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A SOLUTION OF A VISCOSITY CESARO MEAN ALGORITHM

Hamid Reza SAHEBI

Department of Mathematics, Ashtian Branch, Islamic Azad University, Ashtian, IRAN

ABSTRACT. Based on the viscosity approximation method, we introduce a new
cesaro mean approximation method for finding a common solution of split
generalized equilibrium problem in real Hilbert spaces. Under certain condi-
tions control on parameters, we prove a strong convergence theorem for the
sequences generated by the proposed iterative scheme. Some numerical ex-
amples are presented to illustrate the convergence results. Our results can be
viewed as a generalization and improvement of various existing results in the
current literature.

1. Introduction

Let R denote the set of all real number, H; and H> be real Hilbert spaces and C
and @ be nonempty closed convex subset of H; and Hs, respectively. A mapping
T : C — C said to be a k-strictly pseudocontractive if there exists a constant
0 < k < 1 such that

IT(2) = T()|* < o —yl* + k(I =Tz — (I = Dy|?,  Va,yeC.
When k£ =1, T is said to be pseudocontractive if
IT(x) = TW)I* < lle = yl> + (I =)z — I = T)yl*,  Va,yeC.

If k=0, T is called nonexpansive on C.

The fixed point problem (FPP) for a nonexpansive mapping T is: Find z € C
such that € Fiz(T), where Fiz(T) is the fixed point set of the nonexpansive
mapping 1.

The class of k-strictly pseudocontractive falls into the one between classes of
nonexpansive mapping and pseudocontractive mapping.
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A set-valued M : H — 2" is called monotone if for all z,y € H,u € M(x)
and v € M(y) such that (z —y,u —v) > 0. A monotone mapping M : H — 27
is maximal if the Graph(M) is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mapping M is maximal if and
only if for (z,u) € H x H,{x — y,u —v) > 0, for every (y,v) € Graph(M) implies
that v € M (x).

Let E : H — H be a single-valued nonlinear mapping, and let M : H — 27
be a set-valued mapping. We consider the following variational inclusion problem
(VIP), which is: Find x € H such that

0 € E(z)+ M(z),

where 0 is the zero vector in H. The solution set of (VIP) is denoted by I(E, M).
Let the set-valued mapping M : H — 2 be a maximal monotone. We define
the resolvent operator Jjs,» associate with M and A as follows:

Jua(z) = I+ M) (z), reH

where ) is a positive number. It is worth mentioning that the resolvent operator
Jum () is single-valued, nonexpansive and 1-inverse strongly monotone [2,/22].

In 1994 Blum and Oettli [1] introduced and studied the following equilibrium
problem (EP): Find = € C such that F(z,y) > 0, Vy € C, where F : C x C — R
is a bifunction.

Kumam et al. |[11] considered an iterative algorithm in a Hilbert space:

TT(F1,$01)( — rnAzy)

Uy = Tq(fz#z)( — ¢, Bt, ),
Up = JMl,)\l (un >\1E1un)7
Wp = JMQ,)\Q (Un >\2E2'Un)a

Yn,i = Oni®o + (1 — i) fo" $)Whwpds,
Cri1,i = {2 € Cri ¢ |y, — 2l < llzn — 2017 + anilllzoll® + 2(zn — 0, 2))},
n+1 ﬂl 1 C’n+1 X

Tn+1 = PCnJrl

Moudafi [15] introduced the following split equilibrium problem (SEP):
Let Fi : C xC — Rand F; : @ X Q — R be nonlinear bimappings and let
A : Hy — Hs be a bounded linear operator, then the SEP is to find z* € C such
that
Fi(z*,2) >0, Ve € C
and such that
y* = Az* € Q solves Fy(y*,y) >0, Vy € Q
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The solution set of (SEP) is denoted by @ = {p € EP(Fy) : Ap € EP(Fy)}.
(SEP) includes the split variational inequality problem, split zero problem, and
split feasibility problem ( see, for instance, [3-6}/14}/15]).

Recently, Kazmi and Rizvi [10] introduced a split generalized equilibrium prob-
lem (SGEP): Find z* € C such that

Fy(z*,2) + ¢ (z",2) >0, Ve € C
and such that

y* = Az™ € Q solves Fa(y*,y) + ¥o(y*,y) >0, Yy € Q

where F1,9; : C x C — R and Fj,94 : C' x C — R be nonlinear bi functions and
A : Hy — Hj is bounded linear operator. The solution set of (SGEP) is denoted
by I' = {p € GEP(Fy,v,) : Ap € GEP(F3,1,)}. They considered the following
iterative method:

wy = T30 (@ + SAN(T0Y) — 1) Awy);
Tpy1 = anyf(2n) + Bpan + (1 —B8,)1 — O‘nB)L fosn T(s)unds.

Sn

In 2015 Wang [19] introduced and studied the following iterative method to prove
a strong convergence theorem for F/(T') and VIP in real Hilbert space:

Yn = apu + (1 - an)mna
Tn+1 = 6711'71 + (1 - 6n)TJTn (yn - rnAyn), vn > ]-7

where v is fixed element and J,, = (1+7,B)~ L.
In 2017 Zhang and Gui [21] introduced an iterative algorithm in a Hilbert space
as follows:
Up = Tf:} (xn + (514*(TSIZ2 —D)Az,)
Tnt1 = o f(2n) + (175%) 22:0 T up,
where T; : C' — C is an asymptotically nonexpansive mapping for ¢ = 0,1,...,n.
Motivated by the works of Kumam et al. [11], Kazmi and Rizvi [10], Zhang and
Gui [21), Wang [19] and by the ongoing research in direction, we introduce and
study an iterative method for approximating a common solution of SGEP,VIP
and F'PP for a nonexpansive semigroup in real Hilbert spaces.

2. Preliminaries

Let H be a Hilbert space and C' be a nonempty closed and convex subset of H.
For each point « € H, there exists a unique nearest point of C, denoted by Pcz,
such that ||z — Pez|| < ||z — y|| for all y € C. Pg is called the metric projection of
H onto C. It is well known that P¢ is nonexpansive mapping and is characterized
by the following property:

(x — Pox,y — Poy) < 0. (2.1)
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Further, it is well known that every nonexpansive operator 1" : H — H satisfies,
for all (z,y) € H x H, inequality

(z =T(x) = (y =T (), T(y) = T(x)) < (%)H(T(ﬂ?) —a) = (T(y) -y, (22)
and therefore, we get, for all (z,y) € H X Fiz(T),

((z =T(2)),(y = T(y))) < (%)H(T(m) - )% (2.3)

see, e.g. |9).It is also known that H satisfies Opial’s condition [16], i.e., for any
sequence {z,} with z, — x the inequality

liminf ||z, — || < liminf ||z, — y|| (2.4)
n—oo n—oo

holds for every y € H with y # x.

Definition 2.1. A mapping T : H — H is said to be firmly nonexpansive, if
(Tx —Ty,z —y) > ||Tz — Ty|?*, Yo,y € H.
Lemma 2.2. [7] The following inequality holds in real space H :
o+ gl < lz]* + 2(y. x +y), Yo,y € H.
Definition 2.3. A mapping T : C — H is said to be monotone, if
(Te —Ty,x —y) >0, Va,yeCl.

T is called a-inverse-strongly-monotone if there exists a positive real number o such
that

(Tx — Ty, x —y) > a| Tz —Ty||*, Vz,yeC.

Lemma 2.4. [29] Let M : H — 2H be a mazimal monotone mapping, and let
E : H — H be a monotone mapping, then the mapping M + E : H — 2H s q
mazximal monotone mapping.

Lemma 2.5. [22] Let x € H be a solution of variational inclusion if and only if
x = Jya(x — AEz),YA > 0, that is

I(E,M) = Fiz(Jyx(I — AE)),  ¥YA>0.

Lemma 2.6. [13] Assume that B is a strong positive linear bounded self adjoint
operator on a Hilbert space H with coefficient ¥ > 0 and 0 < p < ||B||=t. Then
11— pB|l < 1-p5.

Lemma 2.7. [17] Let {z,} and {y,} be bounded sequences in a Banach space X
and {B,,} be a sequence in [0,1] with 0 < liminf, .. 8, < limsup,_ . 8, < 1.
Suppose xp11 = (1= 5,,)Yn+ Bptn, for all integers n > 0 and imsup,,_, o (||¥n+1 —
yn” - Hxn—i-l - xn”) S 0. Then limn—>00 ||y’n - xn” =0.
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Lemma 2.8. [20] Let {a,} be a sequence of nonnegative real numbers such that
ant1 < (1—ay)ay, +0,, n > 0 where ay, is a sequence in (0,1) and &, is a sequence
in R such that (1) X221, = oo; (1) limsup,,_, in < 0 or (4i7) X210, < 0.
Then lim,, .~ a, = 0.

Assumption 2.9. [19] Let F : C x C — R be a bifunction satisfying the following
assumption:

(1) F(z,x) >0, Vz € C,

(2) F is monotone, i.e., F(z,y) + F(y,x) <0, YV € C,

(3) F is upper hemicontinuous, i.e., for each z,y,z € C,
limsup, .o F(tz 4+ (1 = t)z,y) < F(x,y),

(4) For each x € C fized, the function x — F(x,y) is conver and lower semi-
continuous;

let ¥ : C x C — R such that
(1) ¥(z,x) >0, Vx e C,
(2) For each y € C fized, the function x — ¥ (x,y) is upper semicontinuous,

(3) For each x € C fized, the function y — ¥ (x,y) is conver and lower semi-
continuous;

Lemma 2.10. [10] Assume that F1,v; : C x C — R satisfy Assumption[2.9 Let
r >0 and x € Hy. Then, there exists z € C such that

1
Fl(z7y)+¢1(z,y)+;(y—z,z—x)20, VyGC

Lemma 2.11. [/] Assume that the bifunctions Fy,1; : C x C — R satisfy As-
sumption and 1, is monotone. Forr > 0 and for all x € Hy, define a mapping
TT(FI’%) : Hy — C as follows:

1
TI(F17¢1)x = {Z eC: Fl(zvy) +¢1(Z,Z/) =+ ;<y_ Z,Z—l’> Z O}a vy eC.

Then the followings hold:
(i)TT(Fl’wl) is single — valued.

(ii)Tr(Fl’wl) 15 firmly nonexpansive,i.e.,

|7 @) = T )2 < (T (@) - T (), 2 — ), @y € Hy.
(iid) Fiz(T\ ™)) = GEP(Fy, ;).
(i) GEP(Fy1,v,) is compact and convex.

Further, assume that Fy,1, : Q X Q@ — R satisfy Assumption @ For s > 0 and
for all w € Hsy, define a mapping TS(FQ’%’) : Ho — @ as follows:

T(FevD)y = {d € Q : Fy(d, ) + Yold,€) + ~(e —d,d —w) > 0}, Ve € Q.
S
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Then, we easily observe that TFee) satisfies in Lemma and GEP(F1,14) is
compact and convez.

Lemma 2.12. [§] Let F; : C x C — R be a bifunction satisfying Assumption
and let Tfl be defined as in Lemma forr >0. Let x,y € Hy and r1,r2 > 0.
Then,
To —T1

Ty = Tl < o —yll + |7r2 Ty — yll.
Lemma 2.13. [1§] Let Fy : C x C — R be a bifunction satisfying Assumption[2.9
and let Tfl be defined as in Lemma forr > 0. Let x € Hy and r1,72 > 0.
Then,

115 - |2 < 2

(T () = T (2), T () — ).

Notation. Let {z,} be a sequence in H, then z,, — x (respectively, z,, — x)
denotes strong (respectively, weak) convergence of the sequence {z,} to a point
reH.

3. Viscosity Iterative Algorithm

In this section, we prove a strong convergence theorem based on the explicit
iterative for fixed point of nonexpansive semigroup. We firstly present the following
unified algorithm.

Let H; and Hs be two real Hilbert spaces; Let C C Hy, Q@ C Hy be nonempty,
closed and convex subsets; Let Fy,¢, : C x C — R and Fs, ¢, : Q x @ — R are
nonlinear mappings satisfying Assumption [2.9 and F3 is upper semicontinuous in
first argument. Let {V; : C'— C} be a uniformly k-strict pseudocontractions and
T : C — C be a nonexpansive mapping on C for i = 0,1,2,...,n defined by
Tix =tz + (1 —1t)V; for each x € C, t € [k,1). Let f: Hi — H; be a contraction
mapping with constant o € (0,1), A : H; — Hs be a bounded linear operator, B
be a strongly positive bounded linear self adjoint operators on H; with constant
Y1 > 0, such that 0 < v < % < v+ é, E be a 7,- inverse strongly monotone
mapping on H; such that 7, > 0, € (0,27,) and M : H; — 25! be a maximal
monotone mapping. Suppose that © = (/_, Fiz(T*) NI NI(E, M) # 0.
Algorithm 3.1. For given xo € C arbitrary, let the sequence {x,} be generated by
the manner:

un = T (@, + 64TV — 1) Awy,)
Wy, = Jpa(un — AEuy,)

Tnt1 = oYV f(2n) + Bpxn + (1 = B, — anB)n%H Z?:o Tiwy, + Tn€ns
(3.1)
where {e,} is a bounded error sequence in Hy, 6 € (0, 25), L is the spectral radius
of the operator A*A and A* is the adjoint of A, {a,}, {B,,} are the sequence in
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(0,1) and {rp} C [r,00) withr >0, {s,} C [s,00) with s > 0 satisfying conditions:
(C1)limy, 00 = limy, 00 B, = 0, X2, = 00

(C2) lim,, =

(C3)limy, 00 [Trt1 — rn| =0, liminf, o rp > 0, lim, o0 |Snt1 — Sn| = 0.

Lemma 3.2. Let p € ©. Then the sequence {x,} generated by Algorithm 18
bounded.

Proof. By Lemma [2.11] (ii), using the similar argument in Remark 3.1 [21], for § €

(0, 555), I +6A* (Tsz’%) —I)A is a nonexpansive mapping and A*(TS(?’%) —-1A

isa ﬁ—inverse strongly monotone mapping. Take p € O.
And similar to Theorem 3.1 |21], we have

un =l < l[@n — plI> + 8(8 — 2)|A* (T2 — 1) Az, ||2. (32)
Since § € (0, 37z), we obtain
un =% < [l2n — p)| (3.3)

Now, we show that I — AF is a nonexpansive mapping. Indeed for z,y € C and
A € (0,27), we have

I(I = AE)z — (I = AE)|* = |lz —y — MEx — Ey)||®
= |l& —ylI* = 2X\(z — y, Bz — By) + \*||Ex — Ey|
< [lz = yl* — 227, Bz — Ey||* + X*| Bz — Ey||?

<z —yl* + AX = 27,) | Ex — Eyl|?

<z -yl
(3.4)
then I — AF is a nonexpansive mapping.
Since Ju,a(un — AEu,,) is a nonexpansive mapping, we have
lwn =l = [IJax(un — AEun) — Jua(p — AED)|®
< [l(up — ABuy) = (p — AEp)|? (3.5)
< lun = pll?,

then
lwn — || < |lun — p]. (3.6)
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Then
[wn = pll < [lzn = p- (3.7)

From Theorem 1 [10], we obtain (1—3,,)I —«a,, B is positive and || (1—8,,)] —a, B]| <

1—-75,, —any,, for any z,y € C.
Now, on setting t" := nil Z?:o T", we can easily observe that the mapping t" is

nonexpansive. Since p € ©, we have

1 n ) 1 n
t"p = Tip = = p.
e I PO

Since {ey} is bounded, using condition (C2), we obtain that {W} is bounded.
Then, there exists a nonnegative real number K such that

Ivf(p) — Bpll + %ﬁ”” <K, Vn >0, (3.8)
therefore
[#nt1 = pll = llanyf(zn) + Bran + (1 = B)] — anB)t"wn + v 60 — |
< anllvf(zn) — Bpll + Byllzn — pll
(A = B — anB)|[[[t"wn — t"p + v,llenll
< an([[vf(@n) = f W) + 17/ () — Bpll) + Bullzn — pll
+(1 =B, — an¥)lwn = pll + Vnllen]|
< apyal|z, = pll + anllvf(p) — Bpll + By llzn — 1
+(1 =B, = any1)llen — pll + v llenl]
< (1= —ya)an)llen — pll + o K
< max{|lz, - pl, 5555
< max{lfeo - pll, =5},
(3.9)
Hence {z,} is bounded. O

We deduce that {u,}, {w,}, {t"} and {f(z,)} are bounded.



A SOLUTION OF A VISCOSITY CESARO MEAN ALGORITHM 1457

Lemma 3.3. The following properties are satisfied for the Algorithm
Pl. limp e ||Znt1 — zn] = 0.

P2, lim,_ o ||z — t"wy|| = 0.

P3. limy oo (T2 — DAz, |2 =0, limy_.o |Eu, — Epl|| = 0.

P4, limy oo ||un — Znl| =0, limy oo ||wn —un|| =0,  limy, o |[t"w, — wy|| = 0.
Proof. P1: Similar to Theorem 3.1 , we obtain

Trtl — T
Wn)% + MUWJ (3.10)

Sn+1 Tn+1

S - S
s = tnll < s = o + S A2 =2l

where

Tut1 = Sy [T (g + A (T2 1) A1) — (40 +0 A (TP —
DAz,1)|),

My = sup, e (T2 Ay, — T2 02 A, TE202) Ay, — Awy).

Since Jp a(un, — AEuy,) is a nonexpansive mapping, we have
[wnt1 —wnll = [T A(Uns1 — ABupy1) — Jara(un — ABu,) ||

S (tng1 = ABun41) = (un — ABu, )|

< ||un+1 _unH ( )
3.11

Next we easily estimate that

) 2
[ g = | < frasr = ol + 2 =l 5 ol

By (3.10) and (3.11) we can write

67+ s = £ wnl] < omss — @l + S A (22220l )3

+Mgn+1 + %H(Hxn —pll + I,

Tn41

(3.12)
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Setting Zp11 = 8,,Zn + (1 — ,,)yn, then we have

Ynt+l — Yn = 1?%:11 (fyf(:rn+1) — Bt’fl+1u}n+1 + M)

Qg1
+t" w1 — w4 28, (Btn =7 () = 7572).
Using (3.12)), we have

7z ntillentall
Y1 = yall - < 133%(”’”0(5%“) — Bt lap,, || + Dottty

Qn+1

H w1 — Mwa| + 124 (v f () — Bt"w, | + Z2ll))

n nt1llentall
< 13[57:11(”7]0(7371%-1) = Bt" lwy g || + %) + [Znt1 — @l

S - 1 ‘n+1—"n
Ol A (Lrtmenly s 4 Irmsizral g )y 22, — pl| + [Ip]])

Sn+1 Tn41

+ 125 (7 f(z0) — Bt"w,|| + el
which implies that

[Yn+1 = ynll = lZns1 = znl|

< T2 ([l (Ensn) — BE | + Zettlennilly 4 gy g (lrsnmsal g

= 1-B,41 Qnt1 Sn41

Hlatelo, o+ 25 (o = pll + P + 125 (17 f () — B"w, | + 2led)).

Tn4+1

Hence, it follows by conditions (C1) — (C3) that

lim sup([|yn1 = ynll = T2 — 2nl)) <0. (3.13)

From Lemma and (3.13)), we get lim,, oo ||Ynt1 — Znl| = 0, and

e =l = i (= Bl ol =0 (1)
Then lim,, oo [[t" T w1 — t"w,|| = 0.

P2: We can write
|zn —t"wn|l < [|Tpy1 — 2nl
Hlanyf(@n) + Bnan + (1= By)] — anB)t"wy + Ve — " wy|

<N@ns1 = ool + anllvf(@n) — Bt"wul| + B, |75 — t"w || + v, llenl]-
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Then

(1 =B )lzn = t"wn|| < |py1 — 2ol + anllvf(zn) — Bt"wa | + 7, el

Therefore we have

o — M wnll < 125 llnen = 2all + 125 10V (20) = Bt wa | + 22eed).

Since a,, — 0 and ||z,+1 — z,|| — 0 as n — oo we obtain
lim ||a, — t"w,| = 0. (3.15)
n—oo

P3: Since {x,} is bounded, we may assume a nonnegative real number N such that

|z — pl| < N. From (3.5 and (3.2)), we have

[€n+1 — plI
= llanvf(zn) + Bpon + (1 = B)I — an B)t"wy, + 7,60 *PHQ

= lan(vf(zn) — Bp) + B, (xn — t"wn) + (1 — an B)(t"wn, — p) + 'YnenHQ

<[|(1 = anB)(t"w, — p) + Bn(mn - tnwn)HQ +2(an(vf(2n) — Bp) + TnCn) Tn4+1 — p)

< (11 = anB)(t"wn = p)|| + By l2n — t"wn])? + 2000 (v f(2n) — Bp, Tnt1 — p)
+2(v,,€ns Tnt1 — P)

< (1 = anyo)llwn = pll + Bpllzn — " wn))? + 20 (v f (2n) — Bp, nt1 — p)
+27,llenl|N

= (1= an¥1)?[lwn = plI* + Ba |z — t"wn|* + 2(1 = 1) By wn — pllllzn — t"w,||

(3.16)
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< (1= any)tn = plI? + B2llwn — twn® + 21 = any)Bullwn — plll|zn — 7w, ]|
+2an (vf(2n) = Bp, Tni1 — p) + 27, [len | N

= (1= 712 (lzn — pl? + 606 — o)A@V — 1) Ay |2) + (8,)2 |20 — tmw,|?
+2(1 = an¥1) Bpllwn = plll|#n — t"w || + 2000 (7 f (€n) — Bp, Tyt — p) + 27, [lenl| N

< Jlan = 2% + (@n¥1)? 120 — plI? + (1 — 00 71)20(0 — F5)|A=(TE=2) — 1) Az |2
B2 — MWl + 2(1 = 1) Byllwn — pllllzn — 1w,

20, ({(Vf(20) — Bp, Tpy1 — p) + %jn”N)
Therefore

(1 — a71)%6(f5 — )| A= (T V) — 1) Az, |2

< lzn = pIP = llasr = Bl + (@12l = pl* + Bl — 7w
+2(1 = 1) lwn = pllllzn = " wnl| + 200 ((1f (2n) = Bp,wnsa = p) + 2ELN)

< (lzn = pll + 1201 = pDIen = znsall + (@71 lzn = plI* + B3 ll2n — t*wnl?

+2(1 = an71)Bullwn = pllllen — twn|| + 20m (]| £ ()| + | Bp]| + 2ele2l n).

Because of §(7 — 0) > 0, [|zn, — zpq1| — 0 and [z, — t"w,| — 0 as n — oo
and (C1) we obtain lim, . | A* (T2 — 1) Az, |2 = 0

which implies that

lim [(T2%2) — 1) Az, | = 0. (3.17)

It follows from ([3.16)
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|Zns1 —plI* = (1 = an¥1)?llwn — plI + B2 llwn — t"wa?
+2(1 = o 1) Bpllwn — pll[|wn — " wy||
+20, (v f(xn) = Bp, Tnt1 — p) + 27, lenl|N

< (1= an¥1)*(lun = plI? + AA = 29,) [ Bun — Ep]?)

"‘Bi”xn - t"wnllz +2(1 = an¥1) By llwn — pll|zn — t"w,||

+2an<fyf<xn> - Bpa Tn+1 — p) + 27n||en||N

Therefore

(1 — a7l’71)2A(2’72 - /\)”Eun - Ep||2

< (1= an¥1)?un = pl* = llzns1 = ol + B1lwn — t"wa?

1461

+2(1 = an¥1) By llwn — plll|n — t"wu|| + 200 (v f(2n) — Bp, Tny1 — p) + 27, lenl| N

<z = pl? = llznsr = Pl + (@n¥1)? |z = plI* + B7llon — twnl|?

+2(1 = an¥) B llwn = pllllen = t"wn || + 200 (v f (€0) = Bp, Zni1 = p) + 27,/lenl|N

< (lzn = pll + 2041 = pDllzn = 2t ll + (@n71)llzn =PI + B llzn — t"wa|?

+2(1 = an1) By llwn = pllan = " wnll + 20 (£ (@)l + 1Bpl + 232N,

Because of A(255 — A) > 0,||zn, — Zny1|| — 0 and ||z, — t"wy| — 0 as n — o©

and (C1) we obtain

lim ||Eu, — Ep|| = 0.

P4: Since p € ©, we can obtain

(3.18)

[l — p“2 <lzn *pH2 — [Jun — mn||2 + 20Jun — mn””A*(T(gnmeQ) —I)Az,||,

see [21]. It follows from (3.16) that
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|41 — Pl
< (1= 1) lwn = plI? + B2 2n — t"wal2 + 201 — 0 ¥1) B, llwn — plll|z0 — 1w,
20, (7 f(xn) — Bp, Tni1 — p) + 27, lenl| N
< (1= an7)2llun = pl? + B2 w0 — twn | + 2(1 — 1) By lwn — pll2n — tw, |
+20, (7 f(2n) — Bp, Tny1 — p) + 27, |lenl| N
< (1= 502 (len = plI? = l[un — zall? + 20| Alup, — 2) 1TV = 1) Az, )
+ 82|20 — 1w, |2+ 2(1 — ) By lwn — pll [z — 7w,
200 (Vf(Zn) — Bp, Tny1 — p) + 29, llen |V
< Nn = plI2 + (@) ln — plI* = (1 — an¥1)?llun — all®
+2(1 = 7)) 20l A(un — @) [T — D) Az | + 82|20 — 7w, |2

+2(1 = @71 Byllwn = pllllzn — t"wnl + 2cn (7f (@0) = Bp, wns1 —p) + 2IN).

Therefore we have
(1= on¥1)2[lun — 22
< llan = pl? = llza 1 = PI? + (@n71)?l|z0 — pI1?
+2(1 — an1)20| Al — 2 )| (ZEY?) = D Az | + B2 — t7w |2

+2(1 = au1)Bulhwn = Pl — twall + 20 (7] (@) — Bp, s — p) + Zelezl )
< (e — ol + a1 = plDl12n — 2o + (712l — pll?

+2(1 — 1) 28| Aup — ) |[II(TEE2YD = 1) Ay || + B2 |l — t7w, |2

+2(1 = n71) B, [wn = pllllen — t"wn | + 200 (V]| £ () | + | Bpl| + 2de=ly N,

Since a;, — 0, 8,, — 0, ||( 3(52’%) — NAxz,|| — 0 and ||z, — t"w,| — 0 as n — oo
and from (C'1), we obtain

lim ||z, — u,| = 0. (3.19)

n—oo
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Since p € © and Jy,» is 1-inverse strongly monotone [2,22], we can obtain
lwn =l = [Tara(un — ABun) — Jaa(p — AED)|?
< {(un = ABun) — (p — AEp), wp — p)
= 5([(un = AEu,) — (p = AED) | + [lwn — pl|®
~[[(un — ABuy) — (p — AEp) — (wn — p)|I?)
< 5(lun = pl* + lwn = pl* = [(un = ABun) = (p = AED) — (wn — p)||*)
< 3(lzn = pI* + lwa = plI* = lwa = uwnll* + 2M(up — wy, Eun — Ep)

~A?|| Euy, — EplP?),
and hence,

lwn =l < llon = plI* = lwn — wnll* + 2w — wa || Bun — Epll.  (3.20)

It follows from and that
201 = pl?
< (1= an¥y)?lwn = pl? + Ballzn — t"wa|* + 2(1 — @n¥)Bollwn — plll|n — t"w,||
+2an (Vf(2n) = Bp, Tnt1 — p) + 27, [len|| N
< (1= an1)*(lun = plI? = wn = unll® + 2\ [[un — wy ||| By, — Epl)
87 |20 — twn|? + 2(1 = @n¥1) B, [wn — plll|lzn — t"w,||

200 (vf(2n) — Bp, Tny1 — p) + 27, e ||V,

therefore we have
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(1 = an¥y)?lwn — unl®
<lzn = pl? = l[2nt1 = pI* + (@n¥1)* 20 — plI? + (1 = an¥1)?2Mlun — wa ||| Eu, — Ep||
87 |0 — twn|? + 2(1 = @n¥1) B, wn — plll|lzn — t"w,||
+20, (v f(2n) = Bp, Tng1 — p) + 27, llenl|N
< (llzn = pll + lzns1 = pDlzn — zpsall + (@n¥1)? |20 — pl?

+(1 = an1)*2M Jun — wa[[|Bun — Epl| + B3 |20 — t"wn]|?

+2(1 = 0n71) B lwn = plllwn — twn | + 200 (]| £ (@) + [ Bp|| + 222l N,

Since ||zy, — Znt1]] — 0, ||z — t"wy || — 0 and ||Eu, — Ep|| — 0 and from (C1), we
obtain
lim ||wy, —uy| = 0. (3.21)

n—oo

Using (3.15)), (3.19) and (3.21]), we obtain

[t wy — wu|| < "Wy — znll + |20 — un| + |un — wn| — 0, as n — o0

which implies
lim |[t"w, —wy,]| = 0.
n—oo

4. Main Result

Theorem 4.1. The Algorithm defined by convergence strongly to z € (i, Fiz(T")N
I'NI(E, M), which is a unique solution of the variational inequality {(vf — B)z,y—
z) <0, Yyeo.

Proof. Let s = Pg. We get
Is(I =B +~f)(x) =s(I =B+yf)wll <lI—-B+vf)x)— I -B+1/)yl
< M = Bllllz = yll + I (2) = fF W)
< (@ =)z =yl +~rallz -yl
= (1= (7 =)z -yl
Then s(I — B + «f) is a contraction mapping from H; into itself. Therefore by

Banach contraction principle, there exists z € Hy such that z = s(I — B+ f)z =
Po(I — B+~f)z.
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We show that limsup,, . ((vf — B)z,z, — z) < 0 where z = Po(I — B+ ~f). To
show this inequality, we choose a subsequence {w,,} of {w,} such that

Since {wy, } is bounded, there exists a subsequence {wnij }+ of {wy,, } which converges
weakly to some w € C. Without loss of generality, we can assume that w,, — w.
From |[t"wy, — wy]|| — 0, we obtain t"w,, — w.

Now, we prove that w € (\_, Fiz(T") N T NI(E,M). Let us first show that

w € Fiz(t") = =7 Yy Fiz(T'). Assume that w ¢ 5 31 Fiz(T"). Since

Wy, — w and t"w # w, from Opial’s conditions and Lemma [3.3] (P4), we have
liminf, o ||wn, —w| < lUminf, . ||w,, —t"w||
< liminf,— oo (||wn; — t"wn, || + [[t"wn, — t"w]||)
< liminf, e ||wn, — w|,
which is a contradiction. Thus, we obtain w € Fiz(t"). We show that w € T'. Since

Uy = Tr(fl’wl) (T +0A* (Ts(fz’w"’) —1)Ax,), where d,, = ©,, + 5A*(Ts(52’¢2) —1I)Ax,,
we have

1
Fl(unay)+d)1(umy)+7<y*unvun*dn> >0, vy € C.

n

It follows from the monotonicity of F; that

1
¢1(unay)+7<y7unaun*dn> ZF1(umy), VyGC

n

which implies that

F7
o)y, 12 =00 g g o™ = DA
1\%n; —Unp,,

n rn

)) > Fi(y, un,), Yy € C.
Because of [|u, — x| — 0, we get u,, = w and “i-""1 — 0

Since lim,, ||A*(Ts(f2’¢2) — I)Az,|| = 0 then A*(¥

Therefore

) — 0.

Tn

¢1(univy) ZFl(y7uni)7 hl(w7y) ZFl(y,’LU)
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Let y, =ty + (1 — t)w for all ¢ € (0,1]. Since y € C and w € C, we get y, € C. It
follows from Assumption that

0= Fi(yey0) + 1w, 90) < tF1(ye,y) + (1= ) Fi(ys, w)
1 (e, y) + (1= )b (g1, w)
= t(F1(ye, y) + 1 (ye,y))
(1= )(F1(ye, w) + s (ye, w))

§ Fl(ytay) + wl(yt,y)a
50 0 < F1(ys,y) + ¥1 (Y6, y)-

Letting t — 0, we obtain 0 < Fy (w, y)+1; (w, y). This implies that w € GEP(Fy, ;).
Now we show that Aw € GEP(F3,1,). Since ||u, — xn|| — 0, u, — w as n — oo
and {z,} is bounded, there exists a subsequence {,,, } of {z,} such that z,, = w
and since A is bounded linear operator so that Ax,, — Aw.

Because of || (Ts(f’z’%) —I)Az,]|| — 0, we have T§52’¢2)Axnj — Aw. Therefore from
Lemma [2.11] we have

Fy (T;ff’%)Axnj ,v) + wz(T;ff’wZ)Awnj ) V)

1
+ (v — TS,(TZ_Z’wZ)Axnj,Tgff’qﬂﬁAa:nj —Aw) >0, YveQ.
Sn;
Since F5 is upper semicontinuous in first argument, taking lim sup to above inequal-

ity as 7 — oo, we obtain
Fy(Aw,v) 4+ ¢y (Aw,v) > 0, Yv € Q,
which means that Aw € GEP(Fy,1),) and hence w € T.
Now we show that w € I(E,M). It follows from Lemma that M + FE is a
maximal monotone. Let (y,g) € G(M + E), that is ¢ — Ey € M (y).
Since wy, = Jya(un, — AEuy,), we have u,, — ABu,, € (I + AM)(w,,), then
L (un, — wn, — ABup,) € M(wy,).
Since M + F is a maximal monotone, we have

1
<y — Wn,;, 9 — Ey - X(unl — Wnp,; — )‘Eum» > 07

and so
= <y - wnivEy - Ewm + Ewni - Eum + %(um - wn1)>

>0+ <y - wni’Ewni - Euni> + <y — Wn,, %(unz - w”z))
Since E is a J,-inverse strongly monotone, we can easily observe that ||Ew, —
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Euy,l| — 0.
It follows from (3.21)), | Fw., — Euy,|| — 0 and w,, — w that
lim (y —wy,,g) = (y —w,g) > 0.

n—oo

It follows from the maximal monotonicity of M + F that 0 € (M + E)(w), that is
w e I(E,M).

We claim that limsup,, . {((7f — B)z,z, — 2) < 0, where z = Po(I — B + vf).
Now from , we have

S lim bupz—>oo<(7f - B)thnw‘fbi - Z>

= (1 = B)zw—2) <0

Next, we show that x,, — z. It follows from (3.3) that
[Znt1 = 2]
= an<7f(xn) — Bz, Tn+1 — Z> + ﬂn<$n — 2, Tp41 — Z>

(1 =B = anB)("wn = 2) + Vpen, Tnt1 = 2)

< an(Y(f(@n) = f(2),2ng1 — 2) + (7 (2) = Bz, 2ng1 = 2)) + Bollen — 2ll[@n — 2|

(X =B — anB[[[t"wn = zlllzn1 = zll + v, llen |V

< anaylzn = 2ll[#ns1 — 2l + an(vf(2) — Bz, 2ni1 — 2) + Byllan — 2[l[|2n+1 — 2]

+(1 - ﬂn - Oén:}/l)Hl'n - Z||H$n+1 - Z” + ’Yn”en”N

< 1m0 (13, — 2|2 4 [[2ngs — 2]1) + @V (2) = Bz, @nt1 — 2) + Y lenl|N

< oz W g 22 4 g — 2] 4+ an(7f(2) = B2, @ng1 — 2) + vallenl|N.

This implies that

20znir — 27 < (1= an(h1 — aV)llzn = 2lI° + [Tnsr — 2]

+2a”(<7f(z) - Bzaxn-',-l — Z> + %?L”N)
Then we have

lZns1 — 2”2 < (= an(¥1 —ay)llzn — Z||2 + 20, My, (4.3)
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where k, = a,,(5; — ay) and M,, = {(vf(2) — Bz,xp+1 — 2) + %:”HN.

Since limy, oo & = 0 and X952y, = 00, it is easy to see that lim, ... k, = 0,
Yo okn = oo and limsup,, ,., M, < 0. Hence, from and and Lemma
we deduce that x,, — z, where z = Po(I — B+ vf)z. O

5. NUMERICAL EXAMPLES

In this section, we give some examples and numerical results for supporting our
main theorem.

Example 5.1. Let HH = Hy = R, C = [0,2] and Q = [-4,-2]; let Fy,9, :
C xC — R and Fy,v¢5: Q X Q — R be defined by Fi(x,y) = z(y — z),¥,(z,y) =
2x(y—x), Yo,y € C and Fa(u,v) = —2u(u—v), ¥y (u,v) = 3u(v—u), Yu,v € Q, and
let for each x € R, we define f(x) = tx, A(z) = -2z, B(z) = 3z, E(z)=2x—6,

and
Az}, x>2
Mz = { {2}, z<2
and let, for each x € C, Vix = —2a4x, where a; = 1+ 1, ¢ = 0,1,--- ,5 and

en, = sinn. Then there exist unique sequences {wy,}, {zn} C R, {u,} C C, and
{zn} C Q generated by the iterative schemes

o =TS (Awn); o = T (2 + A (2 — Az));
(5.1)
wy, = (I + M) u, — Euy,);

1 1 1 1 1

— )z, 1-——)\)I—-—-B Ti n n 2
ET T R STy -2 e )n—|—1§ Wt Ynen (5:2)

Tn41 = (

where ay = %, B, = gy, Yo = 50 o= 1+ 2 and s, = 307
It is easy to prove that the bifunctions Fy, 1, and Fy, v, satisfy the Assumption[2.9
and Fy is upper semicontinuous, A is a bounded linear operator on R with adjoint

operator A* and ||A|| = ||A*|| = 1. Hence § € (0,1), so we can choose § = 3.
Further, f is contraction mapping with constant o = % and B is a strongly positive

bounded linear operator with constant ¥, = % on R. Therefore, we can choose
~v = 2 which satisfies 0 < vy < % <7+ é And E is a inverse strongly monotone
mapping on R with 7, € (0,1], then X € (0,2). We can choose A = 1. Furthermore,
it is easy to observe that 2 € I(E,M), 2 € EP(Fy,v,), —4 € EP(F5,1,). Hence

© = {2} # 0. After simplification, schemes and (5.6) reduce to

__ lent(4nd2)z, .
Zn = 6rt1 )
_ 592n241248n4+192+(88n%+16n)x,, . (5.3)
n = 32(2n+3)(6n+1) ) :

Wy, = —Up + 6
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1 1 1 1 1 1
i1 = (= Vg = (1= ———— — —)(24¢ — 20)w, + — sinn, (5.4
Tt = (5o + 5Ty T o 2 Jwnt g sinn, (54)
where t € [%, 1). Following the proof of Theorem we obtain that {z,} converges
strongly to {—4} € GEP(Fs,v5) and {x,}, {un}, {wn} converges strongly to w =
{2} € m?:o Fiz(THNQNI(E,M) # 0 as n — oco. Figure 1 indicates the behavior

of xy, for algorithm .

247

Sguence value
=

0B

0.6
I

a4 L ' ' L L L
o 5 10 15 20 25 30 35

Iteration steps

FIGURE 1. The graph of {z,} with initial value x; = 0.5.

Example 5.2. Let Hi = Hy = R, C =[0,4] and Q = [0,2]; let F; : C xC — R
and Fy : Q X Q@ — R be defined by Fi(z,y) = z(y — x), Vo,y € C and Fy(u,v) =
—2u(u — v), Yu,v € Q, and let for each x € R, we define f(z) = ta, A(z) =
—z, B(z) ==z, E(z) =2z, and

| {2z}, >0
Mm_{ {0}, z<o0

and let, for each x € C, Vix = —ayx, where a; = H_%, i1 =20,1,---,5 and e, =
cosn. Then there exist unique sequences {wy}, {zn} C R, {u,} CC, and {z,} C
Q generated by the iterative schemes
zn = T2 (Azy); Un = TE (2 + FA* (20 — Azy));
(5.5)
wy, = (I +32M)" (u, — 2 Euy);



1470 H.R. SAHEBI

1 1 1 1 1

=Gm o 1- I-—=B T 5.6

Tn+1 (4\/ﬁ+n+1)x7l+(( n+1) \/ﬁ )n_l_l; Wy, + Vpn (5.6)
where an:ﬁ7 BWZ%H7 ’771:%7 rn:1+% and Sn:TSTll

It is easy to prove that the bifunctions Fy and F» satisfy the Assumption[2.9 and F»
is upper semicontinuous, A is a bounded linear operator on R with adjoint operator
A* and ||A|| = ||A*|| = 1. Hence § € (0,1), so we can choose § = 1. Further, f
is contraction mapping with constant o = % and B is a strongly positive bounded
linear operator with constant 7, = 1 on R. Therefore, we can choose v = 2 which
satisfies 0 < v < % <7+ é And E is a inverse strongly monotone mapping on
R with 7, € (0,1], then A € (0,2). We can choose A = 3. Furthermore, it is easy
to observe that 0 € I(E, M), 0 € EP(Fy), 0 € EP(F,). Hence © = {0} # 0. After

simplification, schemes and @) reduce to

(3n — 1)z, (18n — 2)x, 1
= 2O )%, ) 3 S 5.7
Zn 7n _ 1 ’ Un, 4(7n _ 1) ) Wn, 8un ( )
1 1 1 1 1

tont = (et T e T a T T

where t € [%,1). Following the proof of Theorem we obtain that {z,} converges
strongly to {0} € EP(Fy) and {x,}, {un}, {wn} converges strongly to w = {0} €
ﬁ?:o Fiz(TYNQNI(E,M) # 0 as n — oo. Figure 2 indicates the behavior of x,,
for algorithm (@

)(227t — 67)w,, + — cosn, (5.8)

n2

oer |

08r

Squence velug

nap

aak

! L ! !
] 5 0 15 Farl 25 n
lteration steps

FIGURE 2. The graph of {z,} with initial value x; = 0.45.
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