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Abstract 

This paper presents a new goodness-of-fit technique for testing the assumption of univariate 

distributions which is based on the theoretical distribution function of the hypothesized 

distribution. The existing methods are examined in two different categories: binning and binning-

free. The most widely known binning test is the Chi-square test. The Kolmogorov-Smirnov, the 

Cramer-von Mises and the Anderson-Darling goodness-of-fit tests come to the forefront as the 

binning-free tests. When tests are evaluated in terms of distributions, it is examined in two 

different classes: the not distribution-free tests and the distribution-free tests. The desired 

goodness-of-fit test method for a researcher should be binning-free, distribution-free, more 

sensitivity, easy to use and fast. In this study, a test method is proposed which provides almost 

all the options that a researcher would want. The Monte-Carlo simulation methods are used to 

demonstrate the success of the proposed method. In these simulations, the normality test was 

applied for symmetric distributions whereas the lognormality test was applied for non-symmetric 

distributions. The proposed test method has demonstrated superiority in many aspects compared 

to other selected test methods on both simulations and three different real-life datasets. 
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1. INTRODUCTION 

 

The methods that test whether a randomly selected sample comes from the claimed theoretical distribution, 

are called goodness-of-fit tests. The goodness-of-fit test is one of the most important issues of the inferential 

statistics. The normality test is considered as an assumption in many statistical procedures [1,2]. Many 

goodness-of-fit tests have been developed for the uniform, the exponential, the Laplace and the Cauchy 

distributions apart from the normality tests [3-6]. There are discussed many popular techniques in the 

literature for goodness-of-fit. These techniques can be listed as the binning test, tests based on the empirical 

distribution function, tests based on the characteristic function, tests based on the moment generating 

function, tests based on the regression, correlation and moments [7]. 

 

The goodness-of-fit tests were originally developed as the chi-square (𝜒2) test by Pearson in 1900 [8]. The 

𝜒2 goodness-of-fit test has become a widely used classical technique because it is simple, and its 

distribution is known and still maintains its popularity. On the other hand, the disadvantages of the 𝜒2 test 

are that it does not have enough sample numbers, the number of binning is chosen by the researcher and 

the expected frequencies in each bin should be at least 5. In this paper, the 𝜒2 test was called binning  

chi-square (𝐵𝐶𝑆) to avoid the confusions. 

 

There are many goodness-of-fit tests based on the empirical distribution function are developed.  The basic 

principle of these tests is to determine how well the cumulative distribution of the sample fits the theoretical 

cumulative distribution in the hypothesis. The goodness-of-fit tests based on the empirical distribution 

http://dergipark.gov.tr/gujs
https://orcid.org/0000-0003-2815-686X
https://orcid.org/0000-0003-0995-7389
http://orcid.org/0000-0002-9840-8818
https://orcid.org/0000-0002-5160-1178


880  Ozge TEZEL, Bugra Kaan TIRYAKI, Eda OZKUL, Orhan KESEMEN / GU J Sci, 34(3): 879-897 (2021) 

 

 

function give more consistent results than 𝜒2 goodness-of-fit test. This is because they directly use the 

observed values [9]. Kolmogorov-Smirnov, Cramér-Von Mises and Anderson Darling goodness-of-fit tests 

are included in this category. 

 

Kolmogorov-Smirnov (𝐾𝑆) test is the most popular goodness-of-fit test. It was developed by Kolmogorov 

and Smirnov in 1930s [10]. The 𝐾𝑆 test statistic is based on the difference between the experimental 

distribution function using observational values and the theoretical distribution function in the hypothesis. 

The 𝐾𝑆 test is preferred to the chi-square test in the case of small sample size. 

 

Cramer-von Mises (𝐶𝑉𝑀) test was developed by Cramer and von-Mises [11,12]. This test method gives 

better results than the 𝐾𝑆 test when different alternative hypotheses are used. It is based on the square of 

the difference between the empirical distribution function and the theoretical distribution function in the 

hypothesis. 

 

Anderson and Darling [13] proposed the Anderson-Darling goodness-of-fit test (𝐴𝐷) by adapting the 𝐶𝑉𝑀 

test. Although the 𝐴𝐷 test is a stronger test in some cases than the 𝐾𝑆 test, it calculates the critical value 

depending on the distribution. 

 

The most important binning test and the empirical distribution-based tests were given in Section 2. A new 

goodness-of-fit test:  Free Chi-Square (FCS) was introduced in Section 3. These tests were applied to some 

alternative hypotheses and their performances were compared in Section 4. In Section 5, the proposed 

method was performed on the three real-life examples. 

 

2. THE GOODNESS-OF-FIT TESTS 

 

The goodness-of-fit tests are used to determine whether a given sample comes from a population with a 

defined theoretical distribution. In other words, let the observed 𝑥1, 𝑥2, … , 𝑥𝑛 be a random sample come 

from a population with a continuous 𝐹(𝑥) distribution. This unknown 𝐹(𝑥) distribution function should be 

confirmed with the help of hypothesis by using a goodness-of-fit test. The null hypothesis to be used for 

this reason is given as follows, 

 

𝐻0: 𝐹(𝑥) = 𝐹0(𝑥; 𝜃)    or   𝐻0: 𝑇ℎ𝑒 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
 

Where 𝐹0(𝑥, 𝜃) is the specified distribution function with 𝜃 parameter. The alternative hypothesis is given 

as follows, 

 

𝐻1: 𝐹(𝑥) ≠ 𝐹0(𝑥; 𝜃)   or   𝐻1: 𝑇ℎ𝑒 𝑑𝑎𝑡𝑎 𝑑𝑜 𝑛𝑜𝑡 𝑓𝑜𝑙𝑙𝑜𝑤 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 
 
In order to show whether the data come from the specified distribution, it is first necessary to calculate the 

test statistics, which its distribution and the critical value are known, according to the null hypothesis. The 

most basic feature that distinguishes the goodness-of-fit test from each other is the calculation of the test 

statistics in a different way. Despite the existence of many goodness-of-fit tests in the literature, the 𝐵𝐶𝑆, 

the 𝐶𝑉𝑀, the 𝐾𝑆 and the 𝐴𝐷 goodness-of-fit tests were used to compare the performance of the tests in this 

study. 

 

2.1. The Binning Chi-Square (BCS) Goodness-of-Fit Test 

 

The 𝐵𝐶𝑆 test is one of the most used goodness-of-fit tests. The chi-square goodness-of-fit test which is 

binning-based method, has taken part in almost all the basic statistical books because it is easy to apply and 

understand. If the examined data is not binning data, this data can be obtained by calculating a histogram. 

The 𝐵𝐶𝑆 test is based on the inconsistency between observed and expected frequencies. 

 

The 𝐵𝐶𝑆 investigates whether there is a statistically significant difference between observed and expected 

frequencies. This test statistic is obtained as, 
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𝜒2 = ∑
(𝑂𝑗 − 𝐸𝑗)

2

𝐸𝑗

𝑚

𝑗=1

 

(1) 

where 𝑂𝑗 is the observed frequency for bin 𝑗 and 𝐸𝑗 is the expected frequency for bin 𝑗. The obtained test 

statistic follows, approximately, a chi-square distribution with (𝑚 − 1) degrees of freedom. The calculated 

test statistic is compared to the critical value from the chi-square critical value with (𝑚 − 1) degrees of 

freedom and (1 − 𝛼) confidence level so that it can be decided as a result of the test. If the calculated 

𝜒2< critical 𝜒𝑚−1,1−𝛼
2 , then we cannot reject the null hypothesis. 

 

In order to apply the 𝐵𝐶𝑆 goodness-of-fit test properly, the expected frequencies in each class should be at 

least 5. If it is not, the classes must be combined with other classes until assumption is satisfied. The 

disadvantage of the 𝐵𝐶𝑆 test is that it requires enough sample size. Another disadvantage is that the number 

of bins is determined by the researcher. 

 

2.2. The Cramer-von Mises (CVM) Goodness-of-Fit Test 

 

The 𝐶𝑉𝑀 test is based on the square of the difference between the empirical distribution function and the 

theoretical distribution function in the hypothesis [14]. The 𝐶𝑉𝑀 test statistic can be given as follows as a 

result of many updates [15], 

 

𝑊2 =
1

12𝑛
+ ∑ [𝐹0(𝑥(𝑖)) −

2𝑖 − 1

2𝑛
]

2𝑛

𝑖=1

 
(2) 

where 𝐹0(𝑥) is the specified distribution function in the hypothesis, (2𝑖 − 1)/2𝑛 is the empirical 

distribution function and 𝑥(𝑖) denotes the ordered sample. 

 

2.3. The Kolmogorov-Smirnov (KS) Goodness-of-Fit Test 

 

The 𝐾𝑆 test is based on investigation of the two cumulative distribution functions [15]. The first of this is 

the cumulative distribution function 𝐹0(𝑥) given in null hypothesis. The second is the empirical distribution 

function 𝐹𝑛(𝑥) calculated from the sample. The 𝐾𝑆 test statistic is defined by 

 

𝐷 = max
1≤𝑖≤𝑛

|𝐹0(𝑥(𝑖)) − 𝐹𝑛(𝑥(𝑖))|. (3) 

The empirical distribution function can also be calculated in the form of 𝐹𝑛(𝑥(𝑖)) = 𝑖/𝑛 as well as 

𝐹𝑛(𝑥(𝑖)) = (𝑖 − 1)/𝑛. Or it can be calculated by taking the absolute maximum of them [16]. 

 

2.4. The Anderson-Darling (AD) Goodness-of-Fit Test 

 

Another the empirical distribution-based goodness-of-fit test is the Anderson-Darling (𝐴𝐷) test. The 

𝐴𝐷 test pays more attention to the tails of distribution than the 𝐶𝑉𝑀 and 𝐾𝑆 tests [17]. Anderson and 

Darling [18] have proposed the 𝐴𝐷 goodness-of-fit test by adapting the Cramer-von Mises and 

Kolmogorov-Smirnov tests. The 𝐴𝐷 test uses the specified hypothesis distribution in the calculation of the 

critical values. Although this test is a more sensitive method, the critical values for each distribution must 

be calculated. The 𝐴𝐷 test statistic is obtained as, 

 

𝐴2 = −𝑛 −
1

𝑛
∑(2𝑖 − 1) [loge(𝐹0(𝑥(𝑖)) + loge (1 − 𝐹0(𝑥𝑛−(𝑖)+1))]

𝑛

𝑖=1

 
(4) 

where 𝑥(𝑖) denotes the ordered sample and 𝐹0(𝑥) is the specified distribution function in the hypothesis.  
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3. THE FREE CHI-SQUARE (FCS) GOODNESS-OF-FIT TEST 

 

In statistics, a random variable from any given continuous distribution can be transformed into a random 

variable from the uniform distribution defined on the interval [0,1). Let, 𝑋 is the continuous random 

variable and we will assume its cumulative distribution function is 𝐹𝑋  (𝑋~𝐹𝑋(𝑥)). In the circumstances, 

𝑈 obtained which is a random variable with uniform distribution from the equation 𝑈 = 𝐹𝑋(𝑋) [19]. 

 

In the goodness-of-fit tests, the null hypothesis and the alternative hypothesis are given as follows. 

 

𝐻0: 𝐹(𝑥) = 𝐹0(𝑥) 

𝐻1: 𝐹(𝑥) ≠ 𝐹0(𝑥) 

 

Suppose that 𝑥 random values come from a population with the 𝐹0(𝑥) distribution function, the independent 

𝑈𝑖 values of the theoretical distribution function in Equation (5) will be defined as 𝑈𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1). 
 

𝑈𝑖 = 𝐹0(𝑋𝑖) (5) 

The variable 𝑉 is transformed to the uniform distribution in (0, 2𝜋) range by using Equation (6). In other 

words, it can be defined as 𝑉𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2𝜋).  

 

𝑉𝑖 = 2𝜋𝑈𝑖 (6) 

If uniformly distributed random values are multiplied by 2𝜋 and scattered over the unit circle, it is assumed 

that each data is a unit vector. 

 

The proposed test statistic is obtained by the resultant vector calculated by the vertical and horizontal 

components of the unit vectors. If we want to calculate the resultant length, the mean horizontal component 

of it can be computed by using Equation (7), 

 

𝐶̅ =
1

𝑛
∑ cos(𝑉𝑖)

𝑛

𝑖=1

 
(7) 

and the mean vertical component of it can be computed by using Equation (8),  

 

𝑆̅ =
1

𝑛
∑ sin(𝑉𝑖).

𝑛

𝑖=1

 
(8) 

Here (𝑉1, 𝑉2, … , 𝑉𝑛) ~𝑈 (0, 2𝜋),  𝑐 = cos 𝑉 and 𝑠 = sin 𝑉 . Then we have 

 

𝐸(𝑐) = ∫ cos 𝑉
1

2𝜋
 𝑑𝑉 = 0

2𝜋

0

, 

𝐸(𝑠) = ∫ sin 𝑉
1

2𝜋
 𝑑𝑉

2𝜋

0

= 0 

 

and similarly, 

 

𝐸(𝑐2) = 𝐸(𝑠2) =
1

2
 , 

𝐸(𝑐 ⋅ 𝑠) = 0. 
 

In this case, the average horizontal and vertical components (𝐶̅, 𝑆̅) calculated by taking the average of the 

sine and cosine of the random variable converted to uniform distribution in the (0, 2π) converges to 𝑁(𝜇, Σ) 

with 
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𝜇 = 0     and    Σ = [

1

2𝑛
0

0
1

2𝑛

]. 

 

If the random variables (𝐶̅, 𝑆̅) are standardized, (√2𝑛𝐶̅) and (√2𝑛𝑆̅) converges to 𝑁(0, 1) [20]. Then we 

have 

 

√2𝑛 𝐶̅ = √2𝑛
1

𝑛
∑ cos(𝑉𝑖)

𝑛

𝑖=1

 

= √
2

𝑛
∑ cos(2𝜋𝐹0(𝑥𝑖)) ,

𝑛

𝑖=1

 

 

and similarly, 

 

√2𝑛 𝑆̅ = √2𝑛
1

𝑛
∑ sin(𝑉𝑖)

𝑛

𝑖=1

 

= √
2

𝑛
∑ sin(2𝜋𝐹0(𝑥𝑖)).

𝑛

𝑖=1

 

 

If the sample size is enough large, each horizontal and vertical component random variables has standard 

normal distribution according to the central limit theorem. In the simulation study for the determination of 

the sample size, random values (𝐶̅, 𝑆̅) of the random samples with different size generated from uniform 

distribution in the range of [0,2𝜋] are computed. A dataset was obtained by generating 100 of each 𝐶̅ and 

𝑆̅ random values and tested by the Kolmogorov-Smirnov goodness-of-fit test whether or not it came from 

the standard normal distribution. Type I error was obtained by 10,000 runs and it is shown in Figure 1. 

 

 
Figure 1. Type I error of the random variables C̅ and S̅ obtained by KS Normality test with α=0.05 

 

In Figure 1, the increase in Type I error at the small sample size of 4 indicates that the normality assumption 

is invalid. This assumption indicates that the proposed method is available for at least a sample size of 4. 

The standard mean resultant-squared vector length of the circular data shown in vector form on the unit 

circle, is calculated as follows 

 

�̅�2 = 𝐶̅2 + 𝑆̅2. (9) 

Since (√2𝑛𝐶̅) and (√2𝑛𝑆̅) converge in distribution to a 𝑁(0, 1), (√2𝑛𝐶̅)
2
 and (√2𝑛𝑆̅)

2
 converge to 𝜒1

2 

each and their sum,  
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𝑅2 =
2

𝑛
[(∑ cos(2𝜋𝐹0(𝑋𝑖))

𝑛

𝑖=1

)

2

+ (∑ sin(2𝜋𝐹0(𝑋𝑖)

𝑛

𝑖=1

)

2

] ~𝜒2
2. 

(10) 

The resultant vector is accepted as the test statistic of the proposed method. The resultant vector is the sum 

of squares of 2 random variables from standard normal distribution, and thus it has the chi-square 

distribution with the 2 degrees of freedom.  

 

The graphical representation of the proposed method is given in Figure 2. 

 

  
(a) (b) 

  
(c) (d) 

Figure 2. Conversion of the linear data to the circular data and determination 

of the resultant vector; (a) Linear data (b) Conversion to the circular data (c) 

Unit vectors (d) The resultant vector 

 

Figure 2(a) shows 10 data generated from an arbitrary distribution and the circular form of these data 

(𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,2𝜋)) is given in Figure 2(b). Figure 2(c)-(d) shows the unit vector of the circular data and the 

resultant vector of them, respectively. 

 

As the test statistic approaches zero, it can be said that the data are uniformly distributed, and thus the 

hypothesized distribution is the real distribution of the data. This assumption is weak as the resultant vector 

diverges from zero. 

 

The algorithm of the proposed method is given in the Algorithm 1.  

 

Algorithm 1. 𝐹𝐶𝑆 goodness-of-fit test 

Step 1. Define the distribution function and parameters for the null hypothesis, 

Step 2. Calculate the 𝑅2 test statistic, 

Step 3.  Determine the critical value from the chi-square table with 2 degrees of freedom and the chosen 𝛼, 

Step 4.  If the 𝑅2 test statistic is greater than the critical value, reject the null hypothesis. 
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The critical values of the proposed method can be given in a single-line table (Table 1) without the need 

for a large table value. This table is a chi-square distribution table with 2 degrees of freedom. 

 

Table 1. The chi-square distribution table with 2 degrees of freedom 

𝜶  𝟎. 𝟐 𝟎. 𝟏 𝟎. 𝟎𝟓 𝟎. 𝟎𝟐𝟓 𝟎. 𝟎𝟏 𝟎. 𝟎𝟎𝟏 

𝝌𝝂=𝟐,𝟏−𝜶
𝟐   3.2189 4.6052 5.9915 7.3778 9.2103 13.8155 

 

Exercise. The calculation of the test statistic in Table 2 is given to show the applicability of the proposed 

method in a simple way. The null hypothesis for the sample in Table 2, which its sample size is 10, is given 

as having a normal distribution with (𝜇 = 10, 𝜎2 = 4) parameters and 𝛼 = 0.05 significance level. The 

result is that the null hypothesis cannot be rejected. 

 

Table 2. Calculation of the proposed test statistic 

𝒊 𝒙𝒊 𝜽𝒊 = 𝟐𝝅𝑭𝟎(𝒙𝒊) 𝒄𝒐𝒔(𝜽𝒊) 𝒔𝒊𝒏(𝜽𝒊) 

𝟏 13.5142 6.0353 0.9694 −0.2453 

𝟐 10.2069 3.4004 −0.9667 −0.2559 

𝟑 14.9308 6.2402 0.9991 −0.0430 

𝟒 11.5484 4.9046 0.1910 −0.9816 

𝟓 11.1112 4.4658 −0.2441 −0.9698 

𝟔 11.8232 5.1460 0.4202 −0.9074 

𝟕 9.6953 2.7612 −0.9285 0.3713 

𝟖 8.8668 1.7938 −0.2212 0.9752 

𝟗 11.9410 5.2408 0.5041 −0.8636 

𝟏𝟎 8.0430 1.0299 0.5149 0.8573   
Σ 1.2383 −2.0628   

(Σ)2  1.5334 4.2553 

  𝑅2 𝟏. 𝟏𝟓𝟕𝟕 

  Result (𝛼 = 0.05) 𝟏. 𝟏𝟓𝟕𝟕 < 𝟓. 𝟗𝟗𝟏𝟓 : 𝑯𝟎 is not rejected 

 

4. THE TYPE I ERROR AND THE POWER COMPARISONS 

 

In this section, the Free Chi-Square (𝐹𝐶𝑆) test was compared with the Binning Chi-Square (𝐵𝐶𝑆), the 

Cramer von Mises (𝐶𝑉𝑀), the Kolmogorov-Smirnov (𝐾𝑆) and the Anderson-Darling (𝐴𝐷) tests in terms 

of the type I error and the test powers by using Monte-Carlo simulation. In all comparisons, the significance 

coefficient was taken as 𝛼 = 0.05. 

 

The simulation was performed using MATLAB® 2017b software. The Statistics and Machine Learning 

Toolbox was used for 𝐵𝐶𝑆 (chi2gof), 𝐾𝑆 (kstest), 𝐴𝐷 (adTest) commands. The command developed by 

Ben Sada [21] was used for 𝐶𝑉𝑀 (cmTest) command. The number of binning in the 𝐵𝐶𝑆 (chi2gof) 

command was chosen to 10 by default. However, the software optimizes the bins by combining with 

neighbor bins, when the expected frequency is less than 5 in a bin. 

 

4.1. Comparison of Power Values in Symmetrical Distributions 

 

In this section, each simulation was run 10,000 times for 𝑛 = {10, 20, 30, 50, 100, 200, 
300, 400, 500, 1000, 2000}. For the simulation study, 4 symmetrical and one non-symmetrical 

distributions are selected. These are normal, uniform, Laplace, Student’s t, and exponential distributions, 

respectively. 

 

Samples with different size are selected from a normal distribution with the parameters (𝜇 = 0, 𝜎2 = 1). 

Five goodness-of-fit tests was used to test whether the samples fit the normal distribution with 𝜇 = 0 and 
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𝜎2 = 1. Type I errors of the goodness-of-fit (normality) tests for the normal distribution are given in the 

Table 3.  

 

Table 3. Type I errors of the goodness-of-fit tests for the normal distribution (𝜇 = 0, 𝜎2 = 1) 

 𝑺𝒂𝒎𝒑𝒍𝒆 𝑺𝒊𝒛𝒆 

𝑴𝒆𝒕𝒉𝒐𝒅 𝟏𝟎 𝟐𝟎 𝟑𝟎 𝟓𝟎 𝟏𝟎𝟎 𝟐𝟎𝟎 𝟑𝟎𝟎 𝟒𝟎𝟎 𝟓𝟎𝟎 𝟏𝟎𝟎𝟎 𝟐𝟎𝟎𝟎 

𝑩𝑪𝑺 0.0447 0.0453 0.0466 0.0457 0.0524 0.0477 0.0527 0.0481 0.044 0.0537 0.0514 

𝑪𝑽𝑴 0.0468 0.0478 0.0459 0.0478 0.0498 0.0472 0.0481 0.0487 0.0519 0.0486 0.0524 

𝑲𝑺 0.0492 0.0506 0.0459 0.0498 0.0497 0.0464 0.0463 0.0477 0.0529 0.0489 0.0524 

𝑨𝑫 0.0493 0.0485 0.0467 0.0457 0.049 0.0486 0.0487 0.0486 0.0504 0.0493 0.0522 

𝑭𝑪𝑺 0.0455 0.0456 0.0473 0.051 0.0497 0.0477 0.0508 0.0476 0.054 0.0524 0.0521 

 

It is shown that Type I errors are scattered around 0.05 for all sample sizes. This result indicates that  
𝐹𝐶𝑆 is also consistent method as the other goodness-of-fit tests. Furthermore, the changing in the Table 3 

is clearly shown in the Figure 3. 

 

 
Figure 3. Type I errors obtained as a result of the goodness-of-fit (normality) tests of samples 

generated from a normal distribution (𝜇 = 0, 𝜎2 = 1) 

 

Samples generated at different sizes from the uniform distribution (𝑎 = −√3, 𝑏 = √3) are tested with five 

different goodness-of-fit methods to determine whether samples fit the normal distribution  

(𝜇 = 0, 𝜎2 = 1) or not. The power comparisons of the goodness-of-fit tests for the uniform distribution 

are given in the Table 4. 

 

Table 4. Power comparisons of the goodness-of-fit tests for the uniform distribution 

 𝑺𝒂𝒎𝒑𝒍𝒆 𝑺𝒊𝒛𝒆 

𝑴𝒆𝒕𝒉𝒐𝒅 𝟏𝟎 𝟐𝟎 𝟑𝟎 𝟓𝟎 𝟏𝟎𝟎 𝟐𝟎𝟎 𝟑𝟎𝟎 𝟒𝟎𝟎 𝟓𝟎𝟎 𝟏𝟎𝟎𝟎 𝟐𝟎𝟎𝟎 

𝑩𝑪𝑺 0.0464 0.0495 0.0486 0.1412 0.389 0.7111 0.8982 0.9685 0.9925 1 1 

𝑪𝑽𝑴 0.073 0.0836 0.0934 0.1196 0.2093 0.4626 0.727 0.8907 0.9651 1 1 

𝑲𝑺 0.0835 0.0961 0.1178 0.1506 0.2617 0.4941 0.7065 0.851 0.9344 0.9999 1 

𝑨𝑫 0.07 0.0868 0.1027 0.1464 0.2914 0.6638 0.9135 0.986 0.9997 1 1 

𝑭𝑪𝑺 0.0809 0.1287 0.1775 0.2827 0.5288 0.8427 0.9613 0.9906 0.9987 1 1 

 

As the number of sample size increases, the powers of five methods increase for the uniform distribution. 

The 𝐵𝐶𝑆 method has the lower power than the other for 𝑛 < 50. The 𝐹𝐶𝑆 method has generally the highest 

power in almost all sample sizes. As the number of sample size increases, the powers of all methods increase 

to ‘1’. Also, the changing in the Table 4 is clearly shown in the Figure 4. 
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Figure 4. Test powers obtained as a result of the goodness-of-fit (normality) tests of samples generated 

from a uniform distribution (𝑎 = −√3, 𝑏 = √3) 

 

According to the Figure 4, while the 𝐹𝐶𝑆 shows the best sensitivity, the 𝐶𝑉𝑀 and the 𝐾𝑆 show the lowest 

sensitivity according to the test powers. Although the 𝐵𝐶𝑆 and the 𝐴𝐷 show similar sensitivities, it is 

observed that the 𝐵𝐶𝑆 shows low sensitivity to 𝑛 < 50 values. 

 

Samples generated at different sizes from the Laplace distribution (𝜇 = 0, 𝜎2 = 1) are tested with five 

different goodness-of-fit methods to determine whether samples fit the normal distribution  

(𝜇 = 0, 𝜎2 = 1) or not. In the Table 5, the power comparisons of the goodness-of-fit tests for the Laplace 

distribution are shown. 

 

Table 5. Power comparisons of the goodness-of-fit tests for the Laplace distribution 

 𝑺𝒂𝒎𝒑𝒍𝒆 𝑺𝒊𝒛𝒆 

𝑴𝒆𝒕𝒉𝒐𝒅 𝟏𝟎 𝟐𝟎 𝟑𝟎 𝟓𝟎 𝟏𝟎𝟎 𝟐𝟎𝟎 𝟑𝟎𝟎 𝟒𝟎𝟎 𝟓𝟎𝟎 𝟏𝟎𝟎𝟎 𝟐𝟎𝟎𝟎 

𝑩𝑪𝑺 0.0398 0.054 0.1156 0.2434 0.4189 0.7701 0.9266 0.9785 0.9922 0.9986 0.9993 

𝑪𝑽𝑴 0.032 0.0452 0.0516 0.0842 0.1967 0.5384 0.8004 0.9399 0.9838 1 1 

𝑲𝑺 0.0395 0.0629 0.0857 0.1332 0.2648 0.5715 0.7873 0.9207 0.9713 1 1 

𝑨𝑫 0.0423 0.0503 0.0605 0.099 0.2339 0.6129 0.8597 0.9668 0.9952 1 1 

𝑭𝑪𝑺 0.0945 0.1575 0.2166 0.3471 0.6163 0.9056 0.9816 0.9967 0.9998 1 1 

 

As the number of sample size increases, the powers of five methods increase for the Laplace distribution. 

The 𝐶𝑉𝑀 method has the lower power than the others for 𝑛 < 300. The 𝐹𝐶𝑆 has the higher power in all 

sample sizes than the others. As the number of sample size increases, the powers of all methods increase, 

but the powers of all methods except the 𝐵𝐶𝑆 increase to ‘1’. In addition, the changing in the Table 5 is 

clearly shown in the Figure 5. 

 

 
Figure 5. Test powers obtained as a result of the goodness-of-fit (normality) tests of samples generated 

from a Laplace distribution (𝜇 = 0, 𝜎2 = 1) 
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While the 𝐹𝐶𝑆 shows the best sensitivity, the 𝐶𝑉𝑀 and the 𝐾𝑆 show the lowest sensitivity according to the 

test powers. Moreover, the 𝐵𝐶𝑆 shows higher sensitivities than the 𝐴𝐷 at higher sample sizes especially in 

the Figure 5. 

 

Samples generated at different sizes from the Student's t-distribution (𝜈 = 10) are tested with five different 

goodness-of-fit methods to determine whether samples fit the normal distribution  
(𝜇 = 0, 𝜎2 = 10/8) or not. The power values of the goodness-of-fit tests for Student's t-distribution 

performed at the different sample sizes are given in the Table 6. 

 

Table 6. Power comparisons of the goodness-of-fit tests for the Student's t-distribution 

 𝑺𝒂𝒎𝒑𝒍𝒆 𝑺𝒊𝒛𝒆 

𝑴𝒆𝒕𝒉𝒐𝒅 𝟏𝟎 𝟐𝟎 𝟑𝟎 𝟓𝟎 𝟏𝟎𝟎 𝟐𝟎𝟎 𝟑𝟎𝟎 𝟒𝟎𝟎 𝟓𝟎𝟎 𝟏𝟎𝟎𝟎 𝟐𝟎𝟎𝟎 

𝑩𝑪𝑺 0.0477 0.0488 0.0508 0.0555 0.0545 0.0795 0.1063 0.139 0.1867 0.4323 0.8299 

𝑪𝑽𝑴 0.0428 0.0439 0.0433 0.0474 0.0507 0.0578 0.0596 0.064 0.0734 0.1364 0.3354 

𝑲𝑺 0.0417 0.0443 0.0473 0.0495 0.0556 0.0664 0.0778 0.0855 0.0992 0.1764 0.3684 

𝑨𝑫 0.047 0.0461 0.045 0.0487 0.052 0.0639 0.0721 0.0799 0.0963 0.1866 0.4738 

𝑭𝑪𝑺 0.0466 0.0536 0.0585 0.0668 0.0832 0.1353 0.1713 0.2135 0.2577 0.4774 0.793 

 

While the number of sample size increases, the powers of five methods increase for the Student's 

t-distribution. The 𝐶𝑉𝑀 method has the lower power than the others for 𝑛 > 10. The 𝐹𝐶𝑆 generally has 

the higher power in all sample sizes than the others. Only, the powers of the 𝐾𝑆 and the 𝐹𝐶𝑆 methods 

increase for all sample sizes. The power values of the other methods are not monotone increasing. In 

addition, the changing in the Table 6 is clearly given in the Figure 6. 

 

 
Figure 6. Test powers obtained as a result of the goodness-of-fit (normality) tests of samples generated 

from a Student's t-distribution (𝜈 = 10) 

 

While the 𝐹𝐶𝑆 shows the best sensitivity, the 𝐶𝑉𝑀 and the 𝐾𝑆 show the lowest sensitivity according to the 

test powers. Furthermore, the 𝐵𝐶𝑆 shows higher sensitivities than the 𝐴𝐷 at higher sample sizes especially 

in the Figure 6. 

 

Samples generated at different sizes from the exponential distribution (𝜇 = 1) are tested with five different 

goodness-of-fit methods to determine whether samples fit the normal distribution (𝜇 = 1, 𝜎2 = 1) or not. 

The power comparisons of the goodness-of-fit tests for the exponential distribution are given in the  

Table 7. 
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Table 7. Power comparisons of the goodness-of-fit tests for the exponential distribution 

 𝑺𝒂𝒎𝒑𝒍𝒆 𝑺𝒊𝒛𝒆 

𝑴𝒆𝒕𝒉𝒐𝒅 𝟏𝟎 𝟐𝟎 𝟑𝟎 𝟓𝟎 𝟏𝟎𝟎 𝟐𝟎𝟎 𝟑𝟎𝟎 𝟒𝟎𝟎 𝟓𝟎𝟎 𝟏𝟎𝟎𝟎 𝟐𝟎𝟎𝟎 

𝑩𝑪𝑺 0.1196 0.2042 0.2684 0.3015 0.6281 0.9637 0.998 1 1 1 1 

𝑪𝑽𝑴 0.1035 0.1879 0.292 0.4829 0.8765 1 1 1 1 1 1 

𝑲𝑺 0.1156 0.1926 0.2793 0.4332 1 1 1 1 1 1 1 

𝑨𝑫 0.1168 0.2115 0.353 0.6457 0.9937 1 1 1 1 1 1 

𝑭𝑪𝑺 0.2259 0.4329 0.6062 0.833 0.9882 1 1 1 1 1 1 

 

While the number of sample size increases, the powers of five methods increase for the exponential 

distribution. The 𝐹𝐶𝑆 has the lower power within 𝑛 = 100 sample size than the 𝐾𝑆 and 𝐴𝐷 methods, but 

the 𝐹𝐶𝑆 method has the higher power in other sample sizes than the others. While the number of sample 

size increases, the powers of all methods increase to ‘1’ greater than 𝑛 = 400. Moreover, the changing in 

the Table 7 is clearly given in the Figure 7. 

 

 
Figure 7. Test powers obtained as a result of the goodness-of-fit (normality) tests of samples generated 

from an exponential distribution (𝜇 = 1) 
 

According to the Figure 7, while the 𝐹𝐶𝑆 shows the best sensitivity, the 𝐵𝐶𝑆 show the lowest sensitivity 

according to the test powers. Also, the 𝐴𝐷 shows higher sensitivities than the 𝐾𝑆 and the 𝐶𝑉𝑀 at some 

sample sizes. 

 

4.2. Comparison of Power Values in Non-Symmetrical Distributions 

 

In this section, each simulation was run 10,000 times for 𝑛 = {10, 20, 30, 50, 100, 200, 
 300, 400, 500, 1000, 2000}. Log-normal, normal, Weibull, gamma and chi-square distributions are 

selected for these simulations. Despite normal distribution is a symmetric distribution, the other four 

distributions are chosen as non-symmetrical distributions. 

 

Samples generated at different sizes from the log-normal distribution (𝜇 = 0.8432, 𝜎2 = 0.7147) are 

tested with five different goodness-of-fit methods to determine whether samples fit the log-normal 

distribution (𝜇 = 0.8432, 𝜎2 = 0.7147) or not. Type I errors of the goodness-of-fit (LogNormality) tests 

for the log-normal distribution are given in the Table 8.  
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Table 8. Type I errors of the goodness-of-fit tests for the log-normal distribution 

 𝑺𝒂𝒎𝒑𝒍𝒆 𝑺𝒊𝒛𝒆 

𝑴𝒆𝒕𝒉𝒐𝒅 𝟏𝟎 𝟐𝟎 𝟑𝟎 𝟓𝟎 𝟏𝟎𝟎 𝟐𝟎𝟎 𝟑𝟎𝟎 𝟒𝟎𝟎 𝟓𝟎𝟎 𝟏𝟎𝟎𝟎 𝟐𝟎𝟎𝟎 

𝑩𝑪𝑺 0.0494 0.0476 0.047 0.0494 0.0512 0.0518 0.0508 0.0487 0.0506 0.0514 0.0462 

𝑪𝑽𝑴 0.0542 0.0467 0.0497 0.0468 0.0493 0.0494 0.0524 0.048 0.0463 0.0535 0.049 

𝑲𝑺 0.0543 0.047 0.05 0.0473 0.0507 0.0495 0.0549 0.0467 0.0499 0.0512 0.0496 

𝑨𝑫 0.0546 0.0476 0.0495 0.0461 0.0473 0.0485 0.0537 0.0492 0.0474 0.0539 0.0499 

𝑭𝑪𝑺 0.0489 0.0464 0.0501 0.0492 0.0519 0.0481 0.054 0.0521 0.0514 0.0519 0.0453 

 

Type I errors appear to distribute around 0.05. According to this result, the proposed 𝐹𝐶𝑆 method is also 

work consistently as the other methods for non-symmetric distributions. Also, the changing in the Table 8 

is clearly shown in the Figure 8.  

 

 
Figure 8. Type I errors obtained as a result of the goodness-of-fit (LogNormality) tests of samples 

generated from a log-normal distribution (𝜇 = 0.8432, 𝜎2 = 0.7147) 
 

Samples generated at different sizes from the normal distribution (𝜇 = 3, 𝜎2 = 6) are tested with five 

different goodness-of-fit methods to determine whether samples fit the log-normal distribution  
(𝜇 = 0.8432, 𝜎2 = 0.7147) or not. The power comparisons of the goodness-of-fit tests for the normal 

distribution are given in the Table 9. 

 

Table 9. Power comparisons of the goodness-of-fit tests for the normal distribution 

 𝑺𝒂𝒎𝒑𝒍𝒆 𝑺𝒊𝒛𝒆 

𝑴𝒆𝒕𝒉𝒐𝒅 𝟏𝟎 𝟐𝟎 𝟑𝟎 𝟓𝟎 𝟏𝟎𝟎 𝟐𝟎𝟎 𝟑𝟎𝟎 𝟒𝟎𝟎 𝟓𝟎𝟎 𝟏𝟎𝟎𝟎 𝟐𝟎𝟎𝟎 

𝑩𝑪𝑺 0.0994 0.1652 0.2919 0.5292 0.8849 0.9966 0.9998 1 1 1 1 

𝑪𝑽𝑴 0.1554 0.2496 0.3787 0.636 0.9588 1 1 1 1 1 1 

𝑲𝑺 0.166 0.2925 0.4218 0.6724 0.9711 1 1 1 1 1 1 

𝑨𝑫 0.776 0.952 0.9918 0.9998 1 1 1 1 1 1 1 

𝑭𝑪𝑺 0.264 0.5266 0.7259 0.9268 0.9982 1 1 1 1 1 1 

 

While the number of sample size increases, the powers of five methods increase for the normal distribution.  

The 𝐵𝐶𝑆 method has the lowest power and the 𝐴𝐷 has the highest power in all sample sizes. Although the 

𝐹𝐶𝑆 test shows lower power than the 𝐴𝐷, it has more high power than the others. As the number of sample 

size increases, the powers of all goodness-of-fit methods increase to ‘1’. In addition, the changing in the 

Table 9 is clearly shown in the Figure 9. 
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Figure 9. Test powers obtained as a result of the goodness-of-fit (LogNormality) tests of samples 

generated from a normal distribution (𝜇 = 3, 𝜎2 = 6) 
 

According to the Figure 9, while the 𝐴𝐷 test shows the highest sensitivity, the 𝐵𝐶𝑆 test show the lowest 

sensitivity according to the test powers. Although the 𝐹𝐶𝑆 test shows lower sensitivity than the 𝐴𝐷, it has 

more sensitivity than the others.  

 

Samples generated at different sizes from the Weibull distribution (𝑎 = 3.21, 𝑏 = 1.23) are tested with 

five different goodness-of-fit methods to determine whether samples fit the log-normal distribution  
(𝜇 = 0.8432, 𝜎2 = 0.7147) or not. The power values of the goodness-of-fit tests for Weibull distribution 

performed at the different sample sizes are given in the Table 10. 

 

Table 10. Power comparisons of the goodness-of-fit tests for the Weibull distribution 

 𝑺𝒂𝒎𝒑𝒍𝒆 𝑺𝒊𝒛𝒆 

𝑴𝒆𝒕𝒉𝒐𝒅 𝟏𝟎 𝟐𝟎 𝟑𝟎 𝟓𝟎 𝟏𝟎𝟎 𝟐𝟎𝟎 𝟑𝟎𝟎 𝟒𝟎𝟎 𝟓𝟎𝟎 𝟏𝟎𝟎𝟎 𝟐𝟎𝟎𝟎 

𝑩𝑪𝑺 0.0473 0.0588 0.0987 0.2201 0.5181 0.7455 0.8501 0.904 0.9431 0.9908 0.9998 

𝑪𝑽𝑴 0.0968 0.1147 0.138 0.1928 0.4002 0.8063 0.968 0.996 0.9997 1 1 

𝑲𝑺 0.0979 0.1216 0.1571 0.2216 0.4527 0.841 0.9736 0.998 1 1 1 

𝑨𝑫 0.262 0.3639 0.469 0.6426 0.9112 0.9987 1 1 1 1 1 

𝑭𝑪𝑺 0.1103 0.1927 0.2814 0.4364 0.7454 0.9656 0.9964 0.9997 1 1 1 

 

While the number of sample size increases, the powers of five methods increase for the Weibull distribution.  

Although the 𝐹𝐶𝑆 test shows lower power than the 𝐴𝐷, it has more high power than the others. As the 

number of sample size increases, the powers of all goodness-of-fit methods increase to ‘1’except the 𝐵𝐶𝑆 

method. Furthermore, the changing in the Table 10 is clearly shown in the Figure 10. 

 

 
Figure 10. Test powers obtained as a result of the goodness-of-fit (LogNormality) tests of samples 

generated from a Weibull distribution (𝑎 = 3.21, 𝑏 = 1.23) 
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According to the Figure 10, while the 𝐵𝐶𝑆 test has generally the lowest sensitivity according to the test 

powers, the 𝐴𝐷 test has the highest sensitivity. Although the 𝐹𝐶𝑆 test shows lower sensitivity than the 𝐴𝐷, 

it has more sensitivity than the others.  

 

Samples generated at different sizes from the gamma distribution (𝑎 = 1.5, 𝑏 = 2) are tested with five 

different goodness-of-fit methods to determine whether samples fit the log-normal distribution  
(𝜇 = 0.8432, 𝜎2 = 0.7147) or not. The power comparisons of the goodness-of-fit tests for the gamma 

distribution are given in the Table 11. 

 

Table 11. Power comparisons of the goodness-of-fit tests for the gamma distribution 

 𝑺𝒂𝒎𝒑𝒍𝒆 𝑺𝒊𝒛𝒆 

𝑴𝒆𝒕𝒉𝒐𝒅 𝟏𝟎 𝟐𝟎 𝟑𝟎 𝟓𝟎 𝟏𝟎𝟎 𝟐𝟎𝟎 𝟑𝟎𝟎 𝟒𝟎𝟎 𝟓𝟎𝟎 𝟏𝟎𝟎𝟎 𝟐𝟎𝟎𝟎 

𝑩𝑪𝑺 0.0489 0.0523 0.0851 0.166 0.368 0.5406 0.6537 0.736 0.8027 0.9362 0.9918 

𝑪𝑽𝑴 0.0894 0.0987 0.1121 0.1483 0.2681 0.6002 0.847 0.9541 0.9909 1 1 

𝑲𝑺 0.0878 0.1007 0.1208 0.169 0.3114 0.649 0.8762 0.9675 0.9943 1 1 

𝑨𝑫 0.2073 0.2711 0.338 0.4785 0.7683 0.9721 0.9985 1 1 1 1 

𝑭𝑪𝑺 0.0941 0.1513 0.2109 0.3276 0.5918 0.8847 0.9757 0.9953 0.9991 1 1 

 

While the number of sample size increases, the powers of five methods increase for the gamma distribution. 

The 𝐵𝐶𝑆 has the lower power in all sample sizes except within ‘50’ and ‘100’ sample sizes than the other 

methods. Although the 𝐹𝐶𝑆 test shows lower power than the 𝐴𝐷, it has more high power than the others. 

As the number of sample size increases, the powers of all goodness-of-fit methods increase to ‘1’except the 

𝐵𝐶𝑆 method. Also, the changing in the Table 11 is clearly shown in the Figure 11. 

 

 
Figure 11. Test powers obtained as a result of the goodness-of-fit (LogNormality) tests of samples 

generated from a gamma distribution (𝑎 = 1.5, 𝑏 = 2) 
 

In the Figure 11, while the 𝐵𝐶𝑆 test has generally the lowest sensitivity according to the test powers, the 

𝐴𝐷 test has the highest sensitivity. Although the 𝐹𝐶𝑆 test shows lower sensitivity than the 𝐴𝐷, it has more 

sensitivity than the others.  

 

Samples generated at different sizes from the chi-square distribution (𝜈 = 3) are tested with five different 

goodness-of-fit methods to determine whether samples fit the log-normal distribution  
(𝜇 = 0.8432, 𝜎2 = 0.7147) or not. The power values of the goodness-of-fit tests for chi-square 

distribution performed at the different sample sizes are given in the Table 12. 
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Table 12. Power comparisons of the goodness-of-fit tests for the chi-square distribution 

 𝑺𝒂𝒎𝒑𝒍𝒆 𝑺𝒊𝒛𝒆 

𝑴𝒆𝒕𝒉𝒐𝒅 𝟏𝟎 𝟐𝟎 𝟑𝟎 𝟓𝟎 𝟏𝟎𝟎 𝟐𝟎𝟎 𝟑𝟎𝟎 𝟒𝟎𝟎 𝟓𝟎𝟎 𝟏𝟎𝟎𝟎 𝟐𝟎𝟎𝟎 

𝑩𝑪𝑺 0.0514 0.056 0.0832 0.1644 0.3668 0.5508 0.665 0.7418 0.8077 0.9375 0.994 

𝑪𝑽𝑴 0.0917 0.0996 0.1124 0.1447 0.2705 0.599 0.8459 0.955 0.9908 1 1 

𝑲𝑺 0.0901 0.1073 0.123 0.1663 0.3076 0.6534 0.8731 0.9655 0.9938 1 1 

𝑨𝑫 0.2084 0.2742 0.3463 0.4795 0.7664 0.9769 0.9981 0.9999 1 1 1 

𝑭𝑪𝑺 0.0925 0.156 0.2089 0.3225 0.5917 0.8903 0.9766 0.9953 0.9991 1 1 

 

While the number of sample size increases, the powers of five methods increase for the chi-square 

distribution. The 𝐵𝐶𝑆 has the lower power in all sample sizes except within ‘50’ and ‘100’ sample sizes 

than the other methods. Although the 𝐹𝐶𝑆 test shows lower power than the 𝐴𝐷, it has more high power 

than the others. As the number of sample size increases, the powers of all goodness-of-fit methods increase 

to ‘1’except the 𝐵𝐶𝑆 method. Furthermore, the changing in the Table 12 is clearly shown in the Figure 12. 

 

 
Figure 12. Test powers obtained as a result of the goodness-of-fit (LogNormality) tests of samples 

generated from a chi-square distribution (𝜈 = 3) 
 

In the Figure 12, while the 𝐵𝐶𝑆 test has generally the lowest sensitivity according to the test powers, the 

𝐴𝐷 test has the highest sensitivity. Although the 𝐹𝐶𝑆 test shows lower sensitivity than the 𝐴𝐷, it has more 

sensitivity than the others. 

 

5. REAL LIFE EXAMPLES 

 

Three different popular real-world applications are chosen to demonstrate the performance of the proposed 

method. These are sleep time data [22], Hurricane Katrina data and global warming data [23]. 

 

5.1. Sleep Time Data 

 

Students were surveyed about various aspects of sleep behavior during a two-week period [24]. The average 

sleep time per day (h) for 100 of the students were observed [22]. It is thought that the data on the average 

sleep time shows the normal distribution. The distribution parameters were estimated by the maximum 

likelihood estimation (MLE). The null and the alternative hypothesis are given as follows, 

 

𝐻0: The average sleep time data follow the normal pdf. 

𝐻1: The average sleep time data do not follow the normal pdf. 

 

In order to test these hypothesis, Kolmogorov-Smirnov (𝐾𝑆), Anderson-Darling (𝐴𝐷), Binning Chi-Square 

(𝐵𝐶𝑆) and the proposed Free Chi-Square (𝐹𝐶𝑆) goodness-of-fit tests were applied at 𝛼 = 0.05 significance 

level. The obtained results, the 𝑝-values and the test statistics of goodness-of-fit tests are given in Table 13. 
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Table 13. Goodness-of-fit test results of the sleep time data 

  Test Statistic 𝒑-value Result 

Kolmogorov-Smirnov (KS) : 0.0618 0.8166 Cannot Reject 

Anderson-Darling (AD) : 0.3969 0.8515 Cannot Reject 

Binning Chi-Square (BCS) : 5.5484 0.4756 Cannot Reject 

Free Chi-Square (FCS) : 1.0827 0.7090 Cannot Reject 

 

All these tests support the acceptance of the null hypothesis. Thus, the average sleep time follows the normal 

distribution. 

 

5.2. Hurricane Katrina Data 

 

Hurricane Katrina is one of the most devastating hurricanes in the United States in the last 100 years. One 

of the most important variables of Hurricane Katrina is the pressure wind velocity. There are 63 

observations of the wind velocity in this dataset [23]. It is thought that the data on pressure wind velocity 

shows the Weibull distribution. The distribution parameters were estimated by MLE. The null and the 

alternative hypothesis are given as follows, 

 

𝐻0: The wind velocity data of Hurricane Katrina follow the Weibull pdf. 

𝐻1: The wind velocity data of Hurricane Katrina do not follow the Weibull pdf. 

 

In order to test these hypothesis, Kolmogorov-Smirnov (𝐾𝑆), Anderson-Darling (𝐴𝐷), Binning Chi-Square 

(𝐵𝐶𝑆) and the proposed Free Chi-Square (𝐹𝐶𝑆) goodness-of-fit tests were applied at 𝛼 = 0.05 significance 

level. The obtained results, the 𝑝-values and the test statistics of goodness-of-fit tests are given in the  

Table 14. 

 

Table 14. Goodness-of-fit test results of Hurricane Katrina data 

  Test Statistic 𝒑-value Result 

Kolmogorov-Smirnov (KS) : 0.0884 0.9510 Cannot Reject 

Anderson-Darling (AD) : 0.3632 0.8835 Cannot Reject 

Binning Chi-Square (BCS) : 0.9582 0.811 Cannot Reject 

Free Chi-Square (FCS) : 1.2701 0.7351 Cannot Reject 

 

All these tests support the acceptance of the null hypothesis. Thus, the wind velocity measurement of the 

Hurricane Katrina follows the Weibull distribution. 

 

5.3. Global Warming Data 

 

Global warming is affected by two interacting elements, such as atmospheric temperature and the amount 

of carbon dioxide in the atmosphere. In this application, 𝐶𝑂2 data related to global warming were used. 

This data set was obtained from: http://booksite.elsevier.com/9780124171138. 𝐶𝑂2 data were collected in 

Point Barrow in Alaska from 1974 to 2004. It is thought that the data on the amount of 𝐶𝑂2 shows the 
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gamma distribution. The distribution parameters were estimated by MLE. The null and the alternative 

hypothesis are given as follows, 

 

𝐻0: The 𝐶𝑂2 data follow the gamma pdf. 

𝐻1: The 𝐶𝑂2 do not follow the gamma pdf. 

 

In order to test these hypothesis, Kolmogorov-Smirnov (𝐾𝑆), Anderson-Darling (𝐴𝐷), Binning Chi-Square 

(𝐵𝐶𝑆) and the proposed Free Chi-Square (𝐹𝐶𝑆) goodness-of-fit tests were applied at 𝛼 = 0.05 significance 

level. The obtained results, the 𝑝-values and the test statistics of goodness-of-fit tests are given in the  

Table 15. 

 

Table 15. Goodness-of-fit test results of the 𝐶𝑂2 data 

  Test Statistic 𝒑-value Result 

Kolmogorov-Smirnov (KS) : 0.0884 0.9510 Cannot Reject 

Anderson-Darling (AD) : 0.3632 0.8835 Cannot Reject 

Binning Chi-Square (BCS) : 0.9582 0.811 Cannot Reject 

Free Chi-Square (FCS) : 1.2701 0.7351 Cannot Reject 

 

All these tests support the acceptance of the null hypothesis. Thus, the amount of 𝐶𝑂2 𝑜f the Point Barrow 

follows the gamma distribution. 

 

6. CONCLUSION 

 

In this paper, a free chi-square test was proposed. It has many advantages over the existing tests such as, 

binning-free, distribution-free, more sensitivity, easy to use and fast. The 𝐵𝐶𝑆 is a test with disadvantages 

due to binning selection and it requires a sufficient sample size for the chi-square approximation to be valid. 

On the other hand, the 𝐶𝑉𝑀 and 𝐾𝑆 tests can be preferred because they are binning free goodness-of-fit 

tests. But the 𝐾𝑆 test has the disadvantage that it is more sensitive to deviations near the center of the 

distribution than at the tails and the 𝐾𝑆 table values are used in the interpretation of the results. The 𝐴𝐷 

test, which is a more sensitive test, gives good results for some distributions but cannot be applied to all 

distributions. Moreover, the calculation of the different critical values table for each distribution indicates 

that the 𝐴𝐷 test is not distribution-free approach. On the other hand, the proposed 𝐹𝐶𝑆 method is not only 

a sensitive method, but also a binning-free and distribution-free test. In addition, this test method does not 

require grouped data or ordered data, nor does it require an empirical distribution function. It is independent 

of the degree of freedom since it uses only a chi-square table with 2 degrees of freedom. Exercise in Section 

3 shows that it is a simple and easy to calculate. Therefore, it can be preferred by many researchers. 

Simulation studies for the test statistic calculated using the trigonometric approach of the proposed method 

are given in Section 4. It is observed that the proposed method is more sensitive than the other methods for 

symmetric distributions, also it gives the correct results according to Type I error. Although simulation 

studies of non-symmetric distributions show that the 𝐴𝐷 test is more sensitive, the proposed method gives 

more sensitive results than the rest of the methods. But the 𝐴𝐷 cannot be applied to all distributions and it 

is not distribution-free approach. In these simulations, studies were made for different significance levels 

except 𝛼 = 0.05, and similar results were observed. So, they were not put into this study. 
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