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1. INTRODUCTION

A sequence space is described as a vector subspace of w which is a vector space under poit-wise addition
and scalar multiplication, where w is a set of all real (or complex) valued sequences. By [, ¢, co and [,
symbols, we mean correspondingly the classical sequence spaces of all bounded, convergent, null and
absolutely p-summable sequences, where 1 < p < co.

A Banach sequence space is identified as a BK-space should each of the maps p,,: X — C be defined by

pn(x) = x,, is continuous for all n € N [1]. Taking this notion into account, it can be said that [, c and ¢,

are BK-spaces along with their usual sup-norm named by |[x||, = sup|x,|and [, is a BK-space with its
keN

p-norm defined by

Ixll, = (me)

where 1 < p < co. To maintain straightforwardness, the summation without limits runs from 0 to o in the
remaining of the paper.

*e-mail: sonmez@erciyes.edu.tr


http://dergipark.gov.tr/gujs
https://orcid.org/0000-0003-2142-0736

477 Abdulcabbar SONMEZ/ GU J Sci, 33(2): 476-490 (2020)

Let A = (ay;) be an infinite matrix of complex entries, X and Y be two sequence spaces and x = (x;) €
w. The A-transform of x is, then, defined by

(Ax), = Z Anie Xk

k

and is supposed to be convergent for all n € N. By (X:Y), we mean the class of all infinite matrices from
X into Y represented as

X:Y)={A = (ap):Ax €Y for all x € X},
The matrix domain of A = (a,;) in X is defined by
XA = {x = (xk) Ew:Ax € X}

which is also a sequence space [2].

For bs and cs, in the given order, we write the sets of all bounded and convergent series which are defined
by using the matrix domain of the summation matrix S = (s,,;,) such that bs = (I,)s and c¢s = ¢ where
S = (spx) is defined by

s _{ , 0<k<n
nk =0 , k>n

foralln, k € N.

An infinite matrix A = (a,) is called a triangle provided the entries a,;, = 0 for k > n and a,,,, # 0 for
all n, k € N. A triangle matrix has an inverse which is unique and a triangle. If the otherwise is not stated,
any term with negative subscript is assumed to be zero.

Many authors construct a new sequence space by using the matrix domain of an infinite matrix such as:
Up)Nqanchqin[3L X, and X, in [4], 1o, (A), co(A) and c(A) in [5], I (A?), co(A%) and c(A?) in [6],
eq and e in [7], e and e, in [8] and [9], eq (A), ef (A) and el, (A) in [10], eg (A™), el (A™) and el, (A™)
in [11], e§ (B™), eZ (B(™)) and el (B™) in [12], lo, ¢, ¢, and ip in [13].

In the present paper, we describe the sequence space b;'s (D) originated by the composition of the Binomial
matrix and generalized second order difference (triple band) matrix and indicate that the space b[,’s(D) is
linearly isomorphic to the space ,, where 1 < p < co. Additionally, we obtain some inclusion relations
and Schauder basis of the space b,* (D). We also pinpoint a-, 8- and y-duals of the space b,,* (D). Finally,
we classify some matrix classes related to the space bg's (D).

2. THE SEQUENCE SPACE b};*(D)

In this part, we briefly state the previous studies of Binomial matrix and Euler matrix, and define the
sequence space bg's (D). Moreover, we show that the sequence space b;'S(D) is linearly isomorphic to the
sequence space [, and is not a Hilbert space excluding the case p = 2, where 1 < p < co. Besides, we
investigate some inclusion relations.

The usage of matrix domain of the Euler matrix was first motivated by the authors in [7-9]. They constructed
the Euler sequence spaces eg, e/, el, and ey as:
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S

ef = {x = (x;) € w: lim Z () @ =rynkrie = o},

k=0

S

el ={x = (xy) € WTEI_IBOZ (Z) (1 =) Frky, exists},

k=0
<ol

ern =1{x = (x;) € w:sup
neN

i (Z) (1 —r)keky,
k=0

and

n

(Z) (1 —r)"*rkx,
k=0

14
< oo

ey = x=(xk)Ew:z

n

where 1 < p < o0, 0 < r < 1 and the Euler matrix of order r is defined by

n _ n—k,.k
e,ﬁk:{(k)(l )V, 0<k<n
0 , k>n

foralln, k € N.
Afterwards, Altay and Polat [10] improved works in [7-9] by defining the sequence spaces ej (A), el (A)
and eZ,(A) in [10] as:

5 () = = (r) € ws lim - (1) (1= )"k G = 1) = o},

k=0

3

er(A) =4x=(xp) € WTlll_r)Eloz (Z) (1 =) krk(x, — x_1) exists}

k=0
D () @ =Gy — x| < oo}
k=0

Recently, Bisgin [14,15] has further generalized works in [7-9] by describing the Binomial sequence
spaces by, b, bes® and by, in [14,15] as:

and

neN

el,(A) = {x = (x;) € w:sup

n
1 n
TS _ ). _ T E —ky ke, —
by” = x—(xk)Ew.grolo(s_l_r)nk_O(k)sn r xk—O},

n

. 1 ny .
bZ'S =1{x = (x;) € w: iﬁom; (k) s™ krkxk QXlStS},
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s

14
< 0o

n
n k..k
rX
(s +r)"z k

by’ = {x = (x;) € w:sup
k=0

neN

and

n
1 n
s _ — . n—k,.k
b, = {x = (x)) Ew: E ‘(s+r)" E (k)s rx;
n k=0

where 1 < p < oo and the Binomial matrix B™ = (b, ) is defined by

1 M\ n—k .k
pre = TSt 0<ksn

0 , k>n

foralln,k € N, r,s € Rand s.r > 0. In the matrix above, we obtain the Euler matrix of order r provided
we take r + s = 1.

Subsequently, when the Binomial matrix and generalized difference matrix G = (g,) is considered, the
sequence space b, (G) has been defined by Bisgin in [16] as follows:

p

n
nk k
r(tx;, + ux;,_ < o
(Hr) ,;_o (txic + uxe—1)

b(6) = {x = (o) e w: )

where 1 < p < o and generalized difference matrix G = (gy,;) is defined by
t k=n

Ink = {u , k=n-1
0 , otherwise

forall n, k € N and t,u € R\{0}. Note that, if we take t = 1 and u = —1, we obtain the difference matrix
A. So, generalized difference matrix generalizes the difference matrix [13].

Now, we define the sequence space b{,'s(D) by using triple band matrix and Binomial matrix such that

n 14

n —
b,*(D) = 6T r)n Z (k) SRR (txg + uxp_q + VX)) < o

where 1 < p < oo and triple band matrix D = (d,,;.) is defined by

, k=n

, k=n-1
v k=n-2
> otherwise

dpk =

(=R

for all n,k € N and t,u,v € R\{0}. If t = 1,u = —2 and v = 1, we obtain the difference matrix AZ.
Moreover, if we take v = 0, we obtain the generalized difference matrix G = (g,). SO0, we generalize the
sequence space b, (G).

Using the domain of the triple band matrix, we define the sequence space b[,'s (D) by



480 Abdulcabbar SONMEZ/ GU J Sci, 33(2): 476-490 (2020)

by*(D) = (by*), - (1)

Also, by constructing a matrix H™ = (hy; ) so that

Sn—k—zrk

hye =3 (G +n)" [t () +usr (o 4 1) + 77 (3 2)] - Oksn
0 ) k>n

for all n, k € N, we redefine the sequence space b”(D) by aid of the H™S = (h ) matrix as follows:

b;'S(D) = (lp)Hr.s : (2)

So, for given x = (x;) € w, the H™*-transform of x is defined by

1 kY ki i
Vi = (H™)y = = 20 () s57r (6 + uxicy +vxig) 3)
or
e N SR~ 2 (k k 2( k K—i=2.0.
Vi = (H"x)) = G Yi=0 [ts (l) + usr (i + 1) +vr (i + 2)]5 rix; (4)
forall k € N.

Theorem 2.1. The sequence space b;'s (D) is a BK-space with its norm defined by

1
had P
Illygeoy = IH™*xl, = (Zl(H“x>k|p>
k=0

where 1 < p < oo,

Proof. It is known that [, is a BK-space according to its p-norm and (2) holds. Also, the matrix H™* =
(hl) is a triangle. By combining these results and Theorem 4.3.12 of Wilansky [2], we deduce that the
sequence space b, (D) is a BK-space, where 1 < p < oo,

Theorem 2.2. The sequence space bg's (D) is linearly isomorphic to the sequence space l,,, where 1 < p <
0,

Proof. Let L be a transformation such that L: b;'S(D) — Ly, L(x) = H"™*x. Then, we should show that L is

a linear bijection. The linearity of L is obvious. On the other hand, It can be easily shown that x = 6
whenever Tx = 0. So, L is injective.

Now, let us define a sequence x = (x,,) such that

9
1S e& —u+Vu? — 4vt —u —Vu? — 4vt - i
=_Zz (=)' (r+ ) r Tty
t 19_0 2t

2t
=0i=k

foralln € N, where y = (yx) € [, and 1 < p < oo. Then, we have

||x||b;-5(p) = [[H™*x/l,
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= ( |(Hf-5x>n|p)p

n=0
_ <§: ﬁz (Z) SRR (txy, 4+ uxg_q + vX_p)

! k=0

oo k

<z (s + r)” smert z ( ) —s) @+ S)jr_kyj

=0 j=0
= (anw)p

n=0

= llyll, <co.

[

P\ p

Sl

p

Therefore, L is norm preserving and x = (x,,) € b{,’S(D) forall y = (yx) € l,,, namely L is surjective.

As a consequence, L is a linear bijection as desired.
Theorem 2.3. The sequence space b;'S(D) is not a Hilbert space for 1 < p < oo withp # 2.

Proof. Suppose p = 2. By Theorem 2.1, the sequence space b,*(D) is a BK-space with its norm defined
by

1

© 2

llygscoy = IHxl; = (ZKH“x)kP)
k=0

which is also generated by an inner product such that
lxllypsepy = (H™Sx, H™Sx)2.
So, b;”*(D) is a Hilbert space.

On the other hand, assuming that p € [1, ©)\{2}, we define two sequences y = (y,) and z = (z) as
follows:

k k—i k—i—9 9 .
12 V(—u VU — vt [—u—VuZ — dut ( s)“l —s+i(r+s)
t 2t 2t T T
i=0 9=0
and
k k-i 9 i—-1
_12 —u + Vu? — 4t —u —Vu? — 4ut ( s) —s—i(r+s)
=% 2t 2t r r
i=09=0

for all k € N. Then we get
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2 2 _ 242 _ 2 2
1y + 2l3rs oy + 11 = 2llFrspy = 8% 2% = 2[I¥li3rs ) + lzlipseo) |

Therefore, the norm of the sequence space b[,'s (D) does not satisfy the parallelogram equality, namely the
norm can not be generated by an inner product. As a consequence, the sequence space b;'S(D) is not a
Hilbert space for p € [1,0)\{2}.

Theorem 2.4. The inclusion 1,(D) c b,”*(D) strictly holds, where 1 < p < co.

Proof. We give the proof of theorem for 1 < p < oo. In case of p = 1, the proof can be done similarly.
For a given arbitrary sequence x = (xy) € L, (D), from the definition of the sequence space L, (D),

we have

ZItxk + uxp_q + vxp_,|P < 0

where 1 < p < co. By the Holder’s inequality, we write

k P
|(H™ ) [P = skIrd (ex; + uxj_y + vx;_,)
e (s+r)k ] =1 =2

j=0

k p-1 k
P
= <I5+r|") Z< )lslk it Z( )lslk Tl e + wxj g + 0%

]=0 :

k

1

k) k. . p
_ s ) |ex; + uxi—1 + vx;_

S e v
J_

k ,
k s k) D
= Z(}) |S+r| |E| |tx]' +uxj_1 +17x]'_2|

Jj=0

where 1 < p < co. Then we obtain

k

ZI(H”x)klp <zz< ) P | | |tx]+ux] 1+ vx;_ 2|

j=0
o )
. k S Kk rJ
:Z|tx]'+uxj—1+vxf—2| Z(j>|s+r| |§|
7 k=
S+r

Z|txj +uxj_q + vxj_2|p
J

where 1 < p < oo. If we connect this result and comparison test, H*x € 1, , namely x = (x) € b, (D).
Hence, 1,(D) < by* (D).

Define a sequence z = (z;) such that
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k—i k—i-9 9
1 —u+Vu? — 4ut —u—Vu? —4vt ;
e 2 () () e

i=0
S—=r

for all k € N. Then, one can see that Dz = ((—1)*) € I, and H™*z = ((—

K
S+r) ) € l,, namely z = (z;) €
1,(D) and z = (z;) € by,*(D) which shows 1,,(D)  b,* (D) .

Theorem 2.5. The inclusion b,,* (D) c by (D) strictly holds in case of 1 < p < q < co.

Proof. It is known that the inclusion [, c [, holds in case of 1 <p < q < c. Suppose x = (x;) €
b{,'s(D). Then, we have H™*x € [,,. By combining these two facts, we write H"*x € l,, namely x = (x;) €
bg” (D). This shows us that the inclusion b,,* (D) < bg*(D) holds.

Define g = (gx) by

k k k—i-9

Z Zkz (1)( = u2 e ) ( Zu: — 4vt>l9 (=) (r+s)r G+ 1)‘%

]:0 l:

ﬁl}—‘

forall k € N. Then, it is clear that H"Sg = <( ) > € I\, namely g = (gx) € by (D)\b,,* (D) in case
k+1)P

of 1 < p < g < oo. Therefore the inclusion b,*(D) c by (D) strictly holds.

Theorem 2.6. The sequence spaces b,* (D) and I, (D) overlap but do not include each other, where p €
[1, o).

Proof. Define three sequences x = (x;), ¥y = (y;) and z = (z;,) as follows

B (—1)"Zk: Z_f (u —Vu? — 4vt>k_i_19 <u +Vu? — 4171:)19

e =T 2t 2t
i=09=0
k k- k—i—9 9
_12 l —u +vVu? —4ut ' —u —Vu? — 4vt
Ve =%, 2t 2t
i=09=0
and

Zk:%zk:k l< —u +Vu? — 417) (—u—\/uz—4vt>ﬁ( s)i

2t 2t r

for all k € N, where |5| > 1.Then Dx = ((=1)%) € Iy, H™x = ((ﬂ)k) €L, Dy=e€ly, H™y =

S+r
e¢l, Dz= ((—-) ) ¢l, and H™z = (1,0,0,..) € L,, namely x € L,(D)NbL*(D), y € Ly (D)\

b, (D) and z € b,*(D)\ls, (D). As a consequence of these the spaces, b,* (D) and I, (D) overlap but do
not include each other, where p € [1, ).
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3. THE SCHAUDER BASIS AND a—, B—,y —DUALS OF THE SPACE b;’S(D)

In this section, we determine the Schauder basis and a-, 8-, y-duals of the sequence space b;'S(D).

A sequence y = (y,) is called a Schauder basis of a normed space (X, || .|lx), if for each x = (x;) € X,
there exists a unique sequence A = (A;) of scalars such that

m
lim |fx — Z Avell =0.
m—oo

k=0 X

Then the expansion of x = (x;) with respect to y = (y;) is written by

X = Z Ak
k=0

By [17] X, has an Schauder basis if and only if X has a Schauder basis whenever A = (a,;) is a triangle.
Also, the sequence (e®) is a Schauder basis for L, and the matrix H™ = (hy; ) is a triangle, where e )
is a sequence with 1 in the k-th place and zeros elsewhere.

By combining these results, we can give next corollary.

Corollary 3.1. Let u® (r,s) = {yﬁl")(r, s)} N be a sequence defined by
ne

n n-i 9
r.s) = %Z ( u+\/u2 4ut ) <— "21‘:_4w> (=) k@ 4+, nxk

0 , 0<n<k

i=k 9=0

for all fixed k € N. Then, the Schauder basis of the sequence space bg’S(D) is the sequence {u(") (r, s)}
and every x = (xy) € b[,'S(D) can be uniquely written of the form

x = Z ot (r, s)

k
where o, = (H™*x), forall k € N.

keN

By connecting the results of Theorem 2.1 and Corollary 3.1 , one more result can be given.

Corollary 3.2. The sequence space b;'s(D) is separable.
A set defined by
MX,Y)={y =) Ew: xy = (xxy) €Y forallx = (x;) € X}

is called the multiplier space of the sequence spaces X and Y. Then, the a-, §- and y-duals of the sequence
space X are defined by means of the multiplier space, [;, cs and bs such that

X*=M(X, 1), Xf =M(X,cs) and XY = M(X, bs)

respectively.

Lemma 3.3. (see [18]) Let A = (ay;) be an infinite matrix. Then, the following statements hold
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i) A = (an) € (I: 1) iff
sup anankl <, (5)
keN
ii-) A = (ap) € (I4: o) iff
sup |ankl , (6)

n,keN

iii-) 4 = (@) € (Iy: ¢) iff () holds and

lim a,;, = a; forall keN, @)

n—oo

Lemma 3.4. (see [18])

Let A = (a,;) be an infinite matrix. Then, the following statements hold

i) A = () € (L: 1) iff

sup Yl Xnex ankl|? < o0, (8)
KEF

ii-) A = (@) € (Ip: L) iff

sup Yilankl|? < o, )
neN

iii-) A = (ay) € (l,,: c) iff (7) and (9) hold

where %+ % =1,1<p < oandF is the collection of all finite subset of N.

Theorem 3.5. Let é&,"°(D) and &,”° (D) be two sets defined by

IR

neK i=k 9=0

n—i > _ T 9
&°(D) = {a =(a) Ew: supz ( utVvut —dvt > (%) (=) (r + s)r a,

KeF

qm}
<m}.

and

n n-i

2 —_ 2 9
%ZZ ( u+\/u 4v> ( u—Vu 4vt> (=) + $)ra,

2t
i=k 9=0

£°(0) = {a = (@) ew: supz

kEN

Then {b]*(D)}* = &°(D) and {by*(D)}" = &°(D) , where 1 < p < o

Proof. Consider the sequence x = (x,,), which is defined by

i e\ e ? _ ‘
[Zz K Xg= 0 S 4v) ( : t) (_S)I_R(T+S)k7"_t]}’k (10)

2t 2t

for all n € N. Then, for given a = (a,) € w, we write

1 VuZ — dvt Vi a _ n
) (k)< = — ) <+vt> (=) + )™ an] Vi = ) v = (),
k=0

for all n € N. By taking into account the equality above, we observe that ax = (a,x,) € l; whenever x =
(xx) €b1°(D) or x = (x;) € by*(D) iff Py el; whenever y=(y,) €ly or y=(y) €L,
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respectively where 1 < p < oo, So, we obtain that a = (a,,) € {b]*(D)}* or a = (a,) € {b;'S(D)}a
P™S € (l;:l;) or P™S € (lp: ll), respectively, where 1 < p < oo. By connecting these results, (5) and (8),
we deduce that

a=(ay) € (G = supz

<

n n-i 9
%Z < u+\/u2 417) ( u—\/2u:—4vt> (—)*(r + s)er—ta,

i=k 9=0

and

q

<
t

n n-i Ry BN vy o 9
a=(a,) € {b{,’s(G)}a = supz 1 Z < Ut Vut - vt ) ( u - Vu? 4”) (=) k@ +s)ria,
KeF 4 2t

neK i=k 9=0
where 1 < p < oo, These yield us that {b]"*(D)}* = &,°(D) and {b;'S(D)}a = &°(D) ,where 1 < p < o,
Theorem 3.6. Define the sets £5°(D), &,”°(D) and é;”° (D) by

o j j-i j-i-9 9
1 i\ [~ -+ ViZ = vt —u —VuZ = 4t . .
&rs(D) = {a =(q)Ew: ?ZZ (;()( urvu v ) < u-vu v > (=9)"*(r +s)*r7'a; existsforallk € N}

2t 2t
q

: B <—u + \/uz——zm)j_i_ﬁ (—u —Vur= vt

&°(D) = {a = (ay) Ew: sup on o ) =)k (r + 5)ri

and

. (z) <—u + mf‘” (—u —Vuz -
k

9
4ut . .
)i~k ko=l o
7 5 ) (=) +9)r g

& (D) = {a =(a) Ew: ilégzn:
where 1 < g < oo.

Then the following statements hold:

() {7 (D)} = &°(DINSL* (D),

) (b5 ()Y = €15 (DYNELS (D), where 1 < p < oo,
(1) {b* (D)} = &,°(D),

(IV) {5 (D)} = ¢°(D), where 1 < p < o

Proof. Since the proofs of the parts (1), (111) and (V) may be obtained by using a same way, we prove the
theorem for only the part (I). Let a = (a,,) € w be arbitrarily given. Consider the sequence x = (x;,)
defined by the relation (10). Then, we write

n n k k k-i k—i-9 9
Vu?z — 4ut —u—Vu?z — 4vt . o
S-S S O T T o
k=0 k=o| j=o0i=j 9=0
n n J Jj-i e — j-i—9 o — 9
zz[%zz (;{)< u+\/2ut2 4vt> < u \/Zut2 4vt> (_S)i_k(r_l_s)kr—iaj]yk
k=o| Jj=ki=k =0
= Q" Y)n

for all n € N, where the matrix Q™ = (q,; ) is defined by
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] j—i—® 9
i\ [—u+ VuZ = vt —u —uZ = 4t . .
(l)< ¢ Zut v) s Zut v) )T +9)ra; , 0<k<n

0 , k>n

foralln, k € N. So, ax = (a,x,) € cs whenever x = (x;) € b;”*(D) iff Q™5y € c whenever y = (y;) €
l,. Thisyields us that a = (a,,) € {b]"*(D)}# iff Q™ € (;: c). By connecting this result and (7), we obtain
thata = (a,) € {bI'S(D)}ﬁ iff

joj-i j—i—9 9
122 (i)<—u+\/u2—4vt>] l <—u—Vu2—4vt
kneN [t

> o ) (—=)*@ + )kr~ta;f < oo

o J Jj7i j—i-9 9
1 i\ [—u+Vu? —4ut —u —Vu? —4ut . .
Ez Z (l) (T) <T> (—=s)"*(r +s)*r"a; existsforallk €N

This result shows that {b]"*(D)}# = &5 (D)NEL* (D).

4. SOME MATRIX CLASSES

In this section, we characterize some matrix classes related to the sequence space b,*(G), where 1 < p <
00,

For notation simplicity, we prefer to use following equality throughout the section 4.

o j j-i j-i-9 9
prsD lz (l) —u +Vu? — 4vt —u —Vu? — 4ut (—s)k(r + 8)r—ia,
nkeT g k 2t 2t i
j=k i=k 9=0

foralln, k € N.

Theorem 4.1. Given an infinite matrix A = (a,y), the following statements hold
(i) A = (any) € (b (D): 1) iff

sup |hl2P| < oo, (11)
kneN

(ii) A = (an) € (b5 (D): L) iff

q
sup Zk|h;',§‘D < oo (12)
neN

{anilken € &5° (D) (13)
where 1 < p < co.

Proof. Let p € (1,0). We take any x = (x) € b,*(D) by assuming that the (12) and (13) hold. Then, it

is obtained that {a,,; }xen € {b{,’s (D)}B. This result implies the existence of the A transform of x. From the
(10), we have
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XSS %iii@( G (T ot o
k= k=0 =j

0 j=0i=j 9=0

[ py ! uwm)f - (71‘_ uz_m)ﬂ (=) 0+ s)"r“'] Y - (14)

2t

By taking limit of the (14) side by side as m — oo, we obtain that
Tk GnicX = Sk e yie (n € N). (15)
Then, we derive by taking l.,-norm of the (15) side by side and by applying Holder’s inequality that

TSD
B Zhnk Yk
n X

lAx|l = sup
€

1
2 1
< sup (Ll | )" CalyiePyv < o.
As a result of this, we obtain that Ax € lo,, namely A = (any) € (by*(D): lo).

Conversely, assume that A = (@) € (by°(D): ls). This gives us to {an}ren € {b;'S(D)}B foralln €

N. Then, the necessity of (13) is immediate and { ;7" ey EXists. Onaccount of {ap Jren € {by* (D)}ﬁ ,

we can see that the (15) holds and the sequences a,, = (a,x)ken define the continuous linear functionals
fn O by°(D) by

fa(x) = Z AnkXk

k

for all n € N. Also, by Theorem 2.2, b[,’S(D) and L, are norm isomorphic. By connecting this result and the
equation (15), we obtain that

Ifall = ”(h”D keN”q

which yields that the functionals f,, are pointwise bounded. Moreover, we derive from the Banach-
Steinhaus theorem that the functionals f,, are uniformly bounded, namely there exists a constant M > 0
such that

(ZW“’ ) Ifull < M

for all n € N, which shows us that the condition (12) holds. The part (i) can be done similarly.

Lemma 4.2 (see [18]) Let A = (ay) be an infinite matrix. Then, 4 = (ay) € (I3:1,) iff

sup ) |ap|P < oo
keN

where 1 < p < oo.
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Theorem 4. 3. Let an infinite matrix A = (a;) be given. Then, 4 = (a,;) € (b7°(D) : L)) iff

sup Y| hie? P <o (16)
keN
where 1 < p < oo,

Proof. Let a sequence x = (x;) € b;”* (D) be given. Assume that the condition (16) holds. Then, it is clear
that y = (y) € Ly and {a, }xen € {b]°(D)}P for all n € N, namely A-transform of x exists. As a result

of this, the series )}, h;',i'Dyk are absolutely convergent for alln € N and y = (y,) € ;. By applying the
Minkowsky inequality to (15), we can write

5 ;
(ZKAx)nw) <D il (EIh;'i'D ”)
n k n
which yields that Ax € 1,,, namely A = (anx) € (b1°(D):1,).

Conversely, we suppose that A = (auy) € (b;°(D):1,), where 1 < p < oo, namely Ax € L, for all x =
(x) € b]°(D). S0, {ank}rken € {b]° (D)} foralln € N, which shows us that the (15) holds. These results

give us that H™*? = (k") € (13:1,). By combining last result and Lemma 4.2, we obtain that the
condition (16) holds. This completes the proof.

5. CONCLUSION

The domain of Binomial matrix B™ = (b, in the sequence space [,, has been introduced by Bisgin in
[15]. Also, the domain of triple band matrix D = (d,;) in some sequence spaces was used and studied by
many authors. Since H™* = (hl7) is composition of B™ = (b, ) and D = (dyy), and H™S = (h3) is
stronger than D = (d,,;), our results are more general.
CONFLICTS OF INTEREST
No conflict of interest was declared by the author.
REFERENCES

[1] Choudhary, B., Nanda, S., Functional Analysis with Applications, Wiley, New Delhi, (1989).

[2] Wilansky, A., Summability Through Functional Analysis, North-Holland Mathematics Studies,
85, Elsevier, Amsterdam, (1984).

[3] Wang, C.S., “On Norlund sequence spaces”, Tamkang Journal of Mathematics, 9: 269-274,
(1978).

[4] Ng, P.N., Lee, P.Y. “Cesaro sequence spaces of non-absolute type”, Commentationes
Mathematicae (Prace Matematyczne.), 20(2): 429-433, (1978).

[5] Kizmaz, H., “On certain sequence spaces”, Canadian Mathematical Bulletin, 24(2): 169-176,
(1981).

[6] Et, M.,“On some difference sequence spaces”, Turkish Journal of Mathematics, 17: 18-24, (1993).



490

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Abdulcabbar SONMEZ/ GU J Sci, 33(2): 476-490 (2020)

Altay, B., Basar, F., “Some Euler sequence spaces of non-absolute type”, Ukrainian Mathematical
Journal, 57(1): 1-17, (2005).

Altay, B., Basar, F. and Mursaleen, M.., “On the Euler sequence spaces which include the spaces
L, and [, |, Information Science, 176(10): 1450-1462, (2006).

Mursaleen, M.., Bagsar, F. and Altay, B., “On the Euler sequence spaces which include the spaces
l, and I, 11, Nonlinear Analysis: Theory, Methods and Application, 65(3): 707-717, (2006).

Altay, B., Polat, H., “On some new Euler difference sequence spaces”, Southeast Asian Bulletin
Mathematics, 30(2): 209-220, (2006).

Polat, H., Basar, F., “Some Euler spaces of difference sequences of order m”, Acta Mathematica
Scienta Series B, Engl. Ed., 27B(2): 254-266, (2007).

Kara, E.E., Basarir, M., “On compact operators and some Euler B(™-difference sequence
spaces”, Journal of Mathematical Analysis and Applications, 379(2): 499-511, (2011).

Kiris¢i, M., Basar, F., “Some new sequence spaces derived by the domain of generalized
difference matrix”, Computers & Mathematics with Applications, 60(5): 1299-1309, (2010).

Bisgin, M.C., “The Binomial sequence spaces of nonabsolute type”, Journal
of Inequalities and Applications, 2016:309,(2016).

Bisgin, M.C., “The Binomial sequence spaces which include the spaces [, and [, and geometric
properties”, Journal of Inequalities and Applications, 2016:304, (2016).

Bisgin, M.C., “A note on the sequence space b;'S(G)”, Cumhuriyet Science Journal, 38(4): 11-25
(2017).

Jarrah, AM., Malkowsky, E., “BK-spaces, bases and linear operators”, Rendiconti del Circolo
Matematico di Palermo Series, 52(2): 177-191, (1998).

[18] Stieglitz, M., Tietz, H., “Matrix Transformationen von Folgenrdumen eine ergebnistibersicht”,

Mathematische Zeitschrift 154: 1-16, (1977).


https://www.springer.com/journal/11253
https://www.springer.com/journal/11253

