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Abstract 

In this paper, we considered a two-objective machine-scheduling problem under sequence-

dependent setup time, release date and due date constraints.  The problem is formulated as a 

multi-objective mixed-integer programming model. Two conflicting objectives are considered 

as minimization of maximum completion time (makespan) and total tardiness. Despite the 

most use of metaheuristics in this kind of multi-objective problems, here, we try to solve the 

problem by transforming the two-objectives as a single objective using scalarization 

techniques. Test instances are generated as proposed in the scheduling literature. The solutions 

are obtained using Weighted Sum Scalarization, Benson’s Method and Pascoletti−Serafini 

Method. In addition, a comparison of scalarization techniques using Δ performance metric is 

given on the considered problem instances. The obtained results are evaluated and Δ values, 

which were obtained for Benson’s method, are mostly better than other techniques for the 

generated test problems. 
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1. INTRODUCTION 

 

Whether it is the production or service industry, many problems we face in real life are scheduling problems. 

According to Pinedo’s [1] definition, scheduling is a decision-making process that is used in various 

industries. It deals with the allocation of resources and timeslots to events under single or multiple 

objectives.  In the production side, the machine-scheduling problem is a combinatorial optimization 

problem. And the generally used objective of this problem is the minimization of jobs’ completion times 

[2]. 

 

As Pinedo [1] mentioned, the basic single machine environment is easy to model. However, there can be 

special constraints about customers, machines, and jobs in manufacturing systems. With numerous kinds 

of constraints, the single machine-scheduling problem becomes harder to model and solve, but the solution 

will give more realistic schedules.  

 

In some of the machine scheduling problems, there can be setup times, which must be considered 

enforcedly. The setup times are considered either sequence-independent or sequence-dependent [3]. When 

the setup time/cost depends solely on the task to be processed, regardless of its preceding task, the 

scheduling problem must be considered as sequence-independent. Moreover, in the sequence-dependent 

type, setup time/cost depends on both the task and its preceding task [4]. Sequence-dependent setup times 

can be originated from the activities to prepare the machine like changing or cleaning of mold, changing of 
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cutting tips, etc. The authors here want to emphasize an important point that, according to Sioud et al. [5], 

70% of industrial activities include sequence-dependent setup times. 

 

In this study, a multi-objective single machine-scheduling problem is considered under the minimization 

of both maximum completion time and total tardiness. The jobs in the considered problem have process 

times, sequence-dependent setup times, due dates and release dates. The problem 1 |sij| Cmax is strongly NP-

hard [1]. The problem that becomes more difficult with the handling of multiple goals is further complicated 

by the addition of sequence-dependent setup times. In addition to these, applicability to real-life problems 

has increased. Three multi-objective scalarization techniques are used to propose efficient schedules for 

randomly generated test problems and the obtained results are compared based on a well-known metric.  

 

The rest of this paper as follows: In Section 2, the studies related to single machine scheduling problems 

will be addressed. Brief information about multi-objective optimization, scalarization and the well-known 

scalarization techniques, which are used in the study, are reviewed in Section 3. The definition of the 

problem and the proposed mixed-integer mathematical model will be explained in Section 4. The generated 

test problems and computational experiments will be explained in Section 5 and the results will be discussed 

in Section 6. 

 

2. LITERATURE REVIEW 

 

There is a considerable amount of studies about single machine scheduling problems. In this section, the 

single machine scheduling studies with sequence-dependent setup times are studied.  

 

To minimize total weighted tardiness with sequence-dependent setup times on a single machine, various 

algorithms have been proposed like an ant colony optimization algorithm [6], a discrete differential 

evolution algorithm [7], an Iterated Local Search (ILS) heuristic [8], and a novel memetic algorithm [9]. 

There are also studies that consider just the total tardiness for the related problem. Luo & Chu [10] 

developed an algorithm based on branch-and-bound permutation schemes. Sioud et al. [5] proposed a 

hybrid crossover into a genetic algorithm with concepts from constraint programming. Jacob & Arroyo [11] 

proposed three heuristics based on the ILS. Keshavarz et al. [12] developed a branch and bound algorithm 

to minimize total earliness and tardiness penalties. Hinder & Mason [13] proposed a novel integer 

programming formulation to minimize maximum lateness. 

 

Beside these studies, one of the main objective values that has been tried to be minimized for single machine 

scheduling problems is the maximum completion time (Cmax). For a dynamic manufacturing system, 

Kaplanoglu [14] developed a collaborative multi-agent-based optimization method to minimize Cmax under 

both regular and irregular maintenance constraints. Velez-Gallego et al. [15] developed a beam search 

heuristic, which considers release dates and sequence-dependent setup times to minimize Cmax.  

 

Nevertheless, there are not too many studies about multi-objective single machine scheduling with 

sequence-dependent setup times. Choobineh et al. [2] developed a mixed-integer mathematical model and 

Tabu Search heuristic for a single machine-scheduling problem, which has three objectives. The objectives 

of the problem are minimizing the completion time, total number of tardy jobs and total tardiness. Duenas 

& Petrovic [16] proposed a hybrid algorithm with genetic algorithms and local search, in the presence of 

uncertainty to minimize the maximum and the average tardiness of the jobs. Sioud et al. [5] also declared 

that in the presence of sequence-dependent setup times, most of the research has focused on either 

minimizing the sum of setup times or minimizing the sum of job completion times. Wang [17] proposed 

multi-objective evolutionary algorithms as NSGA-II and SPEA2 to minimize the total expected completion 

time of jobs and to minimize the maximum of expected times of failure of the machine, simultaneously. 

Yue et al. [18] presented a hybrid Pareto Artificial Bee Colony algorithm to minimize the maximum 

completion time and the total weighted tardiness. Rubaiee and Yildirim [19] developed several new multi-

objective optimization algorithms based on Ant Colony Optimization to solve a single machine-scheduling 

problem with minimization of both total completion time and total energy cost objectives. Similarly, Zhang 

et al. [20] proposed a bi-objective single-machine batch scheduling under time-of-use electricity prices to 
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minimize the total energy cost and the makespan and presented two heuristics for the solution of the 

proposed model. 

 

As seen from the literature, there are few studies, which are about multi-objective single machine 

scheduling problems, so we aimed to contribute to this research area with this study. Moreover, 

metaheuristic algorithms are mostly proposed to obtain Pareto solutions of multi-objective single machine 

scheduling problems instead of exact solution methods. We also aimed to contribute to this research area 

using three well-known scalarization techniques. Weighted Sum scalarization, Benson’s scalarization and 

Pascoletti-Serafini scalarization techniques are chosen for solving the considered multi-objective problem.  

The reason for selecting these methods is the ease of application and requirement of the smaller number of 

method parameters. The use of other scalarization technique has been determined as a future work, which 

is mentioned in the last section in detail. Finally, with this study, release date, and due date, which are not 

considered much in the literature, are also included in the scheduling process at the same time as the 

sequence-dependent setup time constraints. 

 

3. MULTI-OBJECTIVE OPTIMIZATION 

 

Many of the real-life problems can be handled as a multi-objective optimization problem (MOP), actually. 

As also Eicfelder [21] mentioned, these problems with conflicting objectives have many Pareto solutions 

instead of one, rather than a single best solution.  

 

Traditional single objective optimization solution methods cannot be used for multi-objective optimization 

problems in which we aim to optimize multiple objectives. Scalarization techniques, evolutionary multi-

objective optimization methods, and goal programming are the most preferred solution methods for these 

kinds of problems. As scalarization techniques are used to solve the multi-objective single machine-

scheduling problem in this study, some of the scalarization techniques will be explained in the following 

section. 

 

3.1. Scalarization Techniques 

 

In general, scalarization means converting a MOP into a suitable single optimization problem. Weighted 

Sum Scalarization, ε-Constraint, Weighted Chebychev’s, Conic Scalarization, Pascoletti–Serafini and 

Benson’s are the main scalarization methods used in the solution of MOP. 

 

Basic prerequisites 

 

A multi-objective optimization problem (MOP) is defined as  

 

min   
𝑥∈𝑋

{𝑓1(𝑥), … , 𝑓𝑝(𝑥)}           (MOP) 

 

where 𝑋 ⊂ ℝ𝑛 is a feasible set and 𝑓: ℝ𝑛 → ℝ𝑝  is a vector valued objective function. 𝑌 = 𝑓(𝑋) ⊂ ℝ𝑝 

represents the image of the feasible set in the criterion space. Optimal solutions of MOP are considered in 

the sense of Pareto optimality (efficiency).  

 

A feasible solution x ∈ X is called efficient if there doesn’t exist x′ ∈ X such that fk(x′) ≤ fk(x) for all k =
1, … , p and fj(x′) < fj(x) for some j. In other words, no solution is at least as good as x for all objective, 

and strictly better for at least one [22].  

 

Definition 1. The solution notion for (MOP) is defined with respect to an ordering cone which is used for 

ordering the criterion space ℝp [23]. We use the natural ordering cone defined as ℝ+
𝑝

=

{𝑥 ∈ ℝ𝑝: 𝑥𝑗 ≥ 0, ∀𝑗 = 1,2, … , 𝑝}. 

 

Definition 2. The set 𝑌 is called ℝ+
𝑝

–closed if 𝑌 + ℝ+
𝑝

 is closed. Similarly, 𝑌 is called ℝ+
𝑝

–convex if 𝑌 +

ℝ+
𝑝

 is convex. If 𝑋 is a convex set and 𝑓1, 𝑓2, … , 𝑓𝑝 are convex functions, then 𝑌 + ℝ+
𝑝

 –convex [23]. 
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Definition 3. A feasible solution 𝑥 ∈ 𝑋 is called efficient, weakly efficient or properly efficient solution of 

MOP if 𝑦 = 𝑓(𝑥) is minimal, weakly minimal or properly minimal element of 𝑌, respectively [24]. 

 

3.1.1. Weighted Sum Scalarization  

 

It is not wrong to say that the Weighted Sum Scalarization (WSS) method, which was first introduced by 

Gass and Saaty [25], is the most preferred method for scalarization. If all the weights (𝑤𝑖, 𝑖 = 1, … , 𝑝) are 

positive, the minimum of following WSS is Pareto optimal 

 

min
𝑥∈𝑋

  ∑ 𝑤𝑖  𝑓𝑖(𝑥)
𝑝
𝑖=1            (WSS (𝑤)). 

 

Although WSS is the commonly most preferred scalarization method because of its practical 

implementation, there are some limitations.  

 

The 𝑤𝑖 parameters are determined by decision makers. However, it’s not always possible to obtain all 

proper efficient solutions of the scalarized problem by all weights. iv. The weights of objectives are taken, 

while the reference point information is not considered in this method. If the problem has the characteristic 

of being convex, this scalarization method can guarantee to obtain weakly and properly efficient solutions. 

In addition to these limitations, the method does not require additional restrictions, which provides ease of 

use.  

 

3.1.2. Benson’s scalarization 

 

One of the other common used scalarization technique is Benson’s Scalarization (BS) Method introduced 

by Benson [26]. Benson’s method [23,26] gives an examination of the existence of efficient and properly 

efficient solutions. 

 

The scalarized optimization problem (BS) can be defined as given: 

 

max  ∑ 𝑙𝑘
𝑝
𝑘=1        (BS), 

 

s.t. 𝑓𝑘(𝑥0) − 𝑙𝑘 − 𝑓𝑘(𝑥) = 0, 𝑘 = 1, 𝑝, 

 

𝑙𝑘 ≥ 0, 𝑘 = 1, 𝑝      𝑥𝜖𝑋, 
 

where 𝑥0𝑓𝑟𝑜𝑚 𝑋 is a feasible solution, and the efficiency of 𝑥0 is checked by 𝑙1−norm. 

 

The background of BS method is given by [24]. The BS method can be applied only in the case when the 

ordering cone C equals 𝑅+
𝑛. When the set (𝑓(𝑥0) − ℝ+

𝑝
) ∩ 𝑓(𝑋) is unbounded, BS cannot guarantee to give 

finite solution. BS doesn’t provide conditions that guarantee the production of properly efficient solutions, 

while it provides the necessary and sufficient conditions. The problem size increases when we add p number 

of new decision variables 𝑙𝑖, p number of functional constraints 𝑓𝑖(𝑥0) − 𝑙𝑖 − 𝑓𝑖(𝑥) = 0, 𝑖 = 1, … , 𝑝 and p 

nonnegativity constraints 𝑙 ≧ 0, for the new decision variables. Beside these disadvantages, BS doesn’t 

require convexity assumptions. And also, there is no need to take any parameter from the decision maker 

like objective weights and reference points.  

 

3.1.3. Pascoletti-Serafini Scalarization  

Like WSS and BS methods, Pascoletti-Serafini Scalarization Method (PSS) introduced by Gerstewiz [27] 

is also a common used scalarization method where optimality is defined through convex cones. The 

scalarized problem using PSS is given as follows: 

min  𝑡         (PSS), 

 

s.t. 𝑎 + 𝑡𝑟 − 𝑓(𝑥) 𝜖 ℂ, 
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𝑥 𝜖 𝑋, 𝑡 𝜖 ℝ. 

 

where 𝑎 𝜖 ℝ and 𝑟 𝜖 ℂ are the problem parameters of the (PSS). The main properties of PSS method are 

given by [24]. Like BS method, PSS also isn’t limited by convexity. The solutions which is obtained using 

PSS scalarization is at least weakly efficient. Beside these advantages, there’re some limitations of the 

method. The PSS method can be applied for arbitrary ordering cone 𝐶. The boundedness from below is not 

an essential condition for the PSS method. The method uses additional functional constraints of the form 

𝑎 + 𝑡𝑟 − 𝑓(𝑥) 𝜖 ℂ, 𝑤ℎ𝑖𝑐ℎ may an increase in the problem size. If for the given parameter 𝑎 𝜖 ℝ𝑛, the 

straight line { 𝑎 + 𝑡𝑟 : 𝑡 𝜖 ℝ } does not intersect the objective space 𝑓(𝑋) for some 𝑟 𝜖 ℂ, then the same set 

of weakly minimal points will be obtained for all 𝑟 𝜖 𝑖𝑛𝑡(ℂ). So, it becomes very important to select the 

parameter 𝑟 from the interior of the ordering cone, to guarantee existence of an optimal solution to PSS. 

 

4. PROBLEM DEFINITION AND MATHEMATICAL MODEL 

 

In this study, the problem considers assigning a set of jobs to a single machine. These jobs have non-

identical process times. A setup time occurs before a job is processed on a machine and differs based on 

the processed job.  In addition, the jobs have also release dates and due dates. It is also assumed that there 

isn’t any preemption for the jobs. The mixed-integer mathematical model of the problem was developed 

based on the model, which was proposed by Velez-Gallego [15]. The main difference of the studied model 

from the model of [15] is the second objective function, which minimizes total tardiness. Besides that, a 

new constraint group was added to calculate the tardiness of each job if there exists. The notation of the 

problem is given as follows 

 

Sets  

J: Set of jobs  

J’: Extended set of jobs 

  

Parameters  

𝑝𝑗: Process time of 𝑗𝑡ℎ job 

𝑟𝑗: Release date of 𝑗𝑡ℎ job 

𝑑𝑗: Due date of 𝑗𝑡ℎ job 

𝑠𝑗𝑘: Setup time needed to start 𝑗𝑡ℎ job after job k  

 : Sum of the process times of all jobs in J  

M: A very large positive real number  

 

Decision Variables  

 

𝑥𝑗𝑘 = {
1, 𝑖𝑓 𝑗𝑜𝑏 𝑘 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑗𝑢𝑠𝑡 𝑎𝑓𝑡𝑒𝑟 𝑗𝑜𝑏 𝑗 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

𝑦𝑗: 𝑗𝑡ℎ job’s setup starting time 

𝑇𝑗: Tardiness of job j . 

 

In order to add the setup time of the first job in the schedule, a dummy job is added to the set of jobs. The 

dummy job doesn’t have an effect on objective function values, because all parameters are equal to zero. 

The proposed multi-objective mixed-integer programming model of the problem is given as follows:  

 

min 𝐶𝑚𝑎𝑥 = 𝜋 + ∑ ∑ 𝑠𝑗𝑘𝑘𝑗 𝑥𝑗𝑘 + 𝜎                                                                                                            (1) 

 

min ∑ 𝑇 = ∑ 𝑇𝑗𝑗                       (2) 

 

subject to 
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∑ 𝑥𝑖𝑗 = 1𝑖∈𝐽′ ,       ∀𝑗 ∈ 𝐽′                                   (3) 

 

∑ 𝑥𝑖𝑗 = 1𝑗∈𝐽′ ,      ∀𝑖 ∈ 𝐽′                    (4)  

 

𝑦1 = 0                           (5) 

 

𝑦𝑖 + 𝑝𝑖 + ∑ 𝑠𝑞𝑖𝑥𝑞𝑖𝑞∈𝐽′ − 𝜋 − ∑ ∑ 𝑠𝑗𝑘𝑥𝑗𝑘𝑘∈𝐽′𝑗∈𝐽′ − 𝜎 ≤ 0,       ∀𝑖 ∈ 𝐽′                 (6) 

 

𝑦𝑖 + 𝑝𝑖 + ∑ 𝑠𝑞𝑖𝑥𝑞𝑖𝑞∈𝐽′ + 𝑀(𝑥𝑖𝑗 − 1) − 𝑦𝑗 ≤ 0,     ∀𝑖 ∈ 𝐽′, 𝑗 ∈ 𝐽′               (7) 

 

𝑦𝑖 + 𝑝𝑖 + ∑ 𝑠𝑞𝑖𝑥𝑞𝑖𝑞∈𝐽′ + 𝑝𝑖 − 𝑑𝑖 ≤ 𝑇𝑖,      ∀𝑖 ∈ 𝐽′                      (8) 

 

𝑟𝑗 − 𝑦𝑗 ≤ 0,      ∀𝑗 ∈ 𝐽′                          (9) 

 

𝑥𝑖𝑗 ∈ {0,1}       ∀𝑖 ∈ 𝐽′, 𝑗 ∈ 𝐽′, 𝑖 ≠ 𝑗                      (10) 

 

𝑦𝑖 , 𝑇𝑖 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟     ∀𝑖 ∈ 𝐽′ .                (11) 

 

The problem has two objectives as minimizing the makespan (𝐶𝑚𝑎𝑥) in Equation (1) and minimizing total 

tardiness in Equation (2). The 3𝑡ℎ and 4𝑡ℎ constraint groups provide that each job has only a predecessor 

and a successor. Constraint 5 guarantees that the dummy job is the first job in the schedule. The starting 

times of the remaining jobs in the schedule are calculated in constraint groups (6) and (7). The tardiness 

value of each job is computed using the constraint group (8). Constraint group (9) provides that a job can’t 

be assigned to the machine before its release time. Constraint (10) and (11) corresponds to the domain of 

the decision variables.  

 

To validate the mathematical model, eight test problems generated using rules mentioned by Velez-Gallego 

et al. [15], Tan et al. [28], and Ragatz [29]. The numbers of jobs in each problem are 15, 25, 35, 45, 55, 65, 

75 and 85. The problems with 15, 25, 35 and 45 jobs refer to small-sized problems and the others refer to 

large-sized problems. The job processing times are normally distributed and the mean and standard 

deviation parameters of the normal distribution are 100 and 9.5 respectively. The setup times of each job 

are uniformly distributed with a mean of 9.5 and the range of set up times is taken as 5. The due dates are 

calculated using a parameter, which is called tardiness factor (TF). TF indicates the mean value of the 

distribution from which the due dates are generated.  TF means approximately to the expected proportion 

of jobs that will be tardy in a random sequence of the jobs.  The mean parameter of the distribution of due 
dates is calculated as (1‑ TF)(N)(mean processing time) where N refers to the number of jobs [29]. TF is 

taken as 0.2. Job release dates have a discrete uniform distribution with the interval [1, L], where L=N·ρ·R. 

Here, n represents the number of jobs in the test problem, ρ is the expected processing time, and R is a 

range factor that is used for controlling the dispersion of the release dates over time [15]. The range factor 

R is also taken as 0.2. The parameters that are used to generate test problems are summarized in Table 1. 

 

Table 1. Parameters of generated test problems 

N Processing Times Setup Times TF R 

{15, 25, 35, 45, 55, 65, 75, 85} 
μ = 100 

σ =9.5 

μ = 9.5 

r = 5   
0.2 0.2 

 

The generation procedure of test problems is explained in Figure 1. 
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Figure 1. Test problem generation procedure 

 

Afterwards, a dimensional analysis is conducted, and the related data are given in Table 2. 

 

Table 2. Dimensional analysis 

Problem 

No 

# of 

jobs 

# of decision 

variables 

# of 

constraints 

1 15 288 337 

2 25 728 807 

3 35 1368 1472 

4 45 2208 2342 

5 55 3248 3412 

6 65 4488 4682 

7 75 5928 6152 

8 85 7568 7822 

 

Before running test problems, the mathematical model of the problem is updated according to the 

scalarization techniques. Using WSS, the objective function of the model transforms into Equation (12) and 

Equation (13) is added to the model 

 

min 𝑧 = (𝑤1 × 𝑧1) + (𝑤2 × 𝑧2)                    (12)          

 

𝑤1, 𝑤2 ≥ 0 .                       (13) 

 

The equations between Equation (14) and Equation (17) provide Benson’s scalarization. 

 

max 𝑙1 + 𝑙2                        (14) 

 

s.t.   𝑓1(𝑥0) − 𝑙1 − 𝑓1(𝑥) = 0                     (15) 

 

𝑓2(𝑥0) − 𝑙2 − 𝑓2(𝑥) = 0                  (16) 

 

𝑙1, 𝑙2 ≥ 0                       (17) 

 

where 𝑙1 and 𝑙2 are decision variables of Benson’s scalarization technique, 𝑓1 and 𝑓2 denote Cmax and total 

tardiness objectives, respectively. 

 

Lastly, in order to apply PSS, the equations between Equation (18) and Equation (21) are added to the 

model. 

 

min t                         (18) 
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s.t.   a1 + t ∗ r1 − 𝑓1(𝑥) = 0                     (19) 

 

 a2 + t ∗ r2 − 𝑓2(𝑥) = 0                   (20) 

 

t ∈ ℝ  .                       (21) 

 

After the scalarization of the objective functions, the functional constraints, which are given between 

Equation (3) and Equation (11), are added to the model without any modification. 

 

5. COMPUTATIONAL EXPERIMENTS 

 

The scalarized multi-objective mathematical models and scalarization techniques are run using GAMS 

version 23.3. If only minimization of Cmax is considered as a single objective function, the problem it shelf 

is an NP-Hard problem. Therefore, the proposed model is allowed to run only 15 minutes for the small-

sized problems and 30 minutes for the large-sized ones. Furthermore, the smallest problem was solved in 

order to show that the two objective functions are conflicting. The objective function weights were changed 

in the range of 0-1 and the objective function values were obtained by WSS. As a result, while one objective 

function value increased mostly, a decrease was detected on the other's value. The graph of the objective 

function values obtained of this experiment is given in Figure 2 and the z1 and z2 denote Cmax and total 

tardiness objective values respectively. 

 

 
Figure 2. The values of objective functions for Problem 1  

 

The parameters of the methods, which are tuned as (1,10) at the beginning, are changed by increasing and 

decreasing the values by one in each run. The obtained results for the small and large-sized test problems 

are given in Table 3 and Figure 3, respectively. The numbers from 1 to 8 represent the generated problem 

numbers. z1 (𝐶𝑚𝑎𝑥) and z2 (∑ 𝑇𝑗𝑗 ) refer to the objective function values which are given in Equations (1) 

and (2). The values of objective functions, which are obtained by solving models individually, are also 

given in Table 3. Individual problems are solved under the same time limit.  When all problems are solved 

separately for each objective function, the objective function values obtained are better for some problems 

when compared with the Pareto results obtained by the scalarization techniques used. For instance, for 

problem 1, the better z2 value is obtained by WSS than the problem with the only objective function as 

minimization of z2. However, we can’t talk about the same situation for z1 value. This is the result of the 

time limitation given by the decision makers. 
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Table 3. The objective function values 

 

No 

Individual 

objective 

function 

values 

WSS Benson PSS 

z1 z2 z1 z2 z1 z2 

1 
z1= 2365 

z2=6465 

2396 6624 2644 10521 2850 6465 

2387 6491 2610 9306 2855 6465 

2389 6472 2582 9495 2860 6465 

2385 6507 2582 9495 2855 6442 

2377 6493 2468 7649 2860 6442 

2372 6444 2892 14084 2875 6464 

2379 6479 2594 9084 2905 6519 

2374 6442 2683 10545 2876 6442 

2379 6479 2694 10729 2894 6471 

2372 6472 2570 9319 2910 6496 

2 
z1=3960 

z2=20439 

4027 20215 3925 18652 5809 19917 

4009 20142 3924 18735 5932 20315 

4026 20135 3927 18679 5715 19547 

4025 20013 3924 18611 5934 20274 

4003 19953 3931 18774 5804 19807 

4010 20223 3925 18777 5767 19658 

4014 20062 3926 18733 5950 20257 

3981 19997 3924 18642 5778 19648 

3997 19895 3937 18847 5799 19698 

4005 20008 3927 18647 5958 20214 

3 
z1=6123 

z2=38620 

5728 36462 5755 37645 5880 45511 

5719 36147 5799 37578 5701 39482 

5757 36857 5768 37623 5656 37547 

5741 36121 5771 38295 5741 40335 

5743 36878 5768 37405 5744 40116 

5764 36600 5756 37576 5775 41128 

5725 36298 5730 36947 5716 38712 

5691 35824 5752 37256 5724 39601 

5725 36884 5750 37404 5773 41269 

5718 36349 5784 37574 5765 40968 

4 
z1=7429 

z2=68077 

7507 70279 7421 69136 9267 80743 

7461 71019 7392 68957 8835 76901 

7408 69453 7429 68138 9169 79719 

7442 69495 7389 68158 8690 75472 

7434 69565 7395 67940 9728 84394 

7449 69573 7404 67439 8446 73195 

7383 68960 7454 67149 10293 89104 

7410 69610 7395 68575 9267 80136 

7481 71364 7420 68047 9538 82392 

7410 68147 7379 67939 10703 92357 
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Table 3. The objective function values (continued) 

No Individual 

objective 

function 

values 

WSS Benson PSS 

z1 z2 z1 z2 z1 z2 

5 

z1=9004 

z2=97402 

 

9106 98643 9033 98498 20827 111762 

9180 99441 9130 103837 19010 101968 

9071 95736 9130 104739 20110 107821 

9068 97655 9093 101797 20194 108226 

9101 98007 9181 104894 20326 108885 

9072 98074 8992 98059 21881 117165 

9077 97867 9048 98935 19878 106390 

9051 97799 9168 104997 21796 116603 

9022 97380 9083 101654 22311 119310 

9000 95433 9086 102296 19766 105654 

6 

z1=10972 

z2=142778 

 

10692 137170 11233 171623 13497 153163 

10711 134900 11131 167881 13756 155988 

10723 137310 10912 156215 14464 163894 

10686 132250 11083 166887 15193 172029 

10732 137420 11177 170038 14863 168163 

10773 136860 11159 170125 14275 161384 

10749 138130 11136 168107 15055 170078 

10741 137900 11227 170097 15313 172869 

10645 136120 10913 156327 15048 169751 

10721 138260 11089 168925 15427 173895 

7 

z1=12966 

z2=197984 

 

12561 191040 14435 336893 33676 248410 

12608 190207 14367 325293 32015 236113 

12712 201499 14497 332644 35699 263235 

12640 199023 13826 296475 36959 272478 

12636 196967 13932 306178 33957 250295 

12609 196870 14368 331271 35078 258511 

12604 196425 13875 295087 35734 263295 

12692 201461 14427 336067 34682 255494 

12803 212373 13932 305532 34568 254608 

12582 195176 14121 317358 36957 272151 

8 

z1=15153 

z2=244719 

 

14092 227990 15706 382912 62716 365147 

14022 230660 15965 398790 50131 291814 

13998 227890 15899 388775 51607 300339 

14138 234170 15899 380155 49318 286959 

14133 234270 15612 364889 50723 295071 

14066 228870 15781 376740 57230 332855 

14089 232540 16079 407228 57390 333715 

14206 244550 15940 396387 54393 316222 

14023 231690 15982 401947 56581 328874 

14354 250380 15806 385642 53109 308627 

 

In Table 3, some Pareto solutions obtained by WSS, Benson and PS scalarization methods are given. As 

explained in Section 5, the proposed scalarized models are allowed to run only 15 minutes and 30 minutes 

for the small and large sized problems, respectively. For instance, for problem 1, while z1 value is 2387 in 

solution 2, it’s increased to 2389 in solution 2. However, while z2 value is 6491 in solution 2, it’s decreased 

to 6472 in solution 3. It means that, solution 2 and solution 3 obtained by WSS method for problem 1, are 

not dominating each other. So, they’re Pareto points. The same nondomination relation can be seen on the 

some solutions obtained by Benson’s method and PSS for problem 3. For this problem, while z1 value is 
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5768 in solution 5, it’s decreased to 5756 in solution 6. However, while z2 value is 37405 in solution 5, it’s 

increased to 37576 in solution 6. It means that, solution 5 and solution 6 obtained by Benson’s method for 

problem 3, are not dominating each other. Similarly, while z1 value is 5741 in solution 4, it’s increased to 

5744 in solution 5. However, while z2 value is 40355 in solution 4, it’s decreased to 40116 in solution 5. It 

means that, solution 4 and solution 5 obtained by PSS for problem 3, are not dominating each other. So, 

some Pareto points are obtained by Benson’s method and PSS, also. Beside these Pareto solutions, weakly 

efficient solutions are also obtained by PSS. For problem 1, while z2 values of the first three solutions are 

the same, their z1 values are changing.  

 

Figure 3 shows the solution spaces obtained by all 3 techniques for each problem.  

 

 

 
 

Figure 3. Obtained solution spaces  

 



440 Zeynep Idil ERZURUM CICEK, Zehra KAMISLI OZTURK/ GU J Sci, 33(2): 429-444 (2020) 

 

In a MOP study, there are two goals to be reached: convergence to the Pareto optimal set and maintenance 

of diversity in solutions of the Pareto optimal set [30]. Some metrics can be used to determine the quality 

of MOP problems’ solutions. Jiang et al. [31] categorized these metrics into four groups as namely capacity, 

convergence, diversity, and convergence-diversity. Some of the metrics can be reviewed from the 

classification table, which is presented by Jiang et al. [31]. In this study, the spread indicator () as a 

diversity metric, is used for evaluating the performance of chosen scalarization techniques. The spread 

indicator given in Equation (22) measures the extent of spread achieved among the obtained solutions [32]: 

 

Δ =
𝑑𝑓+𝑑𝑙+∑ |𝑑𝑖−�̅�|𝑁−1

𝑖=1

𝑑𝑓+𝑑𝑙+(𝑁−1)�̅�
  .                  (22) 

 

The 𝑑𝑓 and 𝑑𝑙 parameters are the Euclidean distances between the extreme solutions and the boundary 

solutions of the obtained solutions, which are in the nondominated set. The geometric representation of the 

distance parameters is given in Figure 4.   

 

 
Figure 4. The distances of Δ metric 

 

The figure illustrates all distances mentioned in equation (12) for two objectives as 𝑓1 and 𝑓2. The parameter 

�̅� is the average of distances of N solutions that are on the best-nondominated front. With solutions, there 

are consecutive distances [30].  

 

The  values calculated for each technique are given in Table 4. We apply this indicator after normalization 

of the objective functions [30]. As given in Equation (23), min-max normalization converts a value d from 

P to d’ in the range [0,1] [33] 

 

𝑑′ =
𝑑−min (𝑃)

max(𝑃)−min (𝑃)
  .                  (23) 

 

Table 4. Δ values 

Number of jobs WSS Benson PS 

15 0.580 0.871 0.661 

25 0.339 0.603 0.418 

35 0.520 0.434 0.751 

45 0.622 0.453 0.567 

55 0.729 0.595 0.615 

65 0.575 0.652 0.625 

75 0.762 0.545 0.633 

85 0.721 0.510 0.560 

Average 0.606 0.583 0.628 

Standard deviation 0.138 0.139 0.107 
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As seen from Table 4, the  values for Benson’s method are lower than the other techniques for the 

problems, which have 35, 45, 55, 75 and 85 jobs. In the rest of the problems, the  values of WSS method 

are better. Furthermore, the average  value of Benson method is better than  values of WSS and PSS 

techniques. Figure 5 also shows the distribution of  values. The reason for the better  values of the Benson 

method is that the objective function values obtained with different parameters of the method have less 

variation.  

 

 
Figure 5. The Δ values 

 

Due to the time constraint for problem solution, a limited number of Pareto solutions were obtained for 

eight problem types by the three scalarization methods. The spread refers to the range of values covered by 

the solutions.  

 

6. CONCLUSIONS 

 

It is known that any permutation of the jobs gives the same Cmax when the main purpose is the minimization 

of Cmax in the single machine problem. However, when the problem is extended by considering setup times 

and the release dates the problem gets more complicated. In this study, an NP-hard multi-objective 

scheduling problem with special constraints is considered and three scalarization techniques are coded for 

the solution of the test problems. In general, multi-objective metaheuristics are developed for multi-

objective problems in the literature. The main contribution of this study is performing scalarization 

techniques in the solution of multi-objective problems instead of metaheuristics. Moreover, a time limit for 

the run of each model is applied in order to simulate a manufacturing firm that has to decide the production 

schedule in short periods. The time constraint allowed us to achieve the best possible solutions within the 

given time without achieving optimal results. 

 

The obtained results are evaluated using Δ performance metric. As discussed in Section 5 the Δ values, 

which were obtained for Benson’s method, are mostly better than other techniques for the generated test 

problems. This demonstrates the results obtained with Benson’s method have a low degree of variation and 

the Pareto fronts can be obtained using this scalarization technique.  To improve the solutions obtained, the 

running parameters of chosen scalarization techniques especially for Benson’s method, should be optimized 

to obtain better Pareto fronts and the time limits can be increased.  

 

The 15 and 30 minutes of running times are acceptable for this NP-hard problem, but while the problem 

size increases, it becomes compulsory to increase the running time for more than 30 minutes. Therefore, 

multi-objective metaheuristic algorithms can be used. Also, different scalarization techniques such as 

Conic, Weighted Chebychev’s and ε-Constraint scalarization techniques can be experienced. 
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