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ABSTRACT

We show that the masking function of two segments on a surrounding circle C is symmetric to a
straight line σ passing through the centre of C if and only if the set of the segments is also symmetric
to σ.
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1. Introduction

When a light beam passes through thin light-transmitting membranes, for example through bubbles, the
amount of the absorbed light depends on the permeability and the number of membranes. If there is only one
membrane, the incoming light intensity at an external point P depends only on the degree of the visual angle
the membranes subtends. If there are multiple membranes, the intensity depends on the sum of these visual
angles. This sum is the masking number [5] of the given set of membranes at point P . The function that assignes
the masking numbers to points is called masking function.

The general question in this article is that if the masking function of some segments in the plane is known on
a circle C surrounding the segments, then how to determine the segments. Specificaly we consider the problem
for two segments and we show that the masking function of two segments restricted to a surrounding circle C
is symmetric to a straight line σ passing through the centre of the circle if and only if the set of the segments is
also symmetric to σ.

2. Notations and preliminaries

Let g : [0, 1]→ R be a differentiable curve parameterized by arc length. Let t(s), n(s) and κ(s) be the unit
tangent vector, the normal vector and the curvature of g at g(s), respectively. Let L(s) and R(s), respectively, be
the point of tangency of the left and right side tangent lines of the strictly convex domain K, passing through
the point g(s). Let α(s) and β(s) be the angle of vectors

−−−−−→
g(s)L(s) and

−−−−−−→
g(s)R(s) made with vector t(s) respectively,

and finally let l(s) and r(s) be the length of the mentioned vectors, respectively.

Lemma 2.1. ([4, Lemma 1]) Angle α is differentiable, and α̇(s)= sinα(s)
l(s) − κ(s).

As a consequence, the right derivative of νK(s) = α(s)− β(s) is

ν̇(s+) =
sinα(s)

l(s)
− sinβ(s)

r(s)
. (2.1)

Now let K be a segment S = AB surrounded by the circle C on the chord H = g(s1)g(s2), where g is a
parametrization of C by are length.

Lemma 2.2. ([6, Theorem 3.4]) Values ν̇S(s1±) and ν̇S(s2∓) determine S.

Received : 28-12-2018, Accepted : 24-05-2020
* Corresponding author

 https://doi.org/10.36890/iejg.742248\ 


Symmetric Masking Function of Segments

Proof. Without loss of generality, we can assume the radius of the circle C is such that the length of the chordH
is 2.

Let the signed distance of points A and B from the midpoint H of H respectively be a and b, such that
−1 < b < a < 1. Let ξ be the angle made by t(s1) and H.

According to formula (2.1) we have

|ν̇(s1+)| =
∣∣∣ sin ξ
1− a

− sin ξ

1− b

∣∣∣ and |ν̇(s2+)| =
∣∣∣ sin(π − ξ)

1 + a
− sin(π − ξ)

1 + b

∣∣∣. (2.2)

Let
x :=

|ν̇(s1+)|
sin ξ

and y :=
|ν̇(s2+)|
sin(π − ξ)

.

Then
x =

1

1− a
− 1

1− b
=

a− b
(1− a)(1− b)

and y =
1

1 + b
− 1

1 + a
=

a− b
(1 + a)(1 + b)

are positive, and x 6= 1
1−a because otherwise 1

1−b = 0 follows.
According to the first equation in (2.2) we have b = a−x(1−a)

1−x(1−a) . From the second equation of (2.2), after
substitution of b, we get

a2(x− 2xy − y) + a(−2x− 2y) + (x+ 2xy − y) = 0,

the roots of which are

a1 =
x+ y − 2

√
xy + x2y2

x− y − 2xy
and a2 =

x+ y + 2
√
xy + x2y2

x− y − 2xy
.

Due to the triangular inequality

|x+ y + 2
√
xy + x2y2| = |x|+ |y|+ |2

√
xy + x2y2| > |x|+ |y|+ |2xy| > |x− y − 2xy|,

|a2| > 1 follows, so a1 is the only solution, hence

a = a1 and b =
x+ y − 2

√
xy + x2y2

x− y + 2xy
,

that proves the lemma.

Notice that, by the last formula, S is symmetric to the midpoint of H , if ν̇S(s1±) = ν̇S(s2∓).

Lemma 2.3. There is at most one segment Ŝ different from segment S, lying on the same chord H as S, that satisfies

(1) ν̇S(s1+) = ν̇Ŝ(s1+) and νS(s3) = νŜ(s3), or

(2) νS(s4) = νŜ(s4) and νS(s3) = νŜ(s3),

where g(s3) and g(s4) is not on H.
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Proof. Let T be the perpendicular projection of the point g(s3) ontoH. Let l and k be, respectively, the distances
of g(s3) and g(s4) from T respectively. Let a and b be the signed distances of pointsA andB from T , respectively.

We clearly have νS(s3) = arctan bl − arctanal , and νS(s4) = arctan bk − arctanak , hence

x := tanνS(s3) = tan
(
arctan

b

l
− arctan

a

l

)
=

(b− a)l
l2 + ab

> 0 (2.3)

and
y := tanνS(s4) =

(b− a)k
k2 + ab

> 0 (2.4)

From formula (2.1) we obtain z := |ν̇(s1+)|
sin ξ = 1

m−b −
1

m−a , where m is the distance of T from g(s1), that gives

m2z − bmz − amz + abz = b− a. (2.5)

If (1) is valid, then (2.3) and (2.5), if (2) is valid, then (2.3)) and (2.4) determine at most two pairs (a, b) as
solutions.

In the plane, the closed set of points where two convex domains subtend equal angles is called equioptic, and
the closed set of points where they subtend supplementary angles are called compoptic.

Theorem 2.1. ([3, Lemma 2.1]) The union of the equioptic and compoptic sets of two segments is two algebraic curves
of order three.

These two curves are called the Apollonios curves. Unfortunately, the equation for these curves does not show
which parts belong to the equioptic or compoptic, but for collinear segments we have a description.

Lemma 2.4. ([6, Lemma 2.3]) Let S1 and S2 be segments on a straight line f .

(i) If S1 and S2 have different lengths, then their Apollonian curves are the union of straight line f and a (possibly
degenerate) circle C, one of which is part of the equioptic and the other one is part of the compoptic.

(ii) If S1 and S2 are of the same length, then their Apollonian curves are the union of f and a straight line g, or a
possibly degenerate circle C, both symmetric to f , where g is part of the equioptic, and C is part of the compoptic.

Corollary 2.1. ([6, Corollary 2.4])

(1) If the lengths of the collinear segments are different, then

(1.a) if one of the segments contains the other, then there is no equioptic circle,
(1.b) if they do not contain each other and have a common point, then their equioptic circle passes through a given

common point of the segments,
(1.c) if they are disjoint, then their equioptic circle passes through f between the nearest endpoints of the segments.

(2) If the lengths of the collinear segments are equal, then their equioptic straight line is the symmetry axis of the two
segments.

Lemma 2.5. If two segments are on the same chord of a circle C, and there are three different points on the cirlce C, where
they subtend equal nonzero angles, then the segments coincide.

Proof. Suppose that S1 6≡ S2. Then C intersects in three points equioptic of the two segments. However,
according to Lemma 2.4 the equioptic is a circle or a straight line, and a straight line can only intersect C in two
points, hence the equioptic contains C. Then, with elementary tools it is easy to verify that the two segments
coincide [1, Lemma 2.1].

3. Masking function of two segments on a circle

Let S1 = AB and S2 = CD be segments inside the circle C and let τS1,S2 = νS1 + νS2 be their masking function,
restricted to the circle C.

Theorem 3.1. Fuction τS1,S2 is symmetric on circle C to a straight line σ passing through the center of circle C if and
only if the segments are both symmetrical to σ, or they are reflections of each other to σ.
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Proof. It is evident that the symmetry of τS1,S2 follows from both conditions. Now suppose that τS1,S2 is
symmetric. The proof goes step-by-step according to the number of the roots of τS1,S2 .

The masking function has no roots.
Let g(si) (i = 1, 2, 3, 4) be the points on the circle, where τS1,S2 is not differentiable. Consider the left and right
derivatives of τS1,S2 at these points, and observe that νS1 and νS2 are differentiable outside the points g(si)
(i = 1, 2, 3, 4), but at any si exactly one of νSj (j = 1, 2) is not differentiable and the left and right derivative of
that νSj are counterparts of each other, so τ̇S1,S2(si+) + τ̇S1,S2(si−) is twice the respective derivative ν̇Sj (si±).
These derivatives ν̇Sj (si±) and the chords of the segments clearly determines the segments by Lemma 2.2.
(a) No g(si) (i = 1, 2, 3, 4) is on the σ axis.
We can assume that g(s1) and g(s4) are on the right side of the σ, and g(s2) and g(s3) are the reflections of them,
respectively. Then the segments can only be in three different positions (see Figure 1).

Figure 1. Possible positions of the segments.

Due to the symmetry of τS1,S2 , the respective derivatives ν̇Sj (si±) are equal at the reflected points, therefore
the segments are either the reflections of each other, or, in the last case, they are symmetrical with respect to σ.
(b) Two points, say g(s1) and g(s3) are on σ.
Then g(s2) is the reflection of g(s4) with respect to σ, and the segments can only be in two different positions
(see Figure 2).

Figure 2. Possible positions of the segments in case (b).

In the first case the symmetry is easily comes from Lemma 2.2.
The second case, where neither of the segments lies on σ, is impossible by the following reason: By the

symmetry, τS1,S2 has local extremums at g(s1) and g(s3). As νS1 is minimal at g(s3) and νS2 is minimal at g(s1),
we deduce that νS1 is maximal at g(s3) and νS2 is maximal at g(s1). Now, let us examine the right and left
derivatives of τS1,S2 in s2 and s4. In s2 the value of the derivative towards s1 is greater than towards s3, as
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the value of νS2 increases towards local maximum at s1 and decreases towards s3. In point s4, with a similar
way of thinking, we can deduce the reverse, so here the derivative is higher towards s3 than towards s1, which
contradicts the symmetry.

The masking function has one root.
Let g(s3) be the only root of τS1,S2 that is therefore on σ. Let g(s1) and g(s2) be points of the cirlce outside
σ, where τS1,S2 is not differentiable. Then g(s1) is the reflection of g(s2) in σ, so ν̇S1(s1±) = ν̇S2(s2∓) =
(τ̇S1,S2(s1+)− τ̇S1,S2(s1−))/2 and by Lemma 2.3, these derivatives with νS2(s1) = νS1(s2) = τS1,S2(s1) allow
only two possible segments on each straight line f1 := AB and f2 := CD. Let these segments S1, S̃1 on f1,
and S2 , S̃2 on f2 respectively, where S1 and S2, plus S̃1 and S̃2 are reflections of each other with respect σ (see
Figure 3).

Figure 3. Possible positions of the segments if three roots exist.
If τS1,S̃2 is symmetric to σ, then by the symmetry of τS1,S2 also τS̃1,S2 is symmetrical to σ, so S1 and S̃1 subtend

the same angle at g(s2). Thus, g(s2) is on the equioptics of S1 and S̃1. This equioptic I passes through g(s2)

and, by Corollary 2.1, the chord g(s1)g(s3). As τS1,S2 is symmetric to f1, equioptic I also intersects the circular
of C in the other side of f1 than g(s2). Let this intersection point be M .

As S̃1 and S1 subtend equal visual angles at M , the two pairs of the segments also have equal masking
numbers in M , hence, S2 and S̃2 subtend also equal angles here.

By the symmetry of τS1,S2 , S1 and S̃1 subtend also equal angles at M ′, which is the reflection of M to
σ. Therefore, S1 and S̃1 subtend equal angles at points g(s2), M , and M ′ outside f1. By Lemma 2.5, these
three values determine the segments, so S1 ≡ S̃1. Similarly, S2 ≡ S̃2 follows, that proves the symmetry of the
segments.

The masking function has two roots.
Let g(s1) and g(s2) be the roots of τS1,S2 . Let a < b and c < d be the signed distance ofA,B andC,D, respectively
from the midpointH of the common chordH of S1 and S2. The bisector ofH is clearly σ and let its intersections
with circle C be g(s3) and g(s4). (See Figure 4.)

Let ξ be the angle made by t(s1) and H, and let l be the distance of H from g(s3). Choose the radius of the
circle so that the length of chord H is 2, so we have −1 < a < b < 1 and −1 < c < d < 1.

Due to formula (2.1) we have

|τ̇S1,S2(s1+)| =
∣∣∣ sin ξ
h− a

− sin ξ

h− b
+

sin ξ

h− c
− sin ξ

h− d

∣∣∣, (3.1)

and

|τ̇S1,S2(s2−)| =
∣∣∣ sin ξ
h+ a

− sin ξ

h+ b
+

sin ξ

h+ c
− sin ξ

h+ d

∣∣∣. (3.2)

Again from (2.1) we get

|τ̇S1,S2(s3+)| =
∣∣∣ l

l2 + a2
− l

l2 + b2
+

l

l2 + c2
− l

l2 + d2

∣∣∣, (3.3)

because (sinAg(s3)H∠) = l√
a2+l2

, (sinBg(s3)H∠) = l√
b2+l2

and so on.
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Figure 4. Possible positions of the segments if two roots exist.

Due to the symmetry of τS1,S2 we have |τ̇S1,S2(s1+)| = |τ̇S1,S2(s2−)|, and τ̇S1,S2(s3+) = 0, so (3.1) and (3.2)
imply

sin ξ

1− a
− sin ξ

1− b
+

sin ξ

1− c
− sin ξ

1− d
= −

( sin ξ

1 + a
− sin ξ

1 + b
+

sin ξ

1 + c
− sin ξ

1 + d

)
,

and (3.3) gives
l

l2 + a2
− l

l2 + b2
+

l

l2 + c2
− l

l2 + d2
= 0.

After some simplifications of these we arrive at

1− a2 =
(1− b2)(1− c2)(1− d2)

(1− c2)(1− d2)− (1− b2)(1− d2) + (1− b2)(1− c2)
(3.4)

and

l2 + a2 =
(l2 + b2)(l2 + c2)(l2 + d2)

(l2 + c2)(l2 + d2)− (l2 + b2)(l2 + d2) + (l2 + b2)(l2 + c2)
.

The sum of these two equations is

1 + l2 =(1− a2) + (l2 + a2)

=
(1− b2)(1− c2)(1− d2)

(1− c2)(1− d2)− (1− b2)(1− d2) + (1− b2)(1− c2)
+

+
(l2 + b2)(l2 + c2)(l2 + d2)

(l2 + c2)(l2 + d2)− (l2 + b2)(l2 + d2) + (l2 + b2)(l2 + c2)
.

Multiplying by the denominators

(1 + l2)[(l2 + c2)(l2 + d2) + (l2 + b2)(c2 − d2)]×
× [(1− c2)(1− d2) + (1− b2)(d2 − c2)]

=(1− b2)(1− c2)(1− d2)[(l2 + c2)(l2 + d2) + (l2 + b2)(c2 − d2)]+
+ (l2 + b2)(l2 + c2)(l2 + d2)[(1− c2)(1− d2) + (1− b2)(d2 − c2)]

is obtained. After multiplication on the left and rearranging on the right, we see

(1 + l2)(1− c2)(1− d2)(l2 + c2)(l2 + d2)+

+(1 + l2)(1− c2)(1− d2)(l2 + b2)(c2 − d2)+
+(1 + l2)(1− b2)(d2 − c2)(l2 + c2)(l2 + d2)+

+(1 + l2)(1− b2)(d2 − c2)(l2 + b2)(c2 − d2)
= (1−b2)(l2 + b2)(c2 − d2)[(1− c2)(1− d2)− (l2 + c2)(l2 + d2)]+

+(1− c2)(1− d2)(l2 + c2)(l2 + d2)(1 + l2).
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Rearranging to zero leads to

0 = −(1− b2)(l2 + b2)(c2 − d2)[(1− c2)(1− d2)− (l2 + c2)(l2 + d2)]+

+(1 + l2)(1− c2)(1− d2)(l2 + b2)(c2 − d2)+
+(1 + l2)(1− b2)(d2 − c2)(l2 + c2)(l2 + d2)+

+(1 + l2)(1− b2)(d2 − c2)(l2 + b2)(c2 − d2),

and finally we arrive at

0 =(1− b2)(l2 + b2)(c2 − d2)(l2 + 1)(2d2 + l2 − 1)+

+ (1 + l2)(c2 − d2)[(1− c2)(1− d2)(l2 + b2)− (1− b2)(l2 + c2)(l2 + d2)],

that simplifies to

0 = (b2 − c2)(l2(b2 + d2 − 2)− (b2 + d2 − 2b2d2))(c2 − d2)(1 + l2).

The second factor of this product is always negative because b2 + d2 − 2 < 0 and b2 + d2 > 2b2d2, the fourth
factor obviously positive, therefore b = ±c or c = ±d follows. If b = ±c then substituting it into (3.4) gives
a = ±d.

If b = −c and a = −d, we get segments symmetrical to the midpoint of the chord.
If b = c and a = −d, or b = −c and a = d, then we have −1 < a < b = c < d = −a < 1 and −1 < c < d = a <

b = −c < 1, hence S1 and S2 are only subsegments of a segments that are not considered as two segments.
Since a < b and c < d the case b = c and a = d cannot happen.
If c = −d, then a = −b, which determines two segments equally symmetrical to the midpoint of the chord.
The proof of the theorem is complete.
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