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Highlights

« This paper present a new mixture probability distribution.

* The aim of the proposed distribution is to present a more flexible model for lifetime data.
 Some important properties of the proposed distribution are studied.

« Simulation study is carried out to examine the accuracy of the MLE for different sample sizes.
» The usefulness of this distribution is examined with some real lifetime data from literature.

Abstract

Article Info o . . S S
A new distribution called New Mixture of Exponential-Gamma Distribution is presented in this

paper. This new distribution contains exponential and standardized Lindley distributions as sub
Received: 26/10/2018 models. Some of the structural properties of the proposed distribution which include the survival
Accepted: 24/07/2019 function, hazard rate function, moments, moment generating function, quantile function,

distribution of order statistics and Renyi entropy are obtained. The maximum likelihood method of

estimation was used to estimate the parameters of the distribution. A Simulation study was carried
Keywords out to examine the performance and accuracy of the maximum likelihood estimates of the proposed
distribution. An application of the proposed distribution to two real lifetime datasets is presented to
illustrate its usefulness and superiority over some existing related models.

Gamma Mixture
Structural properties
Standardized Lindley
Maximum Likelihood
Estimation

1. INTRODUCTION

In statistics, modeling and analyzing lifetime data have become very vital because of its application to real
life data in many fields such as engineering, biomedical, social sciences, finance amongst others. To this
effect, many classical distributions have been used to fit these kind of data sets. Some of these classical
distributions include but not limited to the Exponential, Weibull, Gamma, Rayleigh distributions and their
generalizations: See (Gupta and Kundu, [1]) for more details. Here we consider the popular gamma
distribution for analyzing real life data. A random variable Y is from the gamma distribution with shape
parameter 5 and rate parameter A if the probability density function (pdf) and cumulative distribution

function (CDF) are respectively given by
-1
/1(/13/)'5 oA

fly; g, 1) = : y>0, g,A>0 (1)
06,0215
and ( )
\B, Ay

F\y; 8, A)=—7+—=; ¥y>0, 4,4>0 (2
b:6.9=205)
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y
Wherey(a,y):jt“‘le‘tdt is the lower incomplete gamma function and the corresponding upper
0

o0

incomplete gamma is written as F(a,y)zjt“‘le‘tdt. It can be shown that
y

T(a)=T(a,y)+rle.y).

Again, exponential distribution which is a special case of the gamma distribution when the shape parameter
£ =1, isapopular classical probability distribution used for analysing real life data.

Let Y be a random variable from exponential distribution with respective pdf and CDF as

f(y,A)=4e¥; y>0, 4>0 3)

and

F(y,A)=1-e¥.y>0, 1>0. (4)

However, generalizations of the gamma distribution have been introduced by many authors: (Nadarajah
and Gupta, [2]) introduced a generalized gamma distribution with application to drought data. A
generalization of the gamma distribution was also introduced by (Mahdi and Gupta, [3]), (Stacy, [4])
introduced a new generalization of the gamma distribution, (Elbatal et al., [5]) introduced a new generalized
Lindley distribution and (Gayan and Mavis, [6]) presented a generalized power Lindley distribution with
application to cancer patients data, (Samir et al., [7]) proposed the log-gamma-Rayleigh distribution. Other
related literature can be found in [8 — 15] and many others.

The concept of mixture distributions is to produce a new distribution which should have more flexible
behaviour compared to the based (mixed) distributions. It is one of the most crucial ways to obtain new
probability distributions in applied probability used in several research areas. Sattayatham and Talangtam
[16], introduced the finite mixture lognormal distributions for fitting of motor insurance claims data.
Satsayamon, et al. [17] presented a new family of generalized gamma distribution as a mixture of the
generalized gamma and length biased generalized gamma distributions.

This study is motivated as a result of lack of published work in the mixture of gamma distribution family
with mini-modal shape in any literature to the best our knowledge. Mini-modal in this contest is used to
describe a curve with one minimal point and one maximal point. Thus we present a lifetime model called
“New Mixture of Exponential-Gamma (NMEG) Distribution”. The main idea is to choose the mixing
proportion in terms of the existing parameters such that a more flexible distribution is generated. The new
distribution include as special cases the exponential, gamma and standardized Lindley distributions. We
investigate its properties and demonstrate that this new distribution can serve as an alternative model to
some existing classical distributions.

2. THE NEW MIXTURE OF EXPONENTIAL-GAMMA DISTRIBUTION

Let fl(y), fz(y) be the pdfs and Fl(y), Fz(y) be the CDFs of exponential and gamma distributions

respectively of a random variable Y, then the pdf and CDF of the proposed distribution of random variable
Y are respectively of the form:



550 Nosakhare EKHOSUEHI, Lawrence Chukwudumebi NZEI, Festus OPONE/ GU J Sci, 33(2): 548-564 (2020)

fy)=why(y)+@-w)f,(y)

(%)
and
F(y) = WFl(y)+ (1_ W)Fz (y) ©6)
where 0 < w <1such thatw = ﬁ is called the mixing proportion.
+
Using (1) and (3) in (5), the pdf of the proposed mixture distribution is obtained as follows
£-1
1 — ANA _
ty; pa)=——ae N+ P () A
1+ B 1+4  1(B)
£-1
A A —
_ 1+ﬂ(y) e M. y50150 g0 )
1+ B ()
and the corresponding CDF is obtained by substituting (2) and (4) into (6) as
1
Fy, B, 4) = (1_e—ﬂy)+ B (7(,3,/1)’)) |
1+ p 1+ r(p)
_ A
= {l—e Ay+M} y>0, 4>0, p>0. (8)
1+ B ()

The distribution with pdf (7) and CDF (8) is called the “New Mixture of Exponential-Gamma (NMEG)”
distribution.

2.1. Sub-Model of The NMEG Distribution

The NMEG distribution includes some existing distributions as special cases:
1) If the shape parameter # =1, then the NMEG reduces to exponential distribution with pdf
(v A)=2e?; y>0250
2) IfA=1,the NMEG reduces to standardized Lindley distribution with pdf

f-1
1 Py

f = 1

s ) s (o)
3) If w=0, NMEG distribution reduces gamma distribution with pdf

£-1
A2y)
f ly)=—"——;y>0,48, 4>0.
o) r(p)

e Y. y>04>0.

2.2. The Shape of NMEG Density Function
The shape of the NMEG distribution pdf in (7) is discussed from Theorem 1.

Theorem 1. The density function, T (') of the NMEG distribution accommodates the following shapes:

(i) Decreasing when 0 < <1, A > Oforall y >0,
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(i) Unimodal when 1< <2, A > Oforall y >0,
(iii) Decreasing-Increasing-Decreasing when 8> 2, A >0 forall y > 0.

Proof.

We can study the behavior of T () by considering the behavior of 77'(y) and 77"'(y) where
n(y) =In f(y), as follows:

n(y)=In f(y)= In{ } In[r(8) + g7 1yP 1]~ oy

A
1+ 8)r(p)
pB-DF 7y
L)+ Pty

r(p)+ g1y P (s -1y - 2281y P8 _|ps - P -1y 2]
rp+ prP Ly AL

(i f0< f<landA >0,7'(y) <O forally > 0. Thissimply implies monotonic decreasing
function.

(i) fl< g <2andA >0, "'(y) <Oforally > 0. This means that f () has a maximum

n'(y) = )

n"(y) =

.(10)

1
int (Mode) which is—.
point (Mode) whic |321

(iii) This is considered from the alternating signs of 7'(y) defined in (9). For 5 > 2, the sign of 77'(y)
changes from negative to positive and then back to negative as y increases. This shows that the pdf
is Decreasing-Increasing-Decreasing.

Figure 1 is the plot of the pdf of NMEG distribution for some values of parameters to visualize Theorem
1 above.
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Figure 1. Thepdf of NMEG distribution for different
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2.3. The Survival and Hazard Rate Function

The survival (Reliability) and the hazard rate functions of the NMEG distribution are defined respectively
as

F(y: 4.8)=1-F(y: 4. 5) =1~ 1+1/3 {“ ﬂyr((ﬁﬂgy) _e_/ly} (11)
and
Py Ty
oy 1) fy) _ ") 12
A8 _1—F(y)_1+ﬂ_{1+ﬁ7’(/3,/1)/)_e—/1y} )
r(p)

2.4. The Shape of NMEG Hazard Rate Function
The shape of the NMEG distribution hazard rate functions in (12) is discussed from Theorem 2.

Theorem 2. The shape of the hazard rate function of the NMEG distribution can be summarized as follows:

(i) Constantfor =1 forall A, y >0,

(ii) Decreasingwhen <1, forall A, y >0,
(iii) Increasing when 1 < 2 < 3, forall 4, ¥y >0,
(iv)Bathtub if >3, 4 >1forall y > 0.

Proof.

To study the shape of the hazard rate function, it is sufficient to examine the behavior of @(y) defined in
Glasser [18] as

fr
B(y) = —% - —diy In[f (y)]
=-17'(y) -
Then
P'(y) =-n"(y)
where 77"'(y) are defined in (10). Using Theorem (a) and Lemma (b) pg.668-670 in Glasser [18], it follows
that:
(i) At f=1andA >0, ¢'(y)=0(Constant). Then the hazard rate function is constant for all

y>0.

(i) If  <landA > 0, we can clearly see that "'(y) >0 for all y >0 implies that¢'(y) <O.
Hence, the hazard rate function is decreasing.

(iii)Ifl1< B <3, forall A, Y >0, we have 7"(y) <0 for all y>0 implies that¢’(y) > 0, this
means increasing hazard rate function.
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(iv) Following the condition stated in Glasser [18], 7"(y) <0 changes its sign from negative to
positive as Y increases with 5 > 3, A > 1. Then the hazard rate function is said to be bathtub

3

shaped with minimal pointat Y = — 1+ —

3

Figure 2 is the plot of the hazard rate function NMEG distribution for some values of parameters to
visualiz Theorem 2 above.
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Figure 2. The Hazard Rate Function of NMEG distribution

Hence, the superiority and flexibility of the proposed distribution over some existing distribution which
includes but not limited to Exponential, Lindley and Gamma distributions.

3. STATISTICAL PROPERTIES OF THE NMEG DISTRIBUTION

3.1. Moment and Related Measure

The k™ raw moment of a continuous random variable Y denoted by g, is defined as

u =EXN)=[" y*f(y)dy. (13)
Upon substituting (7) into (13) the k™ moment of the NMEG distribution is given by:
p£-1
' y) —ﬂy
Uy = E( ) 'f y dx,
1+ 7% ()

-y iz kep-1,—AY
Hﬂ{ijy e "Jdy+ ('B).([y e "dy;.

Substituting Z = Ay, we have

k s
My, = ! }LI . e_zdz+'8ij-i e Zdz
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1 {ﬂr(mﬂ) s F(k+ﬂ—1)},

= l+ﬂ ﬂ,kﬂ + F(ﬂ) ﬂ’k+1
1 Br(k +ﬂ)}
= k! . 14
ﬂk(1+ﬁ){ ) 9

It becomes easy to obtain the first four raw moment of the NMEG distribution as follows

r_ 1 2
H=H = Z(l+ﬂ){1+'8 }

Table 1 shows the values of mean (,u) standard deviation (0), coefficient of variation (5) measure of
skewness (Sk) and measure of kurtosis (KS) for some selected parameter values.

Table 1. Table of Mean, Standard Deviation, Coefficient of Variation, Skewness and Kurtosis

Parameters
p A M o I S, K,
0.2 0.2 4.3333 4.8872 1.1279 -0.2477 8.7163

0.5 1.7333 19550 1.1279 0.2347 7.0053
1.4 0.6190 0.6982  1.1279 1.6821 1.8722
1.7 0.5098 0.5750  1.1279 2.1646 0.1612
2.0 0.4333 0.4887  1.1279 2.6470 -1.5498

0.5 0.2 4.1667 47140  1.1313 -0.1436 8.8974
05 1.6667 18856  1.1313 0.3535 7.1396
14 0.5952 0.6734  1.1313 1.8451 1.8662
1.7 0.4901 0.5545  1.1313 2.3422 0.1083
2.0 0.4167 0.4714  1.1313 2.8394 -16494

14 0.2 6.1667 5.6396  0.9145 -1.0578 12.4257
0.5 2.4667 2.2558  0.9145 -.04218 9.6439
14 0.8809 0.8056  0.9145 1.4861 1.2985

1.7 0.7254 0.6634  0.9145 2.1221 -1.4832
2.0 0.6167 0.5639  0.9145 2.7582 -4.2650
1.7 0.2 7.2037 6.2349  0.8655 -1.3858 14.3388

0.5 2.8814 24939  0.8655 -0.7435 11.3705
1.4 1.0291 0.8907  0.8655 1.1832 2.4657

1.7 0.8474 0.7335  0.8655 1.8255 -0.5025
2.0 0.7203 0.6234  0.8655 2.4678 -3.4708
2.0 0.2 8.3333 6.8718  0.8246 -1.6977 16.5674

05 3.3333 2.7487  0.8246 -1.0557 13.4532
1.4 1.1904 0.9816  0.8246 0.8702 4.1107
1.7 0.9803 0.8084  0.8246 1.5122 0.9965
2.0 0.8333 0.6871  0.8246 2.1542 -2.1176

Table 1 shows that the NMEG distribution can be positively skewed or negatively skewed for some selected
parameter values. Also, the kurtosis can be Leptokurtic (heavy tailed) distribution for K, >3 or
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Platykurtic (light tailed) distribution for K, < 3. The negative kurtosis belong to the platykurtic distribution

class with a broad shoulder. This means that the peak is broader and wider than the normal distribution. See
Peter [19] for more details on negative kurtosis.

. =ﬁ+ﬂ){2+ﬁ2(1+ﬁ)}-
, 1
= ﬂ){6+ﬂ L+ B2+ B)).
) =@{24%2(1%)(2%)(1%)}-

Also, the central moment is given by the expression

=20 =13 e |

i=1

Zk‘,( J 7. (15)

The 2nd, 3rd and 4th central moments can be obtained as
Hy = pty — 1%, gy = gty =g+ 2% and gy = py — A+ 6 - 3u’
The mean(u), variance (02 ) coefficient of variation (5) , skewness (Sk) and kurtosis(KS) can be
obtained respectively using the expression:
1”3 - Ks _ Lz ]
(luz )2 (,uz )

! !/ o
,u:/ulagzzﬂz_ﬂz’ég:;vsk =

3.2. Moment Generating Function

The moment generating function of a random variable y, with pdf, f(y) is given by;

M, (2)=E(e”)=[" e” f (y)dy.
Thus, we have the moment generating function of the NMEG distribution as

M, (y)=E(e? )= ﬁfezy {/1 +%}e‘ydy

1+1,B{AI “de+—'[ ye “ydy}

_ 1 1 p¥ _T(p)
‘1+ﬂ{ﬂ“ F(ﬂ)(z—z)ﬂ}

1 A ﬂxlﬂ
_1+,B{/1—Z+(/1—z)ﬂ} (16)
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3.3. Quantile Function

The quantile function of a probability distribution with CDF, F(x) is defined by q = F_l(xq) where
0 < g <1. Hence, the quantile function of the new mixture of exponential-gamma (NMEG) distribution is

derived as follows
g ! [ﬁy(ﬂ,ﬂyq)ﬂ_equ
1+ T(B)

BB 2y,)
r(B)

where G(y) is the CDF of exponential distribution which is one of the mixture density of the NMEG
distribution

alL+B)= +Gly,),

(B, 2y, )= oL+ B (5)- ﬂg(f 3 -

Using the idea of Samir, et al. [7], we derive the quantile function as follows

. =7‘{ﬁ, q<1+ﬂ>r<ﬂ>—%fzj}

log(1— o . . e
But G‘l(yq): _%q)’ which is the quantile function of the exponential distribution. Then the

quantile function of the NMEG becomes

Qu=F )= 27 et pr(p)- o)) @

Random samples can be generated from the NMEG distribution using (17).
The 1%, 2" and 3™ quartiles of the NMEG distribution are given by

Q=F(3]-577 2. S rin)-2Y)

4) 2 4 ﬂlog(j] !
Q,-F(3)-3r §<1+mr<ﬂ>£7% ,
o -F{3)-1s §<1+ﬂ>r<ﬁ)—£T% |
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3.4. Distribution of Order Statistics

Let Y,,Y,,..., Y, bearandom sample of size n from the NMEG distribution whose pdf and CDF are
given in (7) and (8) respectively, then the pdf of the rth order statisticsY,,,, r =1, 2, 3,...,n denoted by
f.(y) fori<y<n

is defined as

fray: @)= % f(y)FH(y)l-F(y)""

el eEer, a9
| - n=r(n_r i r+i-1 | r+i-1
<r-1>!n<'n-r>u+1ﬂ{“mf<y§>l}lyi?o( e Uﬂj {%}
g 2 PEY e |
<1+ﬂ>f+'[£<m]'<f(—ﬂ1)y<2—r)e_iy 31 e
gk 40 PV e
:<1+ﬂ>f“[r(w)]"(rr([j;(nj 3l (N SR A @9

3.5. Renyi Entropy

Entropy is an important concept to measure the quantity of uncertainty in relation to a random variable say
Y. Renyi [20] defined the entropy of a random variable Y with pdf f(y) as

JR(S):élogj[f(y)]sdy, s>0,5 %1, (20)

Then, using (7), the NMEG distribution becomes
1
Ja(s)=——logd(s),
()= - loga(s)

q)(s):(ljﬂjsr{“ﬂ ) } ey

(ata) E0J (75 1

where
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Using the transformationu = sAy, we have

o ) B e

e

ner 'Og{[ul o) et +1)} -

4. MAXIMUM LIKELIHOOD ESTIMATION

Let v, Y,,..., ¥, be arandom sample from NMEG distribution, then the log-likelihood function, K(y; CD)
is defined by

®)=Zlog{lj [Mﬂfjf(ﬁ;ﬂ}e—ﬂw}

=-nln(1+B) Zln[/ﬂ“ )+ BAPYL T |=nInT(B)-AY; - (22)

i=1

The partial derivatives of (20) with respect to the parameters A and S are:

B+ B ()~
23
Zl/lr )+ BA(Ay) g‘y' 23)

ot ___n _nF'(ﬂ)+iﬂF'(ﬂ)+(zy)ﬁ1_z+|n(gyi)ﬂl

o 1+8 T(B) 5 A0(B)+ pa(ay, )™ @)

The MLEs (/{, ,3) of(/l, ,B), can be obtained by solving % =0 and 5_2 =0 simultaneously. This is

called the score function given by
T
U (q)) - %’ ot -0
oA Of

It is clear that equations (22)-(24) has no explicit analytical solution, hence, it can be solved numerically
using Newton-Raphson iterative method which a powerful technique for solving nonlinear system of

equations. This numerical estimates of O = (}{, ﬁ) are easily obtained using R statistical software.

For the interval estimate of the distribution parameters® = (1, £3), we obtain the 2 x 2 observed
information matrix whose elements are the second derivatives of the log-likelihood function as
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s o
0A* 00

opor B )i, p=p

The approximate 100(1— 0:)% two sided confidence intervals for 4 and /3 are respectively given by

: — . =
/IiZ%w/lMi(Di and ﬂiz%,/lﬂﬂicpi
th

where I;j(cib) and I/}[l; (Ci)) are the diagonals elements of In’l(A ): (nICi))fl and Z% is the upper (%)

percentile of a standard normal distribution.
5. SIMULATION STUDY

In this section, we carry out simulation study to examine the performance and accuracy of the Maximum
Likelihood Estimates (MLEs) of the NMEG distribution. In each simulation, 10,000 samples of sizes

n =50, 75,100,150 and 200 were generated for different values of the parameters A and  using the

guantile function of the NMEG distribution in equation (15). For each sample, the MLES are obtained, these
are used to compute values of the following quantities with the help of R package.

1S,
(i) Average bias = WZ(CD - <D),
i=1

N
(i) Mean Square Error (MSE) = %Z(d) - CD)2 ,
i=1

(iliy  Coverage Probability (CP) of 95% confidence intervals of the parameters ® = A, £ and
(iv)  Average Width (AW) of 95% confidence intervals of the parameters® = A, 3.

Table 2 shows the values of the four quantities: Av.Bias, MSE, CP and AW of the parameters 4 and S for
different sample sizesn =50, 75, 100,150 and 200. From the results, we observed that as the sample
size n increases, the value of average bias and MSE decreases. It is also clear to see from Table 2 that for
all the parameters, the coverage probabilities of the confidence intervals are also close to the nominal level
of 95% and the average confidence widths decreases as the sample size increases. Hence, we can use the
MLE’s and their asymptotic results for estimating and constructing confidence intervals for a reasonable
sample size.
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Table 2. Average Bias, (Av.Bias), Mean Square Error, (MSE), Coverage Probability, (CP), and Average
Width, (AW) of 10,000 MLEs of the new gamma mixture (NMEG) for different fixed values of the
parameters

Param n Av.Bias Av.Bias

(4) mse(i) cp(i) Aw(i) (%) mse(3) cp(3) Aw ()

50  0.1273 0.0513 0.966 0.7099 0.2525 0.4163 0.934 2.3562
75 01162 0.0400 0.928 0.5805 0.2451 0.3565 0.904 1.9647
4=05 =15 100 0.0920 0.0252 0.934 0.4900 0.1604 0.2293 0.912 1.6835
150 0.0792 0.0170 0.934 0.3982 0.1312 0.1527 0.922 1.3883
200 0.0278 0.0101 0.922 0.3441 0.0664 0.1181 0.908 1.1960

50 0.1017 0.1419 0.908 1.3328 0.1563 0.5559 0.898 2.7089
75 0.0950 0.1000 0.926 1.1458 0.1432 0.3807 0.916 2.3230
4=10, =20 100 0.0688 0.0767 0.908 0.9721 0.0921 0.3009 0.896 1.9842
150 0.0356 0.0459 0.924 0.7999 0.0448 0.1884 0.926 1.6554
200 0.0274 0.0376 0.910 0.6894 0.0446 0.1623 0.906 1.4342

50 0.1204 0.2655 0.908 1.8729 0.1308 0.6657 0.920 3.0029
75 0.0836 0.1550 0.942 1.5517 0.0957 0.3763 0.932 2.5028
A=15 =25 100 0.0623 0.1233 0.928 1.3422 0.0759 0.3055 0.946 2.1803
150 0.0623 0.0922 0.934 1.1156 0.0751 0.2336 0.932 1.8063
200 0.0248 0.0617 0.940 0.9488 0.0336  0.1524 0.956 1.5441

6. REAL DATA APPLICATION

In this section, we show the applicability of the NMEG distribution by considering real life data sets which
shows that the NMEG out performs the Gamma (Gam.), Lindley (Lind.) and Exponential (Exp.)
distributions. The pdf of these distributions are given below as:

0] Gamma Distribution:
-1
Ay
fq(y)="222 e, y>0, 8,1>0.
| r(p)
(i) Lindley Distribution:
2 —Ay
g = 2N T o050,

1+ 4
(i) Exponential Distribution:
f.(y) = a6 ys0,150.
Also, for comparison of statistical model, we used goodness of fit criteria namely: Log-likelihood (f) and
Akaike Information Criteria(AIC), as well as goodness of fit statistics namely: Kolmogorov- Smirnov

(K - S) statistics, Cramer-von Mises (C -VM ) statistics and Anderson-Darling (A - D) statistics to choose

the best possible model for the fitted data sets. In general, the smaller the value of the goodness of fit
criteria/statistics, the better the fit to the data set. These computations are executed in R-Package
environment.

6.1. Data Set 1

The given data represents the breaking stress of carbon fibers (in Gba) as observed and reported by Nichols
and Padgett [21]:



561 Nosakhare EKHOSUEHI, Lawrence Chukwudumebi NZEI, Festus OPONE/ GU J Sci, 33(2): 548-564 (2020)

3.70, 2.74, 273, 250, 3.60, 3.11, 3.27, 287, 147, 311, 356, 4.42,
241, 319, 322, 169, 328 3.09, 187, 3.15 490, 157, 267, 293,
3.22, 339, 281, 4.20, 333, 255 331, 331, 285 125 438, 1.84,
0.39, 3.68, 248, 0.85 161, 279, 470, 203, 189, 288, 282, 2.05,
3.65, 3.75, 243, 295 297, 339, 296, 235 255 259, 203, 1.61,
2.12, 3.15, 108, 256, 180, 2.53

Table 3. Summary Statistics for the Data Set 1

Distr.  Estimates 4 AIC K-S C-VM A-D
A =3.90531
NGM —90.0958 184.1917 0.118516 0.213428 1.150478
£ =11.07067
A=271397
GAM —91.1675 186.3351 0.132869 0.246366 1.311358
p =7.48908
LIND 1 =059025 —-122.3841 246.7681 0.297702 2.091412 10.692207
EXP 1 =0.36237 —132.9944 267.9887 0.358114 2.871046 14.034266
o — NMEG = 7
(=T --- Gamma
------ Lind ©
LA EXP
= o w =
e = a
ol . N © =
[=TN L (\X\i = 7
o 1= ] o
= [ I | I 1 = I | I I
1 2 3 4 5 1 2 3 4
data data
(a) Estimated pdfs (b) Estimated CDFs

Figure 3. The Plots (a) and (b) of the Estimated Density and Cumulative Distributions Functions
respectively for the Data Set 1

6.2. Data Set 2

This real data set represents the survival times of 121 patients with breast cancer obtained from a large
hospital in a period from 1929 to 1938 taken from Lee [22]:

0.3,0.3,4.0,5.0,56,6.2,6.3,6.6,6.8,7.4,75, 84,84, 10.3,11.0, 11.8, 12.2,12.3, 13.5, 14.4, 14.4, 14.8,
155, 15.7,16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6,
24.0,24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0,
40.0, 40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0,
51.0, 51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0,
69.0, 78.0, 80.0,83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0,
126.0, 127.0, 129.0, 129.0, 139.0, 154.
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Table 4. Summary Statistics for the Data Set 2

Distr.  Estimates 4 AIC K-S C-v A-D
A =0.04122
NGM —579.1782 1162.356 0.0617 0.0577 0.4246
f =2.28889
A =0.03230
GAM —579.8047 1163.609 0.0762 0.0611 0.4617
£ =1.49622
LIND A4 =0.02159 -585.1278 1172256 0.1205 0.4605 2.6986
EXP 4 =0.04229 —580.4314 1162.863 0.0744 0.1127 0.9428
= —— MMEG =
— --—-— Gamma
-------- Lind <=
g ] EXP
= =
= = Fim]
a 3 7 < = ]
=] AN — NMEG
— g, = | -———— Gamma
~ @ | & Lind
= _| I'"- = _| EI>H<P
— I T T 1 = T T T T
0 50 100 150 0 50 100 150
data data
(a) Estimated pdfs (b) Estimated CDFs

Figure 4. The Plots (a) and (b) of the Estimated Density and Cumulative Distributions Functions
respectively for the Data Set 2

6.3. Discussion of Result

The values of the model comparison tools: Log-likelihood(f), Akaike Information Criteria(AIC),

Kolmogorov- Smirnov(K - S) , Cramer-von Mises (C —VM) , and Anderson-Darling (A - D) are shown in
Tables 3 and 4 for data set 1 and 2 respectively. We can see from these tables that NMEG distribution have
lower values of /, AIC,K —S, C-VM and A— D statistics amongst the fitted models namely: Gamma,
Exponential and Lindley. This shows that the NMEG distribution outperforms the Exponential, Lindley

and the classical Gamma distribution. Hence, NMEG distribution should be chosen as the most adequate
model for these data sets.

Figures 3 and 4 displays the histogram of the data sets and the estimated pdfs and CDFs of the NMEG
model and their competitive models.

7. CONCLUSION

In this paper, we introduced a new distribution called “New Gamma Mixture (NGM) Distribution”. This
is an extension of the classical gamma distribution for flexibility. The new distribution include the
exponential and standardized Lindley distributions as sub-models. Some of the mathematical properties
such as the raw moment, moment generating function, and the renyi entropy were studied. The maximum
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likelihood estimation (MLE) method was used to estimate parameters of the new distribution. An
application of the NMEG distribution to a real lifetime data set demonstrates its superiority over the
Exponential distribution, Lindley distribution and the classical Gamma distribution in modelling the

lifetime

data sets under study.
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