X can be written in the form

‖Rλ(ΥK))f(ξ)‖2X ≥ ‖i
∞∫
ξ

exp (i(Ω2 − λE)(ξ − τ)) f2(τ)dτ‖2L2(X,(a2,∞)).

The vector functions f∗(ξ;λ) have the form f∗(ξ, λ) = (0, exp (i(Ω2 − λE)ξ) f) ,
λ ∈ C, λi = Imλ > 0, f ∈ X belong to X . Indeed,

‖f∗(ξ, λ)‖2L2(X,(a2,∞)) =

∞∫
a2

‖exp (i(Ω2 − λE)ξ) f‖2Xdξ
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=

∞∫
a2

exp (−2λiξ) dξ‖f‖2X

=
1

2λi
exp (−2λia2) ‖f‖2X <∞.

For the such functions f∗(λ; . ), we have

‖Rλ(ΥK)f∗( . ;λ)‖2X ≥ ‖i
∞∫
ξ

exp (i(Ω2 − λ)(ξ − τ)− i(λ− Ω2)τ) fdτ‖2L2(X,(a2,∞))

= ‖
∞∫
ξ

exp (−iλξ) exp (−2λiτ) exp (iΩ2ξ) fdτ‖2L2(X,(a2,∞))

= ‖exp (−iλξ) exp (iΩ2ξ)

∞∫
ξ

exp (−2λiτ) fdτ‖2L2(X,(a2,∞))

= ‖exp (−iλξ)
∞∫
ξ

exp (−2λiτ) dτ‖2L2(X,(a2,∞))‖f‖
2
X

=
1

4λ2i

∞∫
a2

exp (−2λiτ) dτ‖f‖2X

=
1

8λ3i
exp (−2λia2) ‖f‖2X .

Using the above inequality we get

‖Rλ(ΥK)f∗( . ;λ)‖X ≥
exp (λia2)

2
√

2λi
√
λi
‖f‖2X =

1

2λi
‖f∗(ξ;λ)‖L2(X,(a2,∞)),

i.e., for λi = Imλ > 0 and f 6= 0 we can write

‖Rλ(ΥK)f∗(λ; . )‖X
‖f∗(λ; ξ)‖X

≥ 1

2λi

and it is also obvious that

‖Rλ(ΥK)‖ ≥ ‖Rλ(ΥK)f∗( . ;λ)‖X
‖f∗(ξ;λ)‖X

, f 6= 0.

As a consequence, we get

‖Rλ(ΥK)‖ ≥ 1

2λi
for λ ∈ C, λi = Imλ > 0,

which shows that every λ ∈ R belongs to the continuous spectrum of the extension
ΥK . �
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5. Examples

Example 11. Let us consider the following linear multipoint differential operator
expression for first order of the form

l((ν, ϑ)) =
(
iν′(τ , ς) + ςν(τ , ς), iϑ′(τ , ς) + ςϑ(τ , ς)

)
in the Hilbert space

X = L2 ((−∞,−1)× R)⊕ L2 ((1,∞)× R) .

Let L̃ be a maximal dissipative extension of the minimal operator generated by
above differential expression. Then, L̃ is generated by the differential operator ex-
pression l( . ) and the following boundary condition

ϑ(1, ς) = ν(−1, ς)

in X .
By Corollary 9, Theorem 8 and Theorem 7, the point, continuous and residual

spectrum of the maximal dissipative extension L̃ in X are of the forms

σp

(
L̃
)

= {λ ∈ C : Imλ > 0},

σc

(
L̃
)

= R,

σr

(
L̃
)

= ∅,

respectively.
Consequently, the spectrum of the maximal dissipative extension L̃ in X is of the

form

σ
(
L̃
)

= {λ ∈ C : Imλ ≥ 0}.

Remark 12. In special case the representation of selfadjoint extensions of corre-
sponding mentioned above minimal operator and their spectral analysis have been
surveyed in [1] and [5].
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