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ABSTRACT 
 

The main goal of a group recommender system is to provide appropriate referrals to a group of users sharing common 

interests rather than individuals. Such group referrals are commonly produced by utilizing aggregation techniques that 

analyze the propensities of the whole group by combining the preferences of the users in the group. Although there exist 

various aggregation techniques in the literature, they usually rely on the assumption that each member of the group has 

equal importance on the final decision of the group. However, the decision-making process of a group is a complicated 

process that is strongly correlated with not only group members' experience about the domain of interest but also  their 

behavioral aspects; therefore, the influence of the individuals might be dependent on user personalities. In this study, we 

propose a personality-aware aggregation technique termed as the Personality weighted Average (PwAvg), which determines 

the influence degree of each member in the group using five fundamental personality traits, openness, agreeableness, 

emotional stability, conscientiousness, and extraversion; and then utilizes them to weight the preferences during the 

aggregation process. Experiments performed on two real-world benchmark datasets demonstrate that the PwAvg technique 

significantly outperforms three baseline aggregation techniques, especially for large user groups. Empirical outcomes also 

show that utilizing the PwAvg with emotional stability trait achieves more qualified group recommendations compared to 

others. 

 
Keywords: Group recommender system, Aggregation technique, Personality traits 

 

 
 

1. INTRODUCTION 

 

With the prevalent usage of the Internet, a plethora of online services realizing people to perform their 

daily activities (e.g., booking a hotel, listening to music, watching movies) have been developed. 

Nevertheless, the rapid expansion of such systems causes difficulty for individuals to find 

useful/relevant information within a vast amount of data sources, which is referred to as the information 

overload problem [1]. Recommender systems are automated tools that overcome this problem by 

locating engaging content while filtering out irrelevant information [2]. 

 
Recommender systems traditionally aim to suggest appropriate products/services to individual users by 

considering their interests and preferences [2]. Here, the main goal is to recommend items fulfilling 

individuals to the maximum extent. However, people show a tendency to perform certain activities 

together with a group of users rather than doing alone e.g., watching a movie with family members [3] 

and going to a restaurant for lunch with colleagues [4]. Additionally, people have to act together with a 

community in some circumstances, such as taking a trip with a tour [5-7], working out in a fitness center 

[8], and using public transportation. Such scenarios require more complicated recommendation 

mechanisms since now the target audience is not a single person, but a group of people getting together 

for the same reasons.  
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Group recommender systems (GRSs) are introduced to handle the issue of recommending appropriate 

content appealing to a group of users sharing common interests instead of individuals [9]. Recently, 

various GRSs in several different domains (e.g., music [8, 10-12], touristic attractions [5-7], TV 

programs [3], movies [13-17], and restaurants [4]) have been proposed. The main goal of these systems 

is to produce useful information for group members by examining the characteristics and tendencies of 

a group. In doing so, such systems combine the preferences of group members by utilizing methods 

termed as aggregation techniques to construct a group profile that represents the preferences of the group 

[18, 19]. These techniques are crucial components for determining appropriate group preferences, hence 

directly influence the quality of provided group recommendations.  

 
There exist several aggregation techniques for providing group recommendations [18]. The vast 

majority of these techniques generate group profiles by considering the different aspects of the ratings 

provided by group members. In other words, group profiles are generally determined based on high-

average [5, 7, 16, 17], frequency of rating counts [18, 19], rankings [20], or highest/lowest ratings [13, 

21]. Although such techniques can provide reasonable recommendation results, they usually disregard 

the psychological aspects of members in the group during the aggregation process. However, it is a 

known phenomenon that the decision-making is related to the emotions and personalities of individuals, 

as users with similar personal characteristics are more likely to have similar preferences/interests [22, 

23]. 

 
Also, the existing aggregation techniques usually rely on the assumption that each member of a group 

has similar impacts on the final decision of the group. However, intuitively, individuals might have 

different influences in decision making in a community, and the degree of influence of a member in the 

group might be dependent on the personality traits [24]. For example, there can be particular members 

in the group who are persistent in their thoughts as they do not want to lose their utility, or as they 

believe that their own choices are ideal decisions for every member of the group. On the other hand, 

other types of people can be worried about the satisfaction of all the other members, at the cost of the 

personal one; thus, they are willing to reduce some utility to reach a suitable agreement for the entire 

group. In order to consider such different behavioral features of the individuals while producing group 

recommendations, it is required to study the personality traits of individuals via models in the area of 

the human sciences. One of the most used models in this sense is the big five-factor [25], which describes 

human personality through the following five fundamental traits: openness, agreeableness, emotional 

stability, conscientiousness, and extraversion. 

 

In this study, we propose a novel aggregation technique termed as Personality weighted Average 

(PwAvg) that takes into account all personality traits stated above to provide high-quality group 

recommendations. More specifically, the PwAvg measures the influence of members in a group by using 

their personalities and employ them to weight their preferences in the phase of aggregating.  

 

The rest of the study is organized, as follows: The following section explains the prominent aggregation 

techniques in the literature. Section 3 gives a brief literature summary of well-known GRSs. Section 4 

presents the proposed group recommendation framework, including a novel aggregation mechanism, 

and the following section demonstrates experimental work and empirical outcomes. Finally, Section 6 

concludes the study and explains future research directions.   

 

2. AGGREGATION TECHNIQUES 
 

As emphasized in the Introduction, group recommendations are produced based on group preferences 

estimated by utilizing an appropriate aggregation technique. In the literature, there exist various 

aggregation techniques with different characteristics to construct group profiles to be used for providing 

referrals to groups [18, 19]. However, we consider the most prominent ones, including Average [5, 7, 
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16, 17], Average without Misery [10], and Least Misery [13, 16, 17]; to investigate the performance of 

the technique proposed in this study. In the following, we attempt to describe how these techniques 

aggregate the ratings provided by group members for calculating a group rating. 
 

 Average (Avg):  This technique provides a consensus among group members by considering 

the ratings of all users of the group. It estimates a group rating for an item by merely calculating 

averages of group members' preferences for the corresponding item. Also, this technique relies 

on the assumption that the influence degree of each member of the group is equal.  

 Average without Misery (AwM): This technique is similar to the Avg method; however, the 

AwM ignores items having any rating below the predefined threshold. In other words, it only 

calculates an average for items whose all provided ratings are above the threshold.  

 Least Misery (LM): This technique considers only the minimum rating among the ratings 

provided by group members in calculating group ratings. In other words, the LM technique sets 

the lowest rating in a group as the group preference.  
 

To show how the Avg, AwM, and LM techniques work, we also provide a user-item matrix in Table 1, 

which presents recommendations for five items to a group with four members on a 10-star scale. Here, 

the unrated items are denoted with (-), and the threshold for the AwM technique is selected as 6.   

 
Table 1. Group ratings calculated by the Avg, AwM, and LM 

 
  i1 i2 i3 i4 i5 

 u1 7 10 - 3 8 

 u2 8 - 10 - 6 

 u3 - 7 8 4 7 

 u4 8 9 5 1 3 

Group 

rating 

Avg 7.66 8.66 7.66 2.66 6 

AwM 7.66 8.66 - - - 

LM 7 7 5 1 3 

 

3. RELATED WORK 

 

Over the past two decades, various GRSs have been introduced for different scenarios in several 

domains, such as music [8, 10-12], movies [13-17], restaurants [4], tourism [5-7], and so on. However, 

the utilized methods to combine individual preferences in these systems differ, as there is no single 

aggregation technique that can achieve high-performance in all applications [18]. 

 
MusicFX [8] is an intelligent system that selects background music for a group of individuals working 

out at a fitness center by considering the probabilities of favorite music genres among users. As the 

aggregation technique, MusicFX employs the AwM and considers only genres where all preferences of 

users are above a predefined threshold. Adaptive Radio [10] is a server that selects songs to be played 

for a group of individuals by considering the information about what type of music they do not desire 

to hear. In doing so, it combines such negative preferences with a without misery aspect. The FlyTrap 

[11] and Adaptive In-Vehicle Multimedia System [12] are other salient examples of GRSs in the music 

domain. More specifically, the former produces a virtual DJ that makes a music playlist for users in a 

room by considering both the musical preferences of the users and background knowledge of music 

genres, songs, and artists. As the aggregation technique, FlyTrap employs a variant of the simple 

computation method, counting the number of times that the users in the group prefer a song. The latter, 

on the other hand, suggests a series of tracks for a group of people sharing a vehicle for traveling by 

constructing a group profile based on the average of passengers' preferences about songs. 

 
PolyLens [13] is proposed as an extension of famous MovieLens [14] and provides movie 

recommendations for groups of users instead of individuals. To produce group recommendations, 
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PolyLens employs group profiles that are constructed by the LM technique. Another example of GRSs 

in the movie domain is gRecs [15], which first identifies groups of users with similar interests and then 

recommends a movie list according to the group ratings estimated with the LM. HappyMovie [16] is 

developed as a Facebook application providing movie recommendations to groups based on the tastes 

of the users and the trust among members in the group. FlexiFeed [17] is an approach that constructs 

feedback vectors to represent user interests better and utilize them to maximize the satisfaction of 

individuals from produced group recommendations in the domain of movie. Also, HappyMovie and 

FlexiFeed employ both Avg and LM methods to provide group recommendations. 

 

Pocket Restaurant Finder [4] is an environment recommending a series of restaurants for a group of 

users by utilizing a variant of the Avg technique to aggregate their interests in location and food (e.g., 

taste, cuisine type, restaurant amenities, and price category). Travel Decision Forum (TDF) [5], CATS 

[6], and Intrigue [7] are some other popular applications in the context of tourism, and each of them 

utilizes the Avg technique to provide group referrals. More specifically, TDF assists in the decision-

making of a group of users planning to travel together by providing group recommendations based on 

their preferences. CATS, on the other hand, produces a list of recommended ski-packages for groups of 

users with similar interests. Intrigue is a system that helps the organization of guided tours by suggesting 

touristic attractions according to the properties of the tour participants.  

 
In literature, there exist only a few studies that take into account the user personality for providing 

appropriate group recommendations. For example, Recio-Garcia et al. [26] introduce an approach 

providing personality-aware group recommendations by investigating how conflicts of group members 

influence the recommendation process. For measuring the behaviors of individuals in conflict situations, 

they build a profile for each member in the group using a measure named Conflict Mode Weight. They 

integrate such profiles into the recommendation process to weight the preferences of users. Also, Rossi 

et al. [24] propose a new group recommendation approach that recommends suitable items for user 

groups by utilizing a personality-based utility function, which models the level of a user's altruistic 

behavior according to their agreeableness personality trait. Finally, Sanchez et al. [27] present a novel 

method that considers both the group personality composition and the social relationships among users 

to improve the quality of the produced group recommendations.  

 
The behavioral characteristics of group members play a vital role in analyzing the propensities of the 

group appropriately. Although a few recent studies address this issue [24, 26, 27], there is still a need to 

develop novel aggregation mechanisms that comprehensively investigate the roles of personality traits 

during the aggregation process and utilize them to provide group recommendations. 

 
4. A GROUP RECOMMENDATION FRAMEWORK UTILIZING A PERSONALITY-BASED 

AGGREGATION TECHNIQUE  

 
In this section, we introduce our group recommendation framework that consists of two fundamental 

steps, as depicted in Fig. 1: (i) identifying groups of users with similar interests by k-means algorithm, 

(ii) providing top-N group recommendations based on the group ratings estimated through a novel 

aggregation technique, namely, Personality weighted Average, which utilizes the personal traits of group 

members during the aggregation process. 
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Figure 1. The proposed group recommendation framework based on novel personality-based aggregation techniques. 

 

4.1. Identification of Groups 
 

In the literature, although there exist many studies utilizing established groups [6, 7, 13], groups of users 

with similar interests in a community are commonly identified automatically based on the preferences of 

individuals [18, 19, 28]. Detecting harmonious user groups is crucial for the success of the utilized GRSs, 

as it is intuitively easier to gratify like-minded individuals rather than a randomly ensembled mass. Such 

automated identification of the user groups is also beneficial because (i) the procedure of partitioning users 

into groups is a continuous process requiring regular updates because of the changes in the interests of 

individuals in time and (ii) manual identification of groups becomes challenging as the number of users 

proliferates. 
 

To identify groups of individuals having similar preferences in a community, there exist at least two 

common strategies as follows: (i) calculating correlations between all individuals and utilize them to 

form groups of users [29], and (ii) detecting user groups by applying a clustering algorithm such as k-

means [18, 19, 30], k-medoids [31], or hierarchical clustering methods [32]. Although the former is an 

efficient strategy to detect groups of similar users, the computation time required to compute correlations 

among all users drastically increases as the number of items/users proliferates, which leads to a problem 

of time-complexity. The latter, on the other hand, is a practical strategy in identifying groups of like-

minded individuals and more efficient in terms of time complexity when compared to the former 

strategy.  Therefore, to identify groups of similar users, we follow the latter approach by applying the 

k-means clustering algorithm on the original user-item rating matrix due to its simplicity and efficiency 

[18, 19]. Note that, we employ the adjusted cosine metric while performing the k-means clustering 

algorithm since it is one of the most successful metrics in computing similarities between two users [33]. 

After the identification of user groups, we estimate the group ratings by the personality-based 

aggregation technique explained in detail in the following sections. 
 

4.2. Prediction of Group Ratings 
 

Group recommendations are usually generated based on the group profiles that embody the interests of 

a group of people as a whole. The aggregation techniques are useful tools to construct such group 

profiles by combining the preferences of users in the group. Although there exist various aggregation 

techniques that produce qualified group recommendations by analyzing the properties of provided 

ratings, they usually do not aware of the personal characteristics of members in the group while 

constructing group profiles. However, the psychological aspects of individuals, such as emotions and 

personality, play a vital role in decision-making since people having similar personal characteristics are 

more likely to have similar interests [24]. Also, many recent studies in the field of recommender systems 

have utilized personality traits to develop user-oriented recommendation approaches [26, 27, 34, 35].  
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In psychology, personality is defined as the patterns of motivation, behavior, feeling, preference, and 

thought, which are expressed in different circumstances [24]. In the context of recommender systems, it can 

be defined as a user profile, which is independent of both context and domain, i.e., it does not change with 

location, time, or some other context/domain [27]. Such user profiles are usually generated through the big 

five-factor model of personality [25], which identifies the personality based on the following five 

fundamental traits: Open to experience (i.e., curious, imaginative, insightful); Agreeable (i.e., forgiving, 

generous, trusting, sympathetic); Emotionally stable (i.e., self-confident, stable, balanced); Conscientious 

(i.e., reliable, organized, efficient, responsible); and Extraverted (i.e., energetic, talkative, assertive, active). 

 

To achieve well-constructed group profiles that reflect the characteristics of the members and 

consequently improve recommendation quality, we propose to utilize such personality information of 

group members in the phase of aggregating. In the following, we introduce a novel aggregation strategy 

based on the personality traits of group members. 

 

4.2.1. The Personality weighted Average technique  

 

The existing aggregation techniques combine individual preferences by commonly assuming that each 

user in a group has a similar influence on the overall group taste. However, different members might 

have different impacts on the decision-making process of the group, as mentioned in the Introduction. 

To address this issue, we propose the Personality weighted Average (PwAvg) technique that incorporates 

the personality traits of members in the group along with the Avg technique. For each member of the 

group, the PwAvg initially calculates an influence score that measures the relative importance of the 

corresponding user on the group in terms of a particular personality trait, and then utilize it to weight 

the preference of the member while performing aggregating. 

 

In this study, we use the Personality dataset [36], where the personality traits of a person, i.e., openness 

(o), agreeableness (a), emotional stability (es), conscientiousness (c), and extraversion (e), are assessed 

with the scores based on a 7-star rating scale ranging from 1 (strongly disagree) to 7 (strongly agree).  

Suppose that 𝑢 is a member of a group 𝐺 and provide a rating for item 𝑖, and 𝑠𝑢,𝑡 is the score of 𝑢 for 

trait 𝑡, where 𝑡 ∊ {𝑜, 𝑎, 𝑒𝑠, 𝑐, 𝑒}. The PwAvg𝑡 that is the personality weighted average technique relying 

on 𝑡 calculates a group rating 𝑅𝐺,𝑖 for 𝑖 using the formula given in Eq. (1). 

 

 
𝑅𝐺,𝑖 =

∑ 𝑟𝑢,𝑖 × 𝑠𝑢,𝑡𝑢∊𝐺

|𝐺|
 (1) 

 

Note that the range of the trait scores of users might differ for each group, which requires a normalization 

process to determine the relative importance of users in a group more accurately. For this purpose, we 

transform 𝑠𝑢,𝑡 scores into [0, 1] scale by min-max normalization before calculating 𝑅𝐺,𝑖. 
 

5. EXPERIMENTAL STUDIES 

 

In this section, we evaluate the performance of the proposed aggregation technique in terms of accuracy 

with several experiments on real-world datasets. 

 

5.1. Datasets and Evaluation Metric 

 

In the experiments, we use the Personality dataset [36] collected by the GroupLens research team at the 

University of Minnesota. In this dataset, user preferences on movies are presented with discrete ratings 

on a ten-star rating scale ranging from 1 to 5. The Personality dataset also contains assessment scores 

on a seven-star rating scale about five personality traits for each user (i.e., openness, agreeableness, 

emotional stability, conscientiousness, and extraversion), as stated in Section 4.2.1. Since the original 

collection is large and sparse (about 98.4%), we employ two subsets of the collection in which each user 
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and item has at least 5 and 10 ratings, referred to as Per5 and Per10, respectively. Table 2 presents 

detailed information about Per5 and Per10. 

 
 

Table 2. Detailed information about Per5 and Per10  

 

Dataset #Users #Items #Ratings Sparsity (%) 

Per5 1,819 14,868 984,499 96.4 

Per10 1,819 10,375 954,985 94.9 

 
 

To examine the performance of the proposed aggregation techniques, we utilize the normalized 

Discounted Cumulative Gain (nDCG) metric, which is commonly used in group recommendation 

studies [18, 29].  The nDCG measures the quality degree of the ranked recommended list by considering 

both the position of the items in the recommended list and the actual ratings of the items. Suppose that 

𝑢 is a user in a group 𝐺, and 𝑟𝑢,𝑖 is the actual rating of 𝑢 for item 𝑖. If {𝑖1, 𝑖2, … , 𝑖𝑁} is the ranked items 

generated as a recommendation list for 𝐺, then the Discounted Cumulative Gain (DCG) and nDCG for 

each user in the 𝐺 are computed using the formula given in Eqs. (2) and (3), respectively.  

 

 

𝐷𝐶𝐺𝑁
𝑢 = 𝑟𝑢,𝑖1 +∑

𝑟𝑢,𝑖𝑛
log2(𝑛)

𝑁

𝑛=2

 (2) 

 

 
𝑛𝐷𝐶𝐺𝑁

𝑢 =
𝐷𝐶𝐺𝑁

𝑢

𝐼𝐷𝐶𝐺𝑁
𝑢 (3) 

 

where 𝐼𝐷𝐶𝐺𝑁
𝑢 indicates the maximum gain for 𝑢, which is obtained with the ideal re-ordering 𝑁 items. 

In calculating nDCG scores for each user, it is required to know the actual ratings of users for the items 

in the recommendation list. However, the actual ratings of users are usually missing because of the 

sparsity issues, which is one of the most challenges in recommender systems. To cope with this problem, 

we estimate the actual ratings of users using a user-based collaborative filtering algorithm to have 

ground truth for each user, as in [37, 38]. 

 

5.2. Experimentation Methodology 

 

In the study, we follow a five-fold cross-validation experimentation methodology to evaluate the proposed 

aggregation technique. We randomly divide the set of items into five subsets to perform the cross-

validation, i.e., each subset contains 20% of the items. At each iteration, we utilize one of the subsets as 

the test set and the remaining subsets as the training set. The training set is used to determine user groups, 

while the test set is utilized to investigate the performance of both the proposed and baseline aggregation 

techniques. Note that overall nDCG scores are calculated by taking the average of five-fold experimental 

accuracy results. 

 

To construct user groups, we employ the k-means clustering algorithm, as stated in Section 4.1. For 

investigating the effect of group size on the aggregation techniques, we perform several experiments 

with groups of different numbers k varying from 2 to 64. After identifying groups, for each number of 

groups, we estimate group ratings using the PwAvg and baseline aggregation techniques (i.e., Avg, 

AwM, and LM). Also, we employ five different variants of the PwAvg technique according to the 

utilized personality trait. After predicting a group rating for each item, we produce group 

recommendations by selecting top-N items, where N is set as 3, 5, 10, and 20. Finally, we calculate 

nDCG scores of the individuals based on the recommended top-N lists and then average them. 
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5.3. Experimental Results and Discussion 
 

To evaluate the accuracy performance of the proposed Personality weighted Average (PwAvg) technique 

on predicting group ratings, we performed various trials with different parameters, including the utilized 

personality trait, the size of recommendation list (N), and the number of groups (k). Also, we compared 

empirical outcomes against the baseline techniques, Avg, AwM, and LM, for both Per5 and Per10 datasets, 

as presented in Tables 3 and 4, respectively. We also performed statistical significance t-tests to compare 

obtained nDCG results for the baselines and PwAvg variants, as presented in the footnote of tables. 

 
 

Table 3. nDCG results for Per5 dataset 

 
   Number of Groups (k) 

   Large Groups Medium Groups Small Groups 

top-N Aggregation Technique 2 4 8 16 32 64 

3 

Avg 0.647 0.671 0.708 0.732 0.743 0.750 

AwM 0.635 0.692 0.718 0.739 0.745 0.749 

LM 0.652 0.671 0.710 0.736 0.739 0.751 

PwAvg 

openness 0.629 0.699 0.722 0.730 0.702 0.674 

agreeablenesss 0.683† 0.708† 0.704 0.723 0.704 0.672 

emotional_stability 0.694† 0.720† 0.722 0.726 0.699 0.683 

conscientiousness 0.681† 0.699 0.692 0.703 0.696 0.677 

extraversion 0.668 0.669 0.716 0.721 0.683 0.678 

5 

Avg 0.666 0.664 0.689 0.724 0.736 0.751 

AwM 0.653 0.676 0.689 0.728 0.740 0.751 

LM 0.650 0.689 0.707 0.724 0.746 0.742 

PwAvg 

openness 0.664 0.671 0.691 0.707 0.699 0.646 

agreeablenesss 0.705† 0.692 0.692 0.722 0.697 0.639 

emotional_stability 0.711† 0.715† 0.705† 0.725 0.715 0.644 

conscientiousness 0.689† 0.704† 0.700† 0.715 0.710 0.633 

extraversion 0.657 0.694 0.679 0.718 0.706 0.638 

10 

Avg  0.640 0.688 0.721 0.721 0.731 0.743 

AwM  0.659 0.690 0.727 0.720 0.730 0.739 

LM  0.642 0.689 0.730 0.727 0.731 0.739 

PwAvg 

openness 0.641 0.693 0.720 0.708 0.716 0.676 

agreeablenesss 0.659 0.697 0.738 0.716 0.711 0.674 

emotional_stability 0.677† 0.723† 0.741† 0.718 0.717 0.682 

conscientiousness 0.660 0.721† 0.733 0.713 0.713 0.679 

extraversion 0.677† 0.707† 0.738 0.705 0.708 0.681 

20 

Avg  0.660 0.688 0.719 0.731 0.738 0.735 

AwM  0.659 0.688 0.716 0.734 0.733 0.724 

LM  0.660 0.681 0.714 0.732 0.732 0.723 

PwAvg 

openness 0.655 0.693 0.717 0.734 0.683 0.653 

agreeablenesss 0.687† 0.707† 0.715 0.730 0.683 0.644 

emotional_stability 0.705† 0.719† 0.718 0.740 0.680 0.654 

conscientiousness 0.693† 0.718† 0.727 0.737 0.692 0.653 

extraversion 0.704† 0.702 0.729 0.735 0.669 0.658 

† For significance at 95%; w.r.t. the best performing baseline technique  
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Table 4. nDCG results for Per10 dataset 

 
   Number of Groups (k) 

   Large Groups Medium Groups Small Groups 

top-N Aggregation Technique 2 4 8 16 32 64 

3 

Avg 0.698 0.736 0.725 0.738 0.742 0.758 

AwM 0.680 0.716 0.722 0.731 0.744 0.760 

LM 0.651 0.708 0.714 0.733 0.739 0.751 

PwAvg 

openness 0.688 0.718 0.710 0.735 0.689 0.677 

agreeablenesss 0.707 0.729 0.715 0.726 0.681 0.669 

emotional_stability 0.713† 0.745† 0.752† 0.739 0.693 0.682 

conscientiousness 0.697 0.707 0.722 0.727 0.682 0.671 

extraversion 0.686 0.718 0.741 0.737 0.694 0.678 

5 

Avg 0.710 0.678 0.728 0.734 0.744 0.757 

AwM 0.659 0.673 0.725 0.733 0.746 0.754 

LM 0.680 0.686 0.705 0.726 0.738 0.746 

PwAvg 

openness 0.677 0.657 0.722 0.713 0.715 0.682 

agreeablenesss 0.684 0.689 0.715 0.715 0.722 0.677 

emotional_stability 0.727† 0.707† 0.723 0.714 0.727 0.679 

conscientiousness 0.702 0.693 0.723 0.711 0.732 0.668 

extraversion 0.701 0.706† 0.721 0.708 0.722 0.676 

10 

Avg  0.714 0.710 0.710 0.733 0.741 0.755 

AwM  0.662 0.683 0.710 0.735 0.741 0.753 

LM  0.711 0.702 0.722 0.727 0.732 0.747 

PwAvg 

openness 0.698 0.716 0.716 0.723 0.687 0.666 

agreeablenesss 0.711 0.716 0.720 0.719 0.681 0.657 

emotional_stability 0.726† 0.725† 0.738† 0.720 0.692 0.665 

conscientiousness 0.714 0.719 0.732† 0.729 0.686 0.658 

extraversion 0.696 0.724† 0.723 0.708 0.678 0.660 

20 

Avg  0.694 0.702 0.738 0.737 0.738 0.746 

AwM  0.610 0.689 0.719 0.730 0.727 0.731 

LM  0.674 0.700 0.724 0.729 0.730 0.737 

PwAvg 

openness 0.674 0.700 0.736 0.717 0.698 0.675 

agreeablenesss 0.715† 0.709 0.737 0.719 0.685 0.667 

emotional_stability 0.716† 0.716† 0.738 0.735 0.693 0.680 

conscientiousness 0.710† 0.709 0.731 0.719 0.701 0.671 

extraversion 0.687 0.714 0.735 0.728 0.697 0.668 

† For significance at 95%; w.r.t. the best performing baseline technique 

 

As can be seen in Tables 3 and 4, the nDCG results of the experiments conducted for both datasets 

demonstrate that the accuracy performance of all baseline techniques improves as the number of groups 

increases, i.e., the size of the groups diminishes. On the other hand, the PwAvg variant techniques 

achieve the highest nDCG scores, especially when large groups are of interest. The reason for this 

consequence is that increasing group size leads to having groups consisting of individuals with diverse 

characteristics; thus, considering not only preferences but also personalities of group members while 

performing aggregation allows producing high-quality group recommendations. 

 

In comparing results obtained from the Per5 and Per10 datasets, both PwAvg variants and all baseline 

techniques are more successful on the Per10 dataset for almost all schemes. The main reason for this 

finding is that the total number of given preferences for an item in the Per10 dataset outnumber the one 

in Per5, which makes the utilized aggregation method becomes more robust, as more preferences are 

involved in the aggregation procedure.  

 

The empirical outcomes for both datasets also show that PwAvg variant techniques usually outperform 

the baseline techniques, especially when the groups are large. Among all personality traits, utilizing 

emotional stability is relatively more efficient for building the PwAvg technique when compared to 

other personality traits. Moreover, for both datasets, the improvements of the emotional stability based 
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PwAvG over all the baseline techniques appear to be statistically significant at 95% confidence level, 

especially when groups are large. Therefore, it can be concluded that recommending items highly-rated 

by emotionally stable group members when compared to items voted by unstable ones improve overall 

satisfaction. 

 

6. CONCLUSIONS AND FUTURE WORK 

 

Group recommender systems are useful tools that produce appropriate referrals to a group of people 

with common interests rather than individuals. In such systems, group recommendations are generally 

produced based on group ratings, which are determined by aggregating the preferences of members in 

the group. However, such an aggregation procedure is a complicated task as the groups usually consist 

of individuals with diverse personal characteristics, which requires to develop novel aggregation 

mechanisms. 

 

In this study, we propose a personality-aware aggregation technique named Personality weighted 

Average (PwAvg)  that estimates group ratings by considering not only the preferences of the group 

members but also the behavioral features of individuals. More specifically, the PwAvg measures the 

influence degree of members in the group through the following five fundamental personality traits: 

openness, agreeableness, emotional stability, conscientiousness, and extraversion; then, it employs 

them to weight their ratings during the recommendation process. The experiments performed on two 

benchmark datasets demonstrate that the PwAvg outperforms three baseline aggregation techniques, 

especially for large user groups. This result is achieved regardless of the size of the recommendation 

list, as confirmed by the statistical significance tests. Moreover, the empirical outcomes also suggest 

that building the PwAvg with emotional stability trait is more effective in terms of recommendation 

accuracy when compared to other ones. In conclusion, taking into account the different personal 

characteristics of group members while performing aggregating individual preferences contributes to 

producing high-quality group referrals as groups get crowded. 

 

The obtained findings support that the personalities of group members are as significant as their 

experience about the domain of interest to provide appropriate group recommendations. Therefore, 

future research might include improving the proposed PwAvg method by considering more than one 

trait together in harmony. Also, the behavioral information of individuals can be utilized for building 

more suitable user groups. 
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