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1. INTRODUCTION 

 

 A sequence space is described as a vector subspace of 𝑤 which is a vector space under poit-wise addition 

and scalar multiplication, where 𝑤 is a set of all real (or complex) valued sequences. By 𝑙∞, 𝑐, 𝑐0 and 𝑙𝑝 

symbols, we mean correspondingly the classical sequence spaces of all bounded, convergent, null and 

absolutely 𝑝-summable sequences, where 1 ≤ 𝑝 < ∞. 

 

A Banach sequence space is identified as a 𝐵𝐾-space should each of the maps 𝑝𝑛: 𝑋 ⟶ ℂ be defined by 

𝑝𝑛(𝑥) = 𝑥𝑛 is continuous for all 𝑛 ∈ ℕ [1].  Taking this notion into account, it can be said that 𝑙∞, 𝑐 and 𝑐0 

are 𝐵𝐾-spaces along with their usual sup-norm named by ‖𝑥‖∞ = sup
𝑘∈ℕ

|𝑥𝑘| and 𝑙𝑝 is a 𝐵𝐾-space with its 

𝑝-norm defined by 

 

‖𝑥‖𝑝 = (∑|𝑥𝑘|𝑝

∞

𝑘=0

)

1
𝑝

 

 

where 1 ≤ 𝑝 < ∞. To maintain straightforwardness, the summation without limits runs from 0 to ∞ in the 

remaining of the paper. 
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Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix of complex entries, 𝑋 and 𝑌 be two sequence spaces and 𝑥 = (𝑥𝑘) ∈
𝑤. The 𝐴-transform of 𝑥 is, then, defined by 

  

(𝐴𝑥)𝑛 = ∑ 𝑎𝑛𝑘𝑥𝑘

𝑘

 

 

and is supposed to be convergent for all 𝑛 ∈ ℕ. By (𝑋: 𝑌), we mean the class of all infinite matrices from 

𝑋 into 𝑌 represented as  

 
(𝑋: 𝑌) = {𝐴 = (𝑎𝑛𝑘): 𝐴𝑥 ∈ 𝑌 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋},  

  

The matrix domain of 𝐴 = (𝑎𝑛𝑘) in 𝑋 is defined by 

 

𝑋𝐴 = {𝑥 = (𝑥𝑘) ∈ 𝑤: 𝐴𝑥 ∈ 𝑋} 
 

which is also a sequence space [2]. 

 

For 𝑏𝑠 and 𝑐𝑠, in the given order, we write the sets of all bounded and convergent series which are defined 

by using the matrix domain of the summation matrix 𝑆 = (𝑠𝑛𝑘) such that 𝑏𝑠 = (𝑙∞)𝑆 and   𝑐𝑠 = 𝑐𝑆 where 

𝑆 = (𝑠𝑛𝑘) is defined by 

 

𝑠𝑛𝑘 = {
1 , 0 ≤ 𝑘 ≤ 𝑛
0 , 𝑘 > 𝑛

 

 

for all 𝑛, 𝑘 ∈ ℕ. 

 

An infinite matrix 𝐴 = (𝑎𝑛𝑘) is called a triangle provided the entries 𝑎𝑛𝑘 = 0 for 𝑘 > 𝑛 and 𝑎𝑛𝑛 ≠ 0 for 

all 𝑛, 𝑘 ∈ ℕ. A triangle matrix has an inverse which is unique and a triangle. If the otherwise is not stated, 

any term with negative subscript is assumed to be zero. 

 

Many authors construct a new sequence space  by using the matrix domain of an infinite matrix such as: 

(𝑙𝑝)
𝑁𝑞

 and 𝑐𝑁𝑞
 in [3],  𝑋𝑝  and  𝑋∞ in [4], 𝑙∞(∆), 𝑐0(∆) and 𝑐(∆) in [5], 𝑙∞(∆2), 𝑐0(∆2) and 𝑐(∆2) in [6], 

𝑒0
𝑟 and 𝑒𝑐

𝑟 in [7], 𝑒𝑝
𝑟 and 𝑒∞

𝑟  in [8] and [9], 𝑒0
𝑟(∆), 𝑒𝑐

𝑟(∆) and 𝑒∞
𝑟 (∆) in [10], 𝑒0

𝑟(∆𝑚), 𝑒𝑐
𝑟(∆𝑚) and 𝑒∞

𝑟 (∆𝑚) 

in [11], 𝑒0
𝑟(𝐵(𝑚)), 𝑒𝑐

𝑟(𝐵(𝑚)) and 𝑒∞
𝑟 (𝐵(𝑚)) in [12], 𝑙∞, 𝑐̂, 𝑐̂0 and 𝑙𝑝 in [13]. 

 

In the present paper, we describe the sequence space 𝑏𝑝
𝑟,𝑠(𝐷) originated by the composition of the Binomial 

matrix and generalized second order difference (triple band) matrix and indicate that the space 𝑏𝑝
𝑟,𝑠(𝐷) is 

linearly isomorphic to the space 𝑙𝑝, where 1 ≤ 𝑝 < ∞. Additionally, we obtain some inclusion relations 

and Schauder basis of the space 𝑏𝑝
𝑟,𝑠(𝐷). We also pinpoint 𝛼-, 𝛽- and 𝛾-duals of the space 𝑏𝑝

𝑟,𝑠(𝐷). Finally, 

we classify some matrix classes related to the space 𝑏𝑝
𝑟,𝑠(𝐷). 

 

2.  THE SEQUENCE SPACE 𝒃𝒑
𝒓,𝒔(𝑫) 

 

In this part, we briefly state the previous studies of Binomial matrix and Euler matrix, and define the 

sequence space 𝑏𝑝
𝑟,𝑠(𝐷). Moreover, we show that the sequence space 𝑏𝑝

𝑟,𝑠(𝐷) is linearly isomorphic to the 

sequence space 𝑙𝑝 and is not a Hilbert space excluding the case 𝑝 = 2, where 1 ≤ 𝑝 < ∞. Besides, we 

investigate some inclusion relations. 

 

The usage of matrix domain of the Euler matrix was first motivated by the authors in [7-9]. They constructed 

the Euler sequence spaces 𝑒0
𝑟, 𝑒𝑐

𝑟, 𝑒∞
𝑟  and 𝑒𝑝

𝑟 as: 
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𝑒0
𝑟 = {𝑥 = (𝑥𝑘) ∈ 𝑤: lim

𝑛→∞
∑ (

𝑛
𝑘

) (1 − 𝑟)𝑛−𝑘𝑟𝑘𝑥𝑘

𝑛

𝑘=0

= 0}, 

 

𝑒𝑐
𝑟 = {𝑥 = (𝑥𝑘) ∈ 𝑤: lim

𝑛→∞
∑ (

𝑛
𝑘

) (1 − 𝑟)𝑛−𝑘𝑟𝑘𝑥𝑘

𝑛

𝑘=0

  𝑒𝑥𝑖𝑠𝑡𝑠}, 

 

𝑒∞
𝑟 = {𝑥 = (𝑥𝑘) ∈ 𝑤: sup

𝑛∈ℕ
|∑ (

𝑛
𝑘

) (1 − 𝑟)𝑛−𝑘𝑟𝑘𝑥𝑘

𝑛

𝑘=0

| < ∞} 

 

and 

 

𝑒𝑝
𝑟 = {𝑥 = (𝑥𝑘) ∈ 𝑤: ∑ |∑ (

𝑛
𝑘

) (1 − 𝑟)𝑛−𝑘𝑟𝑘𝑥𝑘

𝑛

𝑘=0

|

𝑝

𝑛

< ∞} 

 

where 1 ≤ 𝑝 < ∞, 0 < 𝑟 < 1 and the Euler matrix of order 𝑟 is defined by 

 

𝑒𝑛𝑘
𝑟 = {

(
𝑛
𝑘

) (1 − 𝑟)𝑛−𝑘𝑟𝑘 , 0 ≤ 𝑘 ≤ 𝑛

0 , 𝑘 > 𝑛
 

 

for all 𝑛, 𝑘 ∈ ℕ. 

 

Afterwards, Altay and Polat [10] improved works in [7-9] by defining the sequence spaces 𝑒0
𝑟(∆), 𝑒𝑐

𝑟(∆) 

and 𝑒∞
𝑟 (∆) in [10] as: 

 

𝑒0
𝑟(∆) = {𝑥 = (𝑥𝑘) ∈ 𝑤: lim

𝑛→∞
∑ (

𝑛
𝑘

) (1 − 𝑟)𝑛−𝑘𝑟𝑘(𝑥𝑘 − 𝑥𝑘−1)

𝑛

𝑘=0

= 0}, 

 

𝑒𝑐
𝑟(∆) = {𝑥 = (𝑥𝑘) ∈ 𝑤: lim

𝑛→∞
∑ (

𝑛
𝑘

) (1 − 𝑟)𝑛−𝑘𝑟𝑘(𝑥𝑘 − 𝑥𝑘−1)

𝑛

𝑘=0

  𝑒𝑥𝑖𝑠𝑡𝑠} 

 

and  

 

𝑒∞
𝑟 (∆) = {𝑥 = (𝑥𝑘) ∈ 𝑤: sup

𝑛∈ℕ
|∑ (

𝑛
𝑘

) (1 − 𝑟)𝑛−𝑘𝑟𝑘(𝑥𝑘 − 𝑥𝑘−1)

𝑛

𝑘=0

| < ∞} 

 

Recently, Bişgin [14,15]  has further generalized  works in [7-9] by describing the Binomial sequence 

spaces 𝑏0
𝑟,𝑠

, 𝑏𝑐
𝑟,𝑠, 𝑏∞

𝑟,𝑠 and 𝑏𝑝
𝑟,𝑠

 in [14,15]  as : 

 

𝑏0
𝑟,𝑠 = {𝑥 = (𝑥𝑘) ∈ 𝑤: lim

𝑛→∞

1

(𝑠 + 𝑟)𝑛
∑ (

𝑛
𝑘

) 𝑠𝑛−𝑘𝑟𝑘𝑥𝑘

𝑛

𝑘=0

= 0}, 

 

𝑏𝑐
𝑟,𝑠 = {𝑥 = (𝑥𝑘) ∈ 𝑤: lim

𝑛→∞

1

(𝑠 + 𝑟)𝑛
∑ (

𝑛
𝑘

) 𝑠𝑛−𝑘𝑟𝑘𝑥𝑘

𝑛

𝑘=0

  𝑒𝑥𝑖𝑠𝑡𝑠}, 
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𝑏∞
𝑟,𝑠 = {𝑥 = (𝑥𝑘) ∈ 𝑤: sup

𝑛∈ℕ
|

1

(𝑠 + 𝑟)𝑛
∑ (

𝑛
𝑘

) 𝑠𝑛−𝑘𝑟𝑘𝑥𝑘

𝑛

𝑘=0

| < ∞} 

 

and 

 

𝑏𝑝
𝑟,𝑠 = {𝑥 = (𝑥𝑘) ∈ 𝑤: ∑ |

1

(𝑠 + 𝑟)𝑛
∑ (

𝑛
𝑘

) 𝑠𝑛−𝑘𝑟𝑘𝑥𝑘

𝑛

𝑘=0

|

𝑝

𝑛

< ∞} 

 

where 1 ≤ 𝑝 < ∞ and the Binomial matrix 𝐵𝑟,𝑠 = (𝑏𝑛𝑘
𝑟,𝑠) is defined by 

 

𝑏𝑛𝑘
𝑟,𝑠 = {

1

(𝑠 + 𝑟)𝑛
(

𝑛
𝑘

) 𝑠𝑛−𝑘𝑟𝑘 , 0 ≤ 𝑘 ≤ 𝑛

0 , 𝑘 > 𝑛

 

 

for all 𝑛, 𝑘 ∈ ℕ, 𝑟, 𝑠 ∈ ℝ and 𝑠. 𝑟 > 0. In the matrix above, we obtain the Euler matrix of order 𝑟 provided 

we take 𝑟 + 𝑠 = 1. 

 

Subsequently, when the Binomial matrix and generalized difference matrix 𝐺 = (𝑔𝑛𝑘) is considered, the 

sequence space 𝑏𝑝
𝑟,𝑠(𝐺) has been defined by Bişgin in [16] as follows: 

 

𝑏𝑝
𝑟,𝑠(𝐺) = {𝑥 = (𝑥𝑘) ∈ 𝑤: ∑ |

1

(𝑠 + 𝑟)𝑛
∑ (

𝑛
𝑘

) 𝑠𝑛−𝑘𝑟𝑘(𝑡𝑥𝑘 + 𝑢𝑥𝑘−1)

𝑛

𝑘=0

|

𝑝

𝑛

< ∞} 

 

where 1 ≤ 𝑝 < ∞ and generalized difference matrix 𝐺 = (𝑔𝑛𝑘) is defined by 

 

𝑔𝑛𝑘 = {
𝑡 , 𝑘 = 𝑛
𝑢 , 𝑘 = 𝑛 − 1
0 , otherwise

 

 

for all 𝑛, 𝑘 ∈ ℕ and 𝑡, 𝑢 ∈ ℝ\{0}. Note that, if we take 𝑡 = 1 and 𝑢 = −1, we obtain the difference matrix 

∆. So, generalized difference matrix generalizes the difference matrix [13]. 

 

Now, we define the sequence space 𝑏𝑝
𝑟,𝑠(𝐷) by using triple band matrix and Binomial matrix such that 

 

𝑏𝑝
𝑟,𝑠(𝐷) = {𝑥 = (𝑥𝑘) ∈ 𝑤: ∑ |

1

(𝑠 + 𝑟)𝑛
∑ (

𝑛
𝑘

) 𝑠𝑛−𝑘𝑟𝑘(𝑡𝑥𝑘 + 𝑢𝑥𝑘−1 + 𝑣𝑥𝑘−2)

𝑛

𝑘=0

|

𝑝

𝑛

< ∞} 

 

where 1 ≤ 𝑝 < ∞ and triple band matrix 𝐷 = (𝑑𝑛𝑘) is defined by 

 

𝑑𝑛𝑘 = {

𝑡 , 𝑘 = 𝑛
𝑢 , 𝑘 = 𝑛 − 1
𝑣
0

,
,

𝑘 = 𝑛 − 2
otherwise

 

 

for all 𝑛, 𝑘 ∈ ℕ and 𝑡, 𝑢, 𝑣 ∈ ℝ\{0}. If 𝑡 = 1, 𝑢 = −2 and 𝑣 = 1, we obtain the difference matrix ∆2. 

Moreover, if we take 𝑣 = 0, we obtain the generalized difference matrix 𝐺 = (𝑔𝑛𝑘).  So, we generalize the 

sequence space 𝑏𝑝
𝑟,𝑠(𝐺). 

  

Using the domain of the triple band matrix, we define the sequence space 𝑏𝑝
𝑟,𝑠(𝐷) by 
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𝑏𝑝
𝑟,𝑠(𝐷) = (𝑏𝑝

𝑟,𝑠)
𝐷

  .                                                                                                                                   (1) 

                                                                                                                                                                                                                                                                    

Also, by constructing a matrix 𝐻𝑟,𝑠 = (ℎ𝑛𝑘
𝑟,𝑠) so that 

 

ℎ𝑛𝑘
𝑟,𝑠 = {

𝑠𝑛−𝑘−2𝑟𝑘

(𝑠 + 𝑟)𝑛 [𝑡𝑠2 (
𝑛
𝑘

) + 𝑢𝑠𝑟 (
𝑛

𝑘 + 1
) + 𝑣𝑟2 (

𝑛
𝑘 + 2

)] , 0 ≤ 𝑘 ≤ 𝑛

0 , 𝑘 > 𝑛

 

 

for all 𝑛, 𝑘 ∈ ℕ, we redefine the sequence space 𝑏𝑝
𝑟,𝑠(𝐷) by aid of the 𝐻𝑟,𝑠 = (ℎ𝑛𝑘

𝑟,𝑠) matrix as follows: 

 

𝑏𝑝
𝑟,𝑠(𝐷) = (𝑙𝑝)

𝐻𝑟,𝑠 .                                                                                                                                    (2) 

 

So, for given 𝑥 = (𝑥𝑘) ∈ 𝑤, the 𝐻𝑟,𝑠-transform of 𝑥 is defined by 

 

 𝑦𝑘 = (𝐻𝑟,𝑠𝑥)𝑘 =
1

(𝑠+𝑟)𝑘
∑ (

𝑘
𝑖

) 𝑠𝑘−𝑖𝑟𝑖(𝑡𝑥𝑖 + 𝑢𝑥𝑖−1 + 𝑣𝑥𝑖−2)𝑘
𝑖=0                                                               (3) 

 

or  

 

 𝑦𝑘 = (𝐻𝑟,𝑠𝑥)𝑘 =
1

(𝑠+𝑟)𝑘
∑ [𝑡𝑠2 (

𝑘
𝑖

) + 𝑢𝑠𝑟 (
𝑘

𝑖 + 1
) + 𝑣𝑟2 (

𝑘
𝑖 + 2

)]𝑘
𝑖=0 𝑠𝑘−𝑖−2𝑟𝑖𝑥𝑖                                   (4) 

 

for all 𝑘 ∈ ℕ. 

 

Theorem 2.1. The sequence space 𝑏𝑝
𝑟,𝑠(𝐷) is a 𝐵𝐾-space with its norm defined by 

 

‖𝑥‖𝑏𝑝
𝑟,𝑠(𝐷) = ‖𝐻𝑟,𝑠𝑥‖𝑝 = (∑|(𝐻𝑟,𝑠𝑥)𝑘|𝑝

∞

𝑘=0

)

1
𝑝

 

where 1 ≤ 𝑝 < ∞.  

 

Proof. It is known that 𝑙𝑝 is a 𝐵𝐾-space according to its 𝑝-norm and (2) holds. Also, the matrix 𝐻𝑟,𝑠 =

(ℎ𝑛𝑘
𝑟,𝑠) is a triangle. By combining these results and Theorem 4.3.12 of Wilansky [2], we deduce that the 

sequence space 𝑏𝑝
𝑟,𝑠(𝐷) is a 𝐵𝐾-space, where 1 ≤ 𝑝 < ∞.  

 

Theorem 2.2. The sequence space 𝑏𝑝
𝑟,𝑠(𝐷) is linearly isomorphic to the sequence space 𝑙𝑝, where 1 ≤ 𝑝 <

∞. 

 

Proof. Let 𝐿 be a transformation such that 𝐿: 𝑏𝑝
𝑟,𝑠(𝐷) ⟶ 𝑙𝑝, 𝐿(𝑥) = 𝐻𝑟,𝑠𝑥. Then, we should show that 𝐿 is 

a linear bijection. The linearity of L is obvious. On the other hand, It can be easily shown that 𝑥 = 𝜃 

whenever 𝑇𝑥 = 𝜃. So, 𝐿 is injective. 

 

Now, let us define a sequence 𝑥 = (𝑥𝑛) such that 

 

𝑥𝑛 =
1

𝑡
∑ ∑ ∑ (

𝑖
𝑘

) (
−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑛−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑛−𝑖

𝜗=0

𝑛

𝑖=𝑘

𝑦𝑘

𝑛

𝑘=0

 

 

for all 𝑛 ∈ ℕ, where 𝑦 = (𝑦𝑘) ∈ 𝑙𝑝 and 1 ≤ 𝑝 < ∞. Then, we have 

 

‖𝑥‖𝑏𝑝
𝑟,𝑠(𝐷) = ‖𝐻𝑟,𝑠𝑥‖𝑝                                                                                                                                  
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= (∑|(𝐻𝑟,𝑠𝑥)𝑛|𝑝

∞

𝑛=0

)

1
𝑝

                                                                                                                 

 

                  = (∑
|

1

(𝑠 + 𝑟)𝑛
∑ (

𝑛
𝑘

) 𝑠𝑛−𝑘𝑟𝑘(𝑡𝑥𝑘 + 𝑢𝑥𝑘−1 + 𝑣𝑥𝑘−2)

𝑛

𝑘=0

|

𝑝
∞

𝑛=0

)

1
𝑝

                                                       

 

= (∑ |
1

(𝑠 + 𝑟)𝑛
∑ (

𝑛
𝑘

) 𝑠𝑛−𝑘𝑟𝑘

𝑛

𝑘=0

∑ (
𝑘
𝑗

) (−𝑠)𝑘−𝑗(𝑟 + 𝑠)𝑗𝑟−𝑘𝑦𝑗

𝑘

𝑗=0

|

𝑝
∞

𝑛=0

)

1
𝑝

                      

 

= (∑|𝑦𝑛|𝑝

∞

𝑛=0

)

1
𝑝

                                                                                                                         

 

= ‖𝑦‖𝑝 < ∞.                                                                                                                          
 

Therefore, 𝐿 is norm preserving and 𝑥 = (𝑥𝑛) ∈ 𝑏𝑝
𝑟,𝑠(𝐷) for all 𝑦 = (𝑦𝑘) ∈ 𝑙𝑝, namely 𝐿 is surjective.  

As a consequence, 𝐿 is a linear bijection as desired.  

 

Theorem 2.3. The sequence space 𝑏𝑝
𝑟,𝑠(𝐷) is not a Hilbert space for 1 ≤ 𝑝 < ∞ with 𝑝 ≠ 2. 

 

Proof. Suppose 𝑝 = 2. By Theorem 2.1, the sequence space 𝑏2
𝑟,𝑠(𝐷) is a 𝐵𝐾-space with its norm defined 

by 

 

‖𝑥‖𝑏2
𝑟,𝑠(𝐷) = ‖𝐻𝑟,𝑠𝑥‖2 = (∑|(𝐻𝑟,𝑠𝑥)𝑘|2

∞

𝑘=0

)

1
2

 

 

which is also generated by an inner product such that 

 

‖𝑥‖𝑏2
𝑟,𝑠(𝐷) = 〈𝐻𝑟,𝑠𝑥, 𝐻𝑟,𝑠𝑥〉

1
2. 

 

So, 𝑏2
𝑟,𝑠(𝐷) is a Hilbert space. 

 

On the other hand, assuming that 𝑝 ∈ [1, ∞)\{2}, we define two sequences 𝑦 = (𝑦𝑘) and 𝑧 = (𝑧𝑘) as 

follows: 

 

𝑦𝑘 =
1

𝑡
∑ ∑ (

−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑘−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−
𝑠

𝑟
)

𝑖−1 −𝑠 + 𝑖(𝑟 + 𝑠)

𝑟

𝑘−𝑖

𝜗=0

𝑘

𝑖=0

 

 

and 

 

𝑧𝑘 =
1

𝑡
∑ ∑ (

−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑘−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−
𝑠

𝑟
)

𝑖−1

−𝑠 − 𝑖(𝑟 + 𝑠)

𝑟

𝑘−𝑖

𝜗=0

𝑘

𝑖=0

 

 

for all 𝑘 ∈ ℕ. Then we get 
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‖𝑦 + 𝑧‖
𝑏𝑝

𝑟,𝑠(𝐷) 
2 + ‖𝑦 − 𝑧‖

𝑏𝑝
𝑟,𝑠(𝐷) 

2 = 8 ≠ 2
2
𝑝

+2
= 2 [‖𝑦‖

𝑏𝑝
𝑟,𝑠(𝐷) 

2 + ‖𝑧‖
𝑏𝑝

𝑟,𝑠(𝐷) 
2 ]. 

 

Therefore, the norm of the sequence space 𝑏𝑝
𝑟,𝑠(𝐷) does not satisfy the parallelogram equality, namely the 

norm can not be generated by an inner product. As a consequence, the sequence space 𝑏𝑝
𝑟,𝑠(𝐷) is not a 

Hilbert space for  𝑝 ∈ [1, ∞)\{2}. 

 

Theorem 2.4. The inclusion 𝑙𝑝(𝐷) ⊂ 𝑏𝑝
𝑟,𝑠(𝐷) strictly holds, where 1 ≤ 𝑝 < ∞. 

 

Proof. We give the proof of theorem for 1 < 𝑝 < ∞. In case of  𝑝 = 1, the proof can be done similarly. 

For a given arbitrary sequence 𝑥 = (𝑥𝑘) ∈ 𝑙𝑝(𝐷), from the definition of the sequence space 𝑙𝑝(𝐷),  

we have 

∑|𝑡𝑥𝑘 + 𝑢𝑥𝑘−1 + 𝑣𝑥𝑘−2|𝑝

𝑘

< ∞ 

where  1 < 𝑝 < ∞. By the Hölder’s inequality, we write 

|(𝐻𝑟,𝑠𝑥)𝑘|𝑝 = |
1

(𝑠 + 𝑟)𝑘
∑ (

𝑘
𝑗

) 𝑠𝑘−𝑗𝑟𝑗(𝑡𝑥𝑗 + 𝑢𝑥𝑗−1 + 𝑣𝑥𝑗−2)

𝑘

𝑗=0

|

𝑝

                                                    

 

                  ≤ (
1

|𝑠 + 𝑟|𝑘
)

𝑝

[(∑ (
𝑘
𝑗

) |𝑠|𝑘−𝑗|𝑟|𝑗

𝑘

𝑗=0

)

𝑝−1

× (∑ (
𝑘
𝑗

) |𝑠|𝑘−𝑗|𝑟|𝑗

𝑘

𝑗=0

|𝑡𝑥𝑗 + 𝑢𝑥𝑗−1 + 𝑣𝑥𝑗−2|
𝑝

)] 

 

           =
1

|𝑠 + 𝑟|𝑘
∑ (

𝑘
𝑗

) |𝑠|𝑘−𝑗|𝑟|𝑗

𝑘

𝑗=0

|𝑡𝑥𝑗 + 𝑢𝑥𝑗−1 + 𝑣𝑥𝑗−2|
𝑝

                                                              

 

  = ∑ (
𝑘
𝑗

) |
𝑠

𝑠 + 𝑟
|

𝑘

|
𝑟

𝑠
|

𝑗
𝑘

𝑗=0

|𝑡𝑥𝑗 + 𝑢𝑥𝑗−1 + 𝑣𝑥𝑗−2|
𝑝

                                                               

 

where 1 < 𝑝 < ∞. Then we obtain 

 

∑|(𝐻𝑟,𝑠𝑥)𝑘|𝑝

𝑘

 ≤ ∑ ∑ (
𝑘
𝑗

) |
𝑠

𝑠 + 𝑟
|

𝑘

|
𝑟

𝑠
|

𝑗
𝑘

𝑗=0

|𝑡𝑥𝑗 + 𝑢𝑥𝑗−1 + 𝑣𝑥𝑗−2|
𝑝

𝑘

                             

 

= ∑|𝑡𝑥𝑗 + 𝑢𝑥𝑗−1 + 𝑣𝑥𝑗−2|
𝑝

𝑗

∑ (
𝑘
𝑗

) |
𝑠

𝑠 + 𝑟
|

𝑘

|
𝑟

𝑠
|

𝑗
∞

𝑘=𝑗

                                  

 

= |
𝑠 + 𝑟

𝑠
| ∑|𝑡𝑥𝑗 + 𝑢𝑥𝑗−1 + 𝑣𝑥𝑗−2|

𝑝

𝑗

                                                         

 

where 1 < 𝑝 < ∞. If we connect this result and comparison test, 𝐻𝑟,𝑠𝑥 ∈ 𝑙𝑝 , namely   𝑥 = (𝑥𝑘) ∈ 𝑏𝑝
𝑟,𝑠(𝐷). 

Hence, 𝑙𝑝(𝐷) ⊂ 𝑏𝑝
𝑟,𝑠(𝐷). 

 

Define a sequence 𝑧 = (𝑧𝑘) such that 
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𝑧𝑘 =
1

𝑡
∑ ∑ (

−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑘−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−1)𝑖

𝑘−𝑖

𝜗=0

𝑘

𝑖=0

 

 

for all 𝑘 ∈ ℕ. Then, one can see that 𝐷𝑧 = ((−1)𝑘) ∉ 𝑙𝑝 and 𝐻𝑟,𝑠𝑧 = ((
𝑠−𝑟

𝑠+𝑟
)

𝑘
) ∈ 𝑙𝑝, namely  𝑧 = (𝑧𝑘) ∉

𝑙𝑝(𝐷) and 𝑧 = (𝑧𝑘) ∈ 𝑏𝑝
𝑟,𝑠(𝐷) which shows 𝑙𝑝(𝐷) ⊂ 𝑏𝑝

𝑟,𝑠(𝐷) . 

 

Theorem 2.5. The inclusion 𝑏𝑝
𝑟,𝑠(𝐷) ⊂ 𝑏𝑞

𝑟,𝑠(𝐷) strictly holds in case of  1 ≤ 𝑝 < 𝑞 < ∞. 

 

Proof. It is known that the inclusion 𝑙𝑝 ⊂ 𝑙𝑞 holds in case of 1 ≤ 𝑝 < 𝑞 < ∞. Suppose  𝑥 = (𝑥𝑘) ∈

𝑏𝑝
𝑟,𝑠(𝐷). Then, we have 𝐻𝑟,𝑠𝑥 ∈ 𝑙𝑝. By combining these two facts, we write 𝐻𝑟,𝑠𝑥 ∈ 𝑙𝑞, namely 𝑥 = (𝑥𝑘) ∈

𝑏𝑞
𝑟,𝑠(𝐷). This shows us that the inclusion 𝑏𝑝

𝑟,𝑠(𝐷) ⊂ 𝑏𝑞
𝑟,𝑠(𝐷) holds. 

 

Define 𝑔 = (𝑔𝑘)  by 

 

𝑔𝑘 =
1

𝑡
∑ [∑ ∑ (

𝑖
𝑗
) (

−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑘−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑗(𝑟 + 𝑠)𝑗𝑟−𝑖

𝑘−𝑖

𝜗=0

𝑘

𝑖=𝑗

]

𝑘

𝑗=0

(𝑗 + 1)
−

1
𝑝 

 

for all 𝑘 ∈ ℕ. Then, it is clear that 𝐻𝑟,𝑠𝑔 = (
1

(𝑘+1)
1
𝑝

) ∈ 𝑙𝑞\𝑙𝑝, namely 𝑔 = (𝑔𝑘) ∈ 𝑏𝑞
𝑟,𝑠(𝐷)\𝑏𝑝

𝑟,𝑠(𝐷) in case 

of 1 ≤ 𝑝 < 𝑞 < ∞. Therefore the inclusion 𝑏𝑝
𝑟,𝑠(𝐷) ⊂ 𝑏𝑞

𝑟,𝑠(𝐷) strictly holds.  

 

Theorem 2.6. The sequence spaces 𝑏𝑝
𝑟,𝑠(𝐷) and 𝑙∞(𝐷) overlap but do not include each other, where 𝑝 ∈

[1, ∞). 

 

Proof.  Define three sequences 𝑥 = (𝑥𝑘), 𝑦 = (𝑦𝑘) and 𝑧 = (𝑧𝑘) as follows 

 

𝑥𝑘 =
(−1)𝑘

𝑡
∑ ∑ (

𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑘−𝑖−𝜗

(
𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗𝑘−𝑖

𝜗=0

𝑘

𝑖=0

 , 

 

𝑦𝑘 =
1

𝑡
∑ ∑ (

−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑘−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗𝑘−𝑖

𝜗=0

𝑘

𝑖=0

 

 

and 

 

𝑧𝑘 =
1

𝑡
∑ ∑ (

−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑘−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗𝑘−𝑖

𝜗=0

𝑘

𝑖=0

(−
𝑠

𝑟
)

𝑖

 

 

for all 𝑘 ∈ ℕ, where |
𝑠

𝑟
| > 1.Then 𝐷𝑥 = ((−1)𝑘) ∈ 𝑙∞, 𝐻𝑟,𝑠𝑥 = ((

𝑠−𝑟

𝑠+𝑟
)

𝑘
) ∈ 𝑙𝑝, 𝐷𝑦 = 𝑒 ∈ 𝑙∞, 𝐻𝑟,𝑠𝑦 =

𝑒 ∉ 𝑙𝑝, 𝐷𝑧 = ((−
𝑠

𝑟
)

𝑘
) ∉ 𝑙∞ and 𝐻𝑟,𝑠𝑧 = (1, 0, 0, … ) ∈ 𝑙𝑝, namely 𝑥 ∈ 𝑙∞(𝐷)⋂𝑏𝑝

𝑟,𝑠(𝐷), 𝑦 ∈ 𝑙∞(𝐷)\

𝑏𝑝
𝑟,𝑠(𝐷) and 𝑧 ∈ 𝑏𝑝

𝑟,𝑠(𝐷)\𝑙∞(𝐷). As a consequence of these the spaces, 𝑏𝑝
𝑟,𝑠(𝐷) and 𝑙∞(𝐷) overlap but do 

not include each other, where  𝑝 ∈ [1, ∞).  
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3. THE SCHAUDER BASIS AND 𝜶−, 𝜷−, 𝜸 −DUALS OF THE SPACE 𝒃𝒑
𝒓,𝒔(𝑫) 

 

In this section, we determine the Schauder basis and 𝛼-, 𝛽-, 𝛾-duals of the sequence space 𝑏𝑝
𝑟,𝑠(𝐷). 

A sequence 𝑦 = (𝑦𝑘) is called a Schauder basis of a normed space (𝑋, ‖ . ‖𝑋), if for each 𝑥 = (𝑥𝑘) ∈ 𝑋, 

there exists a unique sequence 𝜆 = (𝜆𝑘) of scalars such that 

 

lim
𝑚→∞

‖𝑥 − ∑ 𝜆𝑘𝑦𝑘

𝑚

𝑘=0

‖

𝑋

= 0. 

 

Then the expansion of 𝑥 = (𝑥𝑘) with respect to 𝑦 = (𝑦𝑘) is written by 

 

𝑥 = ∑ 𝜆𝑘𝑦𝑘

∞

𝑘=0

 

 

By [17] 𝑋𝐴 has an Schauder basis if and only if 𝑋 has a Schauder basis whenever 𝐴 = (𝑎𝑛𝑘) is a triangle. 

Also, the sequence (𝑒(𝑘)) is a Schauder basis for 𝑙𝑝 and the matrix 𝐻𝑟,𝑠 = (ℎ𝑛𝑘
𝑟,𝑠) is a triangle, where 𝑒(𝑘) 

is a sequence with 1 in the 𝑘-th place and zeros elsewhere. 

 

By combining these results, we can give next corollary. 

 

Corollary 3.1. Let 𝜇(𝑘)(𝑟, 𝑠) = {𝜇𝑛
(𝑘)

(𝑟, 𝑠)}
𝑛∈ℕ

 be a sequence defined by 

 

𝜇𝑛
(𝑘)(𝑟, 𝑠) = {

1

𝑡
∑ ∑ (

𝑖
𝑘

) (
−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑛−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑛−𝑖

𝜗=0

𝑛

𝑖=𝑘

, 𝑛 ≥ 𝑘

0 , 0 ≤ 𝑛 < 𝑘

 

 

for all fixed 𝑘 ∈ ℕ. Then, the Schauder basis of the sequence space 𝑏𝑝
𝑟,𝑠(𝐷) is the sequence {𝜇(𝑘)(𝑟, 𝑠)}

𝑘∈ℕ
 

and every 𝑥 = (𝑥𝑘) ∈ 𝑏𝑝
𝑟,𝑠(𝐷) can be uniquely written of the form 

 

𝑥 = ∑ 𝜎𝑘𝜇(𝑘)(𝑟, 𝑠)

𝑘

 

where  𝜎𝑘 = (𝐻𝑟,𝑠𝑥)𝑘 for all 𝑘 ∈ ℕ. 

By connecting the results of Theorem 2.1 and Corollary 3.1 , one more result can be given. 

 

Corollary 3.2. The sequence space 𝑏𝑝
𝑟,𝑠(𝐷) is separable. 

A set defined by 

𝑀(𝑋, 𝑌) = {𝑦 = (𝑦𝑘) ∈ 𝑤 ∶  𝑥𝑦 = (𝑥𝑘𝑦𝑘) ∈ 𝑌  for all 𝑥 = (𝑥𝑘) ∈ 𝑋} 

is called the multiplier space of the sequence spaces 𝑋 and 𝑌. Then, the 𝛼-, 𝛽- and 𝛾-duals of the sequence 

space 𝑋 are defined by means of the multiplier space, 𝑙1, 𝑐𝑠 and 𝑏𝑠 such that 

 

𝑋𝛼 = 𝑀(𝑋, 𝑙1)  , 𝑋𝛽 = 𝑀(𝑋, 𝑐𝑠)  and  𝑋𝛾 = 𝑀(𝑋, 𝑏𝑠) 

respectively. 

 

Lemma 3.3. (see [18]) Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix. Then, the following statements hold 
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 i-) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙1: 𝑙1) iff 

sup
𝑘∈ℕ

∑ |𝑎𝑛𝑘|𝑛 < ∞  ,                                                                                                                                  (5)   

                                                                                                                                    

  ii-) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙1: 𝑙∞) iff 

sup
𝑛,𝑘∈ℕ

|𝑎𝑛𝑘| ,                                                                                                                                                (6) 

                                                                                            

   iii-) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙1: 𝑐) iff (6) holds and 

lim
𝑛→∞

𝑎𝑛𝑘 = 𝑎𝑘   for all  𝑘 ∈ ℕ ,                                                                                                                  (7)    

         

Lemma 3.4. (see [18]) 

Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix. Then, the following statements hold 

 

 i-) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙𝑝: 𝑙1) iff 

sup
𝐾∈ℱ

∑ |∑ 𝑎𝑛𝑘𝑛∈𝐾 |𝑞
𝑘 < ∞ ,                                                                                                                         (8) 

 

  ii-) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙𝑝: 𝑙∞) iff 

sup
𝑛∈ℕ

∑ |𝑎𝑛𝑘|𝑞
𝑘 < ∞ ,                                                                                                                                  (9)   

                 

 iii-) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙𝑝: 𝑐) iff (7) and (9) hold 

 

where  
1

𝑝
+

1

𝑞
= 1 , 1 < 𝑝 < ∞ and ℱ is the collection of all finite subset of ℕ. 

 

Theorem 3.5. Let 𝜉1
𝑟,𝑠(D) and 𝜉2

𝑟,𝑠(D) be two sets defined by 

 

𝜉1
𝑟,𝑠(D) = {𝑎 = (𝑎𝑘) ∈ 𝑤 ∶  sup

𝐾∈ℱ
∑ |

1

𝑡
∑ ∑ ∑ (

𝑖
𝑘

) (
−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑛−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑛−𝑖

𝜗=0

𝑛

𝑖=𝑘

𝑎𝑛

𝑛∈𝐾

|

𝑞

𝑘

< ∞} 

 

and 

 

𝜉2
𝑟,𝑠(D) = {𝑎 = (𝑎𝑘) ∈ 𝑤 ∶  sup

𝑘∈ℕ
∑ |

1

𝑡
∑ ∑ (

𝑖
𝑘

) (
−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑛−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑛−𝑖

𝜗=0

𝑛

𝑖=𝑘

𝑎𝑛|

𝑛

< ∞}. 

Then {𝑏1
𝑟,𝑠(𝐷)}𝛼 = 𝜉2

𝑟,𝑠(D) and {𝑏𝑝
𝑟,𝑠(𝐷)}

𝛼
= 𝜉1

𝑟,𝑠(D) , where 1 < 𝑝 < ∞. 

 

Proof. Consider the sequence 𝑥 = (𝑥𝑛), which is defined by 

 

 𝑥𝑛 =
1

𝑡
∑ [∑ ∑ (

𝑖
𝑘

) (
−𝑢+√𝑢2−4𝑣𝑡

2𝑡
)

𝑛−𝑖−𝜗

(
−𝑢−√𝑢2−4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖𝑛−𝑖
𝜗=0

𝑛
𝑖=𝑘 ] 𝑦𝑘

𝑛
𝑘=0                                                  (10) 

                                                               

for all 𝑛 ∈ ℕ. Then, for given 𝑎 = (𝑎𝑛) ∈ 𝑤, we write 

 

𝑎𝑛𝑥𝑛 = ∑ [
1

𝑡
∑ ∑ (

𝑖
𝑘

) (
−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑛−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑛−𝑖

𝜗=0

𝑛

𝑖=𝑘

𝑎𝑛] 𝑦𝑘

𝑛

𝑘=0

= ∑ 𝑝𝑛𝑘
𝑟,𝑠𝑦𝑘

𝑛

𝑘=0

= (𝑃𝑟,𝑠𝑦)𝑛 

 

for all 𝑛 ∈ ℕ. By taking into account the equality above, we observe that 𝑎𝑥 = (𝑎𝑛𝑥𝑛) ∈ 𝑙1 whenever 𝑥 =
(𝑥𝑘) ∈ 𝑏1

𝑟,𝑠(𝐷) or 𝑥 = (𝑥𝑘) ∈ 𝑏𝑝
𝑟,𝑠(𝐷) iff 𝑃𝑟,𝑠𝑦 ∈ 𝑙1 whenever 𝑦 = (𝑦𝑘) ∈ 𝑙1 or 𝑦 = (𝑦𝑘) ∈ 𝑙𝑝, 
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respectively where 1 < 𝑝 < ∞. So, we obtain that 𝑎 = (𝑎𝑛) ∈ {𝑏1
𝑟,𝑠(𝐷)}𝛼 or 𝑎 = (𝑎𝑛) ∈ {𝑏𝑝

𝑟,𝑠(𝐷)}
𝛼

 iff  

𝑃𝑟,𝑠 ∈ (𝑙1: 𝑙1) or 𝑃𝑟,𝑠 ∈ (𝑙𝑝: 𝑙1), respectively, where 1 < 𝑝 < ∞. By connecting these results, (5) and (8), 

we deduce that 

 

𝑎 = (𝑎𝑛) ∈ {𝑏1
𝑟,𝑠(𝐺)}𝛼 ⟺ sup

𝑘∈ℕ
∑ |

1

𝑡
∑ ∑ (

𝑖
𝑘

) (
−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑛−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑛−𝑖

𝜗=0

𝑛

𝑖=𝑘

𝑎𝑛|

𝑛

< ∞ 

 

and 

 

𝑎 = (𝑎𝑛) ∈ {𝑏𝑝
𝑟,𝑠(𝐺)}

𝛼
⟺ sup

𝐾∈ℱ
∑ |

1

𝑡
∑ ∑ ∑ (

𝑖
𝑘

) (
−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑛−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑛−𝑖

𝜗=0

𝑛

𝑖=𝑘

𝑎𝑛

𝑛∈𝐾

|

𝑞

𝑘

< ∞ 

 

where 1 < 𝑝 < ∞. These yield us that {𝑏1
𝑟,𝑠(𝐷)}𝛼 = 𝜉2

𝑟,𝑠(D) and {𝑏𝑝
𝑟,𝑠(𝐷)}

𝛼
= 𝜉1

𝑟,𝑠(D) ,where 1 < 𝑝 < ∞.  

 

Theorem 3.6. Define the sets 𝜉3
𝑟,𝑠(D), 𝜉4

𝑟,𝑠(D) and 𝜉5
𝑟,𝑠(D) by 

𝜉3
𝑟,𝑠(D) = {𝑎 = (𝑎𝑘) ∈ 𝑤 ∶  

1

𝑡
∑ ∑ ∑ (

𝑖
𝑘

) (
−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑗−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑗−𝑖

𝜗=0

𝑗

𝑖=𝑘

𝑎𝑗

∞

𝑗=𝑘

  exists for all 𝑘 ∈ ℕ} 

 

𝜉4
𝑟,𝑠(D) = {𝑎 = (𝑎𝑘) ∈ 𝑤 ∶  sup

𝑘,𝑛∈ℕ
|
1

𝑡
∑ ∑ ∑ (

𝑖
𝑘

) (
−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑗−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑗−𝑖

𝜗=0

𝑗

𝑖=𝑘

𝑎𝑗

𝑛

𝑗=𝑘

| < ∞} 

 

and 

 

𝜉5
𝑟,𝑠(D) = {𝑎 = (𝑎𝑘) ∈ 𝑤 ∶  sup

𝑛∈ℕ
∑ |

1

𝑡
∑ ∑ ∑ (

𝑖
𝑘

) (
−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑗−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑗−𝑖

𝜗=0

𝑗

𝑖=𝑘

𝑎𝑗

𝑛

𝑗=𝑘

|

𝑞
𝑛

𝑘=0

< ∞} 

where 1 < 𝑞 < ∞. 

 

Then the following statements hold: 

(I) {𝑏1
𝑟,𝑠(𝐷)}𝛽 = 𝜉3

𝑟,𝑠(D)⋂𝜉4
𝑟,𝑠(D), 

(II) {𝑏𝑝
𝑟,𝑠(𝐷)}

𝛽
= 𝜉3

𝑟,𝑠(D)⋂𝜉5
𝑟,𝑠(D), where 1 < 𝑝 < ∞, 

(III) {𝑏1
𝑟,𝑠(𝐷)}𝛾 = 𝜉4

𝑟,𝑠(D), 

(IV) {𝑏𝑝
𝑟,𝑠(𝐷)}

𝛾
= 𝜉5

𝑟,𝑠(D), where 1 < 𝑝 < ∞. 

 

Proof. Since the proofs of the parts (II), (III) and (IV) may be obtained by using a same way, we prove the 

theorem for only the part (I). Let 𝑎 = (𝑎𝑛) ∈ 𝑤 be arbitrarily given. Consider the sequence 𝑥 = (𝑥𝑛) 

defined by the relation (10). Then, we write 

 

∑ 𝑎𝑘𝑥𝑘

𝑛

𝑘=0

= ∑ [
1

𝑡
∑ ∑ ∑ (

𝑖
𝑗
) (

−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑘−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑗(𝑟 + 𝑠)𝑗𝑟−𝑖

𝑘−𝑖

𝜗=0

𝑘

𝑖=𝑗

𝑘

𝑗=0

𝑦𝑗] 𝑎𝑘

𝑛

𝑘=0

 

 

                    = ∑ [
1

𝑡
∑ ∑ ∑ (

𝑖
𝑘

) (
−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑗−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑗−𝑖

𝜗=0

𝑗

𝑖=𝑘

𝑎𝑗

𝑛

𝑗=𝑘

] 𝑦𝑘

𝑛

𝑘=0

 

 

 = (𝑄𝑟,𝑠𝑦)𝑛                                                                                                                                              
 

for all 𝑛 ∈ ℕ, where the matrix 𝑄𝑟,𝑠 = (𝑞𝑛𝑘
𝑟,𝑠) is defined by 



487 Abdulcabbar SONMEZ/ GU J Sci, 33(2): 476-490 (2020) 

 

 

𝑞𝑛𝑘
𝑟,𝑠 = {

1

𝑡
∑ ∑ ∑ (

𝑖
𝑘

) (
−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑗−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑗−𝑖

𝜗=0

𝑗

𝑖=𝑘

𝑎𝑗

𝑛

𝑗=𝑘

, 0 ≤ 𝑘 ≤ 𝑛

0 , 𝑘 > 𝑛

 

 

for all 𝑛, 𝑘 ∈ ℕ. So, 𝑎𝑥 = (𝑎𝑛𝑥𝑛) ∈ 𝑐𝑠 whenever 𝑥 = (𝑥𝑘) ∈ 𝑏1
𝑟,𝑠(𝐷) iff  𝑄𝑟,𝑠𝑦 ∈ 𝑐 whenever  𝑦 = (𝑦𝑘) ∈

𝑙1. This yields us that 𝑎 = (𝑎𝑛) ∈ {𝑏1
𝑟,𝑠(𝐷)}𝛽 iff 𝑄𝑟,𝑠 ∈ (𝑙1: 𝑐). By connecting this result and  (7), we obtain 

that 𝑎 = (𝑎𝑛) ∈ {𝑏1
𝑟,𝑠(𝐷)}𝛽 iff  

 

sup
𝑘,𝑛∈ℕ

|
1

𝑡
∑ ∑ ∑ (

𝑖
𝑘

) (
−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑗−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑗−𝑖

𝜗=0

𝑗

𝑖=𝑘

𝑎𝑗

𝑛

𝑗=𝑘

| < ∞ 

 

and 

 

1

𝑡
∑ ∑ ∑ (

𝑖
𝑘

) (
−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑗−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑗−𝑖

𝜗=0

𝑗

𝑖=𝑘

𝑎𝑗

∞

𝑗=𝑘

  exists for all 𝑘 ∈ ℕ 

 

This result shows that {𝑏1
𝑟,𝑠(𝐷)}𝛽 = 𝜉3

𝑟,𝑠(D)⋂𝜉4
𝑟,𝑠(D). 

  

4. SOME MATRIX CLASSES 

In this section, we characterize some matrix classes related to the sequence space 𝑏𝑝
𝑟,𝑠(𝐺), where 1 ≤ 𝑝 <

∞. 

For notation simplicity, we prefer to use following equality throughout the section 4. 

 

ℎ𝑛𝑘
𝑟,𝑠,𝐷 =

1

𝑡
∑ ∑ ∑ (

𝑖
𝑘

) (
−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑗−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑗−𝑖

𝜗=0

𝑗

𝑖=𝑘

𝑎𝑛𝑗

∞

𝑗=𝑘

 

for all 𝑛, 𝑘 ∈ ℕ. 

 

Theorem 4.1. Given an infinite matrix 𝐴 = (𝑎𝑛𝑘), the following statements hold 

(i) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏1
𝑟,𝑠(𝐷): 𝑙∞) iff 

sup
𝑘,𝑛∈ℕ

|ℎ𝑛𝑘
𝑟,𝑠,𝐷| < ∞,                                                                                                                                       (11) 

 

(ii) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑝
𝑟,𝑠(𝐷): 𝑙∞) iff 

 sup
𝑛∈ℕ

∑ |ℎ𝑛𝑘
𝑟,𝑠,𝐷|

𝑞
𝑘 < ∞                                                                                                                                 (12) 

 

{𝑎𝑛𝑘}𝑘∈ℕ ∈ 𝜉5
𝑟,𝑠(D)                                                                                                                                   (13) 

 

where 1 < 𝑝 < ∞. 

 

Proof. Let 𝑝 ∈ (1, ∞). We take any 𝑥 = (𝑥𝑘) ∈ 𝑏𝑝
𝑟,𝑠(𝐷) by assuming that the (12) and (13) hold. Then, it 

is obtained that {𝑎𝑛𝑘}𝑘∈ℕ ∈ {𝑏𝑝
𝑟,𝑠(𝐷)}

𝛽
. This result implies the existence of the 𝐴 transform of 𝑥. From the 

(10), we have 
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∑ 𝑎𝑛𝑘𝑥𝑘

𝑚

𝑘=0

= ∑ [
1

𝑡
∑ ∑ ∑ (

𝑖
𝑗
) (

−𝑢 + √𝑢2 − 4𝑣𝑡

2𝑡
)

𝑘−𝑖−𝜗

(
−𝑢 − √𝑢2 − 4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑗(𝑟 + 𝑠)𝑗𝑟−𝑖

𝑘−𝑖

𝜗=0

𝑘

𝑖=𝑗

𝑘

𝑗=0

𝑦𝑗] 𝑎𝑛𝑘

𝑚

𝑘=0

                                     

 

                 = ∑ ∑ [
1

𝑡
∑ ∑ (

𝑖
𝑘

) (
−𝑢+√𝑢2−4𝑣𝑡

2𝑡
)

𝑗−𝑖−𝜗

(
−𝑢−√𝑢2−4𝑣𝑡

2𝑡
)

𝜗

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖𝑗−𝑖
𝜗=0

𝑗
𝑖=𝑘 ]𝑚

𝑗=𝑘 𝑎𝑛𝑗𝑦𝑘
𝑚
𝑘=0  .                                                           (14) 

                                                                             

By taking limit of the (14) side by side as 𝑚 → ∞, we obtain that 

 

 ∑ 𝑎𝑛𝑘𝑥𝑘𝑘 = ∑ ℎ𝑛𝑘
𝑟,𝑠,𝐷𝑦𝑘𝑘   (𝑛 ∈ ℕ).                                                                                                          (15) 

                                                                                                         

Then, we derive by taking 𝑙∞-norm of the (15)  side by side and by applying Hölder’s inequality that 

‖𝐴𝑥‖∞ = sup
𝑛∈ℕ

|∑ ℎ𝑛𝑘
𝑟,𝑠,𝐷𝑦𝑘

𝑘

|                                                    

 

               ≤ sup
𝑛∈ℕ

(∑ |ℎ𝑛𝑘
𝑟,𝑠,𝐷|

𝑞
𝑘 )

1
𝑞

(∑ |𝑦𝑘|𝑝
𝑘 )

1
𝑝 < ∞. 

 

As a result of this, we obtain that 𝐴𝑥 ∈ 𝑙∞, namely 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑝
𝑟,𝑠(𝐷): 𝑙∞). 

 

Conversely, assume that 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑝
𝑟,𝑠(𝐷): 𝑙∞). This gives us to {𝑎𝑛𝑘}𝑘∈ℕ ∈ {𝑏𝑝

𝑟,𝑠(𝐷)}
𝛽

 for all 𝑛 ∈

ℕ. Then, the necessity of (13) is immediate and {ℎ𝑛𝑘
𝑟,𝑠,𝐷}

𝑘,𝑛∈ℕ
 exists. On account of   {𝑎𝑛𝑘}𝑘∈ℕ ∈ {𝑏𝑝

𝑟,𝑠(𝐷)}
𝛽

, 

we can see that the (15) holds and the sequences 𝑎𝑛 = (𝑎𝑛𝑘)𝑘∈ℕ define the continuous linear functionals 

𝑓𝑛 on 𝑏𝑝
𝑟,𝑠(𝐷) by 

 

𝑓𝑛(𝑥) = ∑ 𝑎𝑛𝑘𝑥𝑘

𝑘

 

 

for all 𝑛 ∈ ℕ. Also, by Theorem 2.2, 𝑏𝑝
𝑟,𝑠(𝐷) and 𝑙𝑝 are norm isomorphic. By connecting this result and the 

equation (15), we obtain that 

 

‖𝑓𝑛‖ = ‖(ℎ𝑛𝑘
𝑟,𝑠,𝐷)

𝑘∈ℕ
‖

𝑞
 

 

which yields that the functionals 𝑓𝑛 are pointwise bounded. Moreover, we derive from the Banach-

Steinhaus theorem that the functionals 𝑓𝑛 are uniformly bounded, namely there exists a constant 𝑀 > 0 

such that  

 

(∑|ℎ𝑛𝑘
𝑟,𝑠,𝐷|

𝑞

𝑘

)

1
𝑞

= ‖𝑓𝑛‖ ≤ 𝑀 

 

for all 𝑛 ∈ ℕ, which shows us that the condition (12) holds. The part (i) can be done similarly. 

 

Lemma 4.2 (see [18])  Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix. Then, 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙1: 𝑙𝑝) iff 

 

sup
𝑘∈ℕ

∑|𝑎𝑛𝑘|𝑝

𝑛

< ∞ 

 

where 1 < 𝑝 < ∞. 
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Theorem 4. 3. Let an infinite matrix 𝐴 = (𝑎𝑛𝑘) be given. Then, 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏1
𝑟,𝑠(𝐷) ∶ 𝑙𝑝) iff 

 

 sup
𝑘∈ℕ

∑ |ℎ𝑛𝑘
𝑟,𝑠,𝐷|

𝑝
𝑛 < ∞                                                                                                                                (16) 

where 1 ≤ 𝑝 < ∞. 

 

Proof. Let a sequence 𝑥 = (𝑥𝑘) ∈ 𝑏1
𝑟,𝑠(𝐷) be given. Assume that the condition (16) holds. Then, it is clear 

that 𝑦 = (𝑦𝑘) ∈ 𝑙1 and {𝑎𝑛𝑘}𝑘∈ℕ ∈ {𝑏1
𝑟,𝑠(𝐷)}𝛽 for all 𝑛 ∈ ℕ, namely 𝐴-transform of 𝑥 exists. As a result 

of this, the series ∑ ℎ𝑛𝑘
𝑟,𝑠,𝐷𝑦𝑘𝑘  are absolutely convergent for all 𝑛 ∈ ℕ and 𝑦 = (𝑦𝑘) ∈ 𝑙1. By applying the 

Minkowsky inequality to (15), we can write 

 

(∑|(𝐴𝑥)𝑛|𝑝

𝑛

)

1
𝑝

≤ ∑|𝑦𝑘|

𝑘

(∑|ℎ𝑛𝑘
𝑟,𝑠,𝐷|

𝑝

𝑛

)

1
𝑝

 

 

which yields that 𝐴𝑥 ∈ 𝑙𝑝, namely 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏1
𝑟,𝑠(𝐷): 𝑙𝑝). 

 

Conversely, we suppose that 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏1
𝑟,𝑠(𝐷): 𝑙𝑝), where 1 ≤ 𝑝 < ∞, namely 𝐴𝑥 ∈ 𝑙𝑝 for all 𝑥 =

(𝑥𝑘) ∈ 𝑏1
𝑟,𝑠(𝐷). So, {𝑎𝑛𝑘}𝑘∈ℕ ∈ {𝑏1

𝑟,𝑠(𝐷)}𝛽 for all 𝑛 ∈ ℕ, which shows us that the (15) holds. These results 

give us that 𝐻𝑟,𝑠,𝐷 = (ℎ𝑛𝑘
𝑟,𝑠,𝐷) ∈ (𝑙1: 𝑙𝑝). By combining last result and Lemma 4.2, we obtain that the 

condition (16) holds. This completes the proof.  

 

5. CONCLUSION 

 

The domain of Binomial matrix 𝐵𝑟,𝑠 = (𝑏𝑛𝑘
𝑟,𝑠) in the sequence space 𝑙𝑝 has been introduced by Bişgin in 

[15]. Also, the domain of triple band matrix 𝐷 = (𝑑𝑛𝑘) in some sequence spaces was used and studied by 

many authors. Since 𝐻𝑟,𝑠 = (ℎ𝑛𝑘
𝑟,𝑠) is composition of 𝐵𝑟,𝑠 = (𝑏𝑛𝑘

𝑟,𝑠) and 𝐷 = (𝑑𝑛𝑘), and 𝐻𝑟,𝑠 = (ℎ𝑛𝑘
𝑟,𝑠) is 

stronger than 𝐷 = (𝑑𝑛𝑘), our results are more general. 
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