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ABSTRACT 

In winter season the air pollution is the one of the most important environmental prob-
lems in Trabzon, located in Eastern Black Sea Region of Turkey. The humid climate as well 
as the densely populated urbanization cause serious problems for a long time period. One of 
the main targets of air quality management is to estimate the influence of different factors 
such as trend and seasonality upon air quality levels in a given area. In this paper, an attempt 
has been made to identify and estimate the trend and seasonal factors in TSP in Trabzon using 
accurate and reliable techniques. 

The data used in this study is concerned with monthly measurement levels of TSP taken 
from January 1996 through May 2007. The most accurate WLS regression results show that 
the adjusted–R2 is about 83,8% and the monthly averages of TSP do not have a clear trend 
over the period 1996–2007, the trend estimate is only about 0,08 points per year, which has a 
statistical significant of 0,681.  

Keywords: Suspended Particles, Air Quality, Weighted Regression, Decomposition Method. 

 
TRABZON’DA TOPLAM ASILI PARTİKÜLLER DÜZEYLERİNDEKİ 

TRENDİN VE MEVSİMLİK FAKTÖRLERİN TAHMİN EDİLMESI: 
MEVSİMSEL VE AĞIRLIKLI REGRESYON ANALİZİ 

ÖZET 
Türkiye’nin Doğu Karadeniz Bölgesinde yer alan Trabzon’da kış mevsiminde hava kir-

liliği en önemli çevre sorunlarından birisidir. Uzun zamandan beri rutubetli iklimin yanında 
yoğun kentleşme çok önemli çevre sorunlarına neden olmaktadır. Hava kalite yönetiminin 
temel hedeflerinden birisi de herhangi bir bölgedeki hava kalitesi üzerinde etkili olan trend 
veya mevsimsellik gibi faktörleri tahmin etmektir. Bu çalışmada Trabzon’da toplam asılı 
partiküller maddede düzeylerindeki trend ve mevsimlik faktörler en uygun ve güvenilir tek-
niklerle araştırılmaktadır.  

Araştırmada Ocak 1996 ile Haziran 2007 tarihleri arasındaki aylık asılı partiküller serisi 
kullanılmaktadır. Ağırlıklı regresyon analizi ile elde edilen en uygun sonuçlarda düzeltilmiş-
R2 değerinin %83,8 ve toplam asılı partiküller düzeylerinin Ocak 1996-Haziran 2007 döne-
minde yıllık trendinin pozitif ve yaklaşık olara 0,08 um/m3 olduğu ve bunun 0,681 anlamlılık 
düzeyine sahip olduğu anlaşılmaktadır. 

Anahtar Kelimeler: Asılı Partiküller, Hava Kalitesi, Ağırlıklı Regresyon, Bileşenlere 
Ayırma. 
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1. INTRODUCTION 

Air pollution or insufficient air quality is one of the most common urban prob-
lems in the world. Epidemiological studies show clearly that both indoor and out-
door air pollution affect human health negatively. In particular, air pollution nega-
tively affects vulnerable groups such as the sick, old and children. Studies of air 
pollution on health have linked particulate matter with a number of significant health 
effects (e.g. mortality, morbidity, respiratory and cardiovascular problems, etc.). 
These include increased mortality and aggravation of existing respiratory and dis-
ease of the heart and blood vessels disease, as evidenced by increased hospitaliza-
tion, school absences and lost work days (Sapan, 2006). 

Urban air quality in developing countries has become serious gradually because 
of population growth, rapid urbanization, industrialization and domestic heating. 
The air pollution path in the urban atmosphere consists of emissions and transmis-
sion of air pollutants resulting in the ambient concentrations. Each part of the path is 
influenced by different factors. Emissions from domestic heating are very important 
source group in Turkey, as well as other cold countries of the world (Turanlıoğlu et 
al., 2005). During transmission, air pollutants are dispersed, diluted and subjected to 
photochemical reactions (Mayer, 1999). 

Most cities worldwide have witnessed serious air quality problems mainly due 
to industries and vehicles. Urbanization has resulted in high levels of ground level 
deterioration of air quality. The investigation of air pollution in mega cities showed 
that the major problem affecting these cities is their high levels of total suspended 
particles (Mage, et al., 1996). It is well established that high levels of TSP are signif-
icantly associated with adverse health effects, ecosystem damage and degraded 
visibility (Goswami et al., 2002). 

Total suspended particles (TSP) are the collective term used for a mixture of 
solid particles and liquid droplets found in the air. TSP refers to all particles in the 
atmosphere. TSP was the first indicator used to represent suspended particles in the 
ambient air. TSP has wide range of sizes and originates from many different statio-
nary and mobile sources (Aneja, et al., 2001). One of the major characteristics of 
particulate matter is particle size. Particles can be categorized as TSP, PM10, 
PM2.5, particles less than 0.1 um, condensable particulate matter. Particles ranging 
in size from 0.1 micrometer to about 30 micrometer in diameter are referred to as 
TSP. Particles less than 2,5 microns in diameter are known as "fine" particles; those 
larger than 2,5 microns are known as "coarse" particles. Fine particles with diame-
ters of less than 1 um, move like gases. Because of their low settling velocities, fine 
particles may be transported 1,000 kilometers or more from their source. Under the 
influence of gravity, larger particles do not remain suspended and tend to settle out 
of the air, sometimes creating localized areas of high particle disposition. 

Twinning Projects of the European Commission were introduced as a tool to 
achieve the same standards and backgrounds in all countries which are interested in 
a closer cooperation with the European Union (Müller, 2006). The “Air Quality” 
Twinning Project of Turkey started in October 2004 and has to fulfill four main 
tasks: (1) Transposition of the Air Quality Framework Directive 96/62/EC and the 
Large Combustion Plants Directive 2001/80/EC into Turkish (Draft) Regulation, (2) 



ZKÜ Sosyal Bilimler Dergisi, Cilt 4, Sayı 8, 2008 

 
75 

Draft Agreed Framework Regulation on Air Quality which defines the roles and the 
responsibilities of the involved ministries (considering both directives), (3) stringent 
of the qualification of the administration stringent of the quality management and 
preparation of the accreditation of the two laboratories-Refik Saydam Hygienic 
Center (RSHC) and Gölbaşı, (4) agreed strategic Action Plans on further implemen-
tation steps of the two directives (Gömer et al., 2006). 

A large number of epidemiological studies have established the link between 
ambient particle concentrations and daily excesses in mortality and morbidity (Pope 
III., et al., 1995). Although there is some evidence that certain particle properties, 
such as chemical composition and size, have different importance on human health 
(Harrison and Yin, 2000), current EU legislation only controls the mass concentra-
tion of particles with diameter below 10 um in ambient air (European Council, 
1999). This is implemented by imposing two health-based limit values: (1) A 24h 
mean concentration of 50 um/m3 not to be exceeded more than 35 times during a 
calendar year and (2) an annual concentration of 40 um/m3. More stringed PM10 
objectives will have to be achieved by EU countries by 2010: (1) A 24h mean con-
centration 50 um/m3 not to be exceeded more than 7 times during a calendar year (2) 
an annual mean concentration of 20 um/m3. Furthermore, a concentration cap (25 
um/m3) and an exposure reduction target have been recently proposed for mass con-
centration of particles with diameters below 2.5 um (PM2.5) in ambient air 
(Vardoulakis and Kassomenos, 2008). 

Hess et al. (2001) presented an overview of statistical approaches available for 
detecting and estimating linear trend in environmental data. They had evaluated 
seven methods of trend detection and made recommendations based on a simulation 
study. They showed t-test adjusted for seasonality and Seasonal Kendall test appear 
to maintain their stated a levels (false rejection level) as well as maintain high power 
with different trend functions. Gupta and Kumar (2006) present a set of time series 
analysis methods t-test adjusted for seasonality, Seasonal Kendall test and Interven-
tion analysis have been applied to identify and estimate the trend in PM10 and TSP 
levels monitored for about 10 years at three monitoring sites at each of the four 
cities in India (Gupta and Kumar, 2006). Jorquera et al. (2000) used intervention 
analysis methodology to detect the trend of PM10 and PM2.5. 

Seasonal decomposition method, seasonal least squares regression and seasonal 
weighted least squares regression has been used to detect trends in the monthly av-
erage concentration of TSP in this paper. 

2. ESTIMATION TECHNIQUES 
Classical time series decomposition separates a time series into four compo-

nents: long-range trend, seasonality, cycle, and randomness. The multiplicative 
decomposition model is (Trend) x (Seasonality) x (Cycle) x (Random) 
= .t t t t tX T S C R= × × ×  

Where Xt denotes the series or, optionally, log of series; Tt denotes the linear 
trend; Ct denotes cycle; St denotes season; Rt denotes random error and t denotes the 
time period (Makridakis and Wheelwright, 1978). 
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Note that this model is multiplicative rather than additive. Although additive 
models are more popular in other areas of statistics, forecasters have found that the 
multiplicative model fits a wider range of forecasting situations (Hintze and NCSS, 
2005). Multiplicative seasonal component is a factor by which the seasonally ad-
justed series is multiplied to yield the original series. Observations without seasonal 
variation have a seasonal component of 100. Additive seasonal adjustments are 
added to the seasonally adjusted series to obtain the observed values. Observations 
without seasonal variation have a seasonal component of 0.  

Decomposition is popular among forecasters because it is easy to understand. 
While complex ARIMA models are often popular among statisticians, they are not 
as well accepted among forecasting practitioners (Hintze and NCSS, 2005). For 
seasonal data, decomposition methods are often as accurate as the ARIMA methods 
and they provide additional information about the trend and cycle which may not be 
available in ARIMA methods (Hintze and NCSS, 2005). 

Decomposition method has one disadvantage: the cycle component must be in-
put by the forecaster since it is not estimated by the algorithm. You can get around 
this by ignoring the cycle, or by assuming a constant value (Hintze and NCSS, 
2005).  

Multiple regression analysis refers to a set of techniques for studying the linear 
relationship among two or more variables. This relationship for population is de-
scribed in the following formula: 

0 1 1 1...= + + + +i j p p jy x xβ β β ε
 

Where Y is the value of the dependent scale variable; p is the number of predic-
tors; X is the value of the independent variable; the subscript j represents the obser-
vation number. The β’s are the unknown regression parameters. Their estimates are 
represented by b’s each represents the original unknown (population) parameter, 
while b is an estimate of this. The ε is the error of observation j.  

Multiple regression analysis studies the relationship between a dependent scale 
variable and p independent variables. The sample multiple regression equation is 

0 1 1 1ˆ ...= + + +i j p py b b x b x
 

The intercept, b0, is the point at which the regression plane intersects the Y 
axis. The bi is the slopes of the regression plane in the direction of xi. These coeffi-
cients are called the partial-regression coefficients. Each partial regression coeffi-
cient represents the net effect the ith variable has on the dependent variable, holding 
the remaining X’s in the equation constant. A large part of a regression analysis 
consists of analyzing the sample residuals, ej, defined as 

ˆ= −j j je y y
 

Once the β’s have been estimated, various indices are studied to determine the 
reliability of these estimates. One of the most popular of these reliability indices is 
the correlation coefficient. The correlation coefficient is an index that ranges from -1 
to 1. When the value is near zero, there is no linear relationship. As the correlation 
gets closer to plus or minus one, the relationship is stronger.  
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For the purpose of testing hypotheses about the values of model parameters, the 
linear regression model also assumes: (1) the error term has a normal distribution 
with a mean of 0; (2) the variance of the error term is constant across cases and 
independent of the variables in the model. An error term with non-constant variance 
is said to be heteroscedastic; (3) the value of the error term for a given case is inde-
pendent of the values of the variables in the model and of the values of the error 
term for other cases (Orhunbilge, 1998). 

If the data are a random sample from a larger population and the ε’s are inde-
pendent and normally distributed, a set of statistical tests may be applied to the b’s 
and the correlation coefficient. These t-tests and F-tests are valid only if the above 
assumptions are met (Orhunbilge, 1998). 

When the parameters of a linear regression model are estimated, all observa-
tions usually contribute equally to the computations. This called ordinary least 
squares (OLS) regression. When all the observations have the same variance, this is 
the best strategy since it results in parameters estimates that have the smallest possi-
ble variance (Norusis and SPSS Inc, 1999). However, if the observations are not 
measured with equal precision, OLS no longer yields parameter estimates with the 
smallest variance. It is well known that the method of Ordinary Least Squares (OLS) 
is the most efficient for regression problems under the normal constant variance 
error. But any violations of the assumptions (non-normality, non-constant variance) 
may cause OLS estimates be less satisfactory and it is worthwhile to consider alter-
natives. A modification known as weighted least-squares regression (WLS) analysis 
may be used as an appropriate method in the presence of non-constant variance. In 
WLS regression, observations are weighted by the reciprocal of their variances. This 
means that observations with large variances have less impact on the analysis than 
observations associated with small variances (Norusis and SPSS Inc, 1999).  

In the presence of heteroscedasticity, the OLS regression method leads to un-
biased and consistent estimates but leads to ineffective parameters estimates and 
inconsistent covariance matrix. That is, the variance of estimated parameter is not a 
minimum. As a result, statistical tests of the significance may lead to incorrect con-
clusion. Heteroscedasticity usually does not occur in time series data when both 
dependent and independent variables tend to change in the same magnitude. For 
instance, income and consumption both change about the same rate. But heterosce-
dasticity can occur more often in the cross section data (Shin, 1996).  

Graphic method, Goldfield-Quandt, Breusch-Pagan-Godfrey, Park, Glejser, 
Spearman Rank Correlation and White NR2 are some tests of detecting heterosce-
dasticity (Gujarati, 1995). 

3. RESULTS AND DISCUSSIONS 
The series used in this study are concerned with include monthly measurements 

of TSP taken from January 1996 through June 2007, although several observations 
are missing. The principle aim of this paper is to search whether the TSP levels of 
Trabzon shows a trend or not. To do this, it is built a regression model, expressing 
the TSP as a linear combination of other variables, including time and dummy 
month variables. If the model is satisfactory, the coefficient of time indicates a trend.  
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Table 1: Descriptive Statistics for Monthly Suspended Particles Data 

Month n Mean Std.Dev. 
St. 

Error Skew. Kurt. 

95% CI for Mean 

Min. Max. 
U. 

Bound 
L. 

Bound 
JAN 12 90.75 25.09 7.24 0.45 -0.52 74.81 106.69 55.0 139.0 
FEB 12 82.00 20.99 6.06 0.65 0.07 68.66 95.34 53.0 125.0 
MAR 12 67.58 11.39 3.29 0.66 -1.54 60.35 74.82 56.0 85.0 
APR 12 45.83 7.53 2.17 -0.20 -0.76 41.05 50.62 34.0 58.0 
MAY 12 33.08 7.49 2.16 -0.05 -1.40 28.33 37.84 22.0 43.0 
JUN 11 21.73 5.52 1.66 -0.39 0.53 18.02 25.43 11.0 31.0 
JLY 11 19.46 5.28 1.59 1.01 0.91 15.91 23.00 13.0 31.0 
AGT 11 19.82 3.46 1.04 -0.50 -1.36 17.49 22.14 14.0 24.0 
SEP 11 24.36 4.74 1.43 1.41 1.60 21.18 27.55 20.0 35.0 
OCT 11 31.68 7.99 2.41 0.58 -0.35 26.31 37.05 21.0 46.5 
NOV 11 72.39 18.18 5.48 0.71 -0.73 60.18 84.61 51.3 105.0 
DEC 11 98.79 31.19 9.41 0.01 -1.36 77.83 119.74 57.0 142.0 
Total 137 51.11 32.10 2.74 0.92 0.09 45.68 56.53 11.0 142.0 

Table 1 shows the descriptive statistics for TSP series. The TSP levels have an 
average of 51.11 um/m3. Winter months have an average level above the series 
mean, while summer months have an average level below the series mean. Novem-
ber, December, January, February and March have the highest mean of TSP and 
standard deviation levels. The 95% confidence intervals for January and December 
are nearly 74.8-106.7 um/m3 and 77.8-119.7 um/m3 respectively.  

Figure 1: Total Suspended Particles by Month 

 
Figure 2 shows the TSP level by months. This display is some time called a 

box-and-whisker plot. For each group of month, the horizontal line in the middle of 
box marks the median of the sample. Thus, for example, the median for January is 
around 88.5 um/m3, while in August roughly 21 um/m3. The edges of each box, 
called hinges, mark the 25th and 75th percentiles. The length of the box is called the 
hspread and corresponds to the interquartile range. The hspread for, April, May, 
June, July, August, September and October is very short, while that for the January, 
February, March, November and December is considerably longer. The whisker 
(vertical lines extending up and down from each box) show the range of values that 
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fall within 1.5 hspread of the hinges. It is easy to see from Figure 1 that the medians 
and the spread of 12 boxes vary greatly. The median TSP levels for March fall to-
ward the top of its box, indicating that the distribution is left-skewed, while that for 
the January, February, March, October, November and December is more centered 
as occurs for symmetric distributions. 

In addition to providing a sufficient summary of where the most of the values 
are concentrated and the shape of each distribution, the box plot is constructed to 
indicate outliers. Cases that have values more than 3 hspread below the lower hinge 
or above the upper hinge are marked by an asterisk (*) and called extreme values, 
while cases that have values between 1.5 and 3 hspread outsides the hinges are 
marked by an open circle (o) and called outliers. In summary, 54th month value in 
June and 117 month value in September is an outlier.  

Figure 2: Monthly Total Suspended Particles Data 

 
It is always a good idea to have a feel for the nature of data before building a 

model. Does the data exhibit seasonal variations or trend? Figure 2 shows that the 
TSP series exhibits numerous peaks, many of which appear to be equally spaced, as 
well no clear upward or downward trend. The equally spaced peaks suggest the 
presence of a periodic component to the time series. There are also peaks that do not 
appear to be part of the seasonal pattern and which represent significant deviations 
from the neighboring data points. These points may be outliers, which should be 
also taken into consideration. 

Replacing Missing Data of Suspended Particles Monthly Series 
Firstly I dealt with missing data. There are two considerations: In time series 

analysis, you cannot have any missing time periods, since observations must be 
evenly spaced. In a monthly series like this one, it must have been an observation 
every month even if the observation contains missing data.  

Once the series has a complete set of time periods, the next step is to decide 
how to deal with any missing values within the series. Some time series methods 
cannot process a series that contains missing data. Seasonal decomposition method, 
which is used in this study, is one of them. Before using one of the methods that 
require valid data, it must have been filled with reasonable values in place of the 
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missing data, either manually or with the Replace Missing Value procedure on the 
Transform menu in SPSS. Since TSP data are seasonal, a value midway between the 
preceding and following months is likely to be a better prediction, so linear interpo-
lation is used instead of series mean. In this study a plot of series shows the seasonal 
variation in the TSP (Figure 2).  

Calculating a Trend Variable for TSP Monthly Series 
As mentioned before the aim of this paper is to determine if there is a trend in 

the TSP monthly series. Since the trend per month would be quite small, it is prefer-
able to see the trend per year. To express the trend in part per year, it is needed a 
variable to indicate how many years each observation is from the beginning of the 
study. There are several ways to compute such a variable; perhaps the simplest is to 
use sequential number of each monthly observation in the data file. Then dividing it 
12 gives the number of years since the first observation.  

Removing Seasonality for Predicting the Real Trend  
In order to uncover any real trend in the TSP monthly series, firstly it is needed 

to account for the variation in the TSP measures that are due to seasonal effects. For 
instance, if TSP levels are always higher in winter than in the summer, this would 
confound the estimate of trend. The seasonal decomposition method decomposes a 
series into a seasonal, trend, cycle and error component (Orhunbilge, 1998). The 
Seasonal Decomposition Method normally treats the series as the product of the 
seasonal, trend, and cycle components. This multiplicative method is appropriate 
when seasonal variation is greater at higher levels of the series. For series, where 
seasonality does not increase with the level of the series, an alternative additive 
model is available. This produces the following results shown in Table 2.  

Table 2: Seasonal Factors of Total Suspended Particles (TSP) 

Seasonal  
Factor 

Month 
JAN FEB MAR APR MAY JUN JLY AGT SEP OCT NOV DEC 

Additive 40.3 28.9 16.1 -4.4 -18.7 -29.0 -31.7 -30.9 -26.0 -18.6 22.0 52.0 
Multiplicative 180.7 155.6 132.1 92.4 63.2 44.4 37.0 39.5 48.2 63.3 142.4 201.2 

The seasonal index shown in Table 2 is the average deviation of each month’s 
TSP level from the level that was due to the other component that month. In January 
averaged about 180.7 um/m3 above the deseasonalized TSP level. As it seen from the 
Table 2, December, January and February have the highest TSP levels, while July, 
June, August and September has the lowest TSP levels respectively.  

If multiplicative model with Seasonal Decomposition Method is used, the sea-
sonal index would be expressed as a percentage. Indexes for high TSP months such 
as November, December, January, February and March would be above 100, while 
indexes for low TSP months such as April, May, June, July, August, September and 
October would be below 100. Multiplicative and additive seasonal indexes are not 
directly converted each other, since the type of model used determines how the ob-
servation for each month are averaged. The seasonally adjusted or deseasonalized 
series for multiplicative model can be adequately used to predict whether there is a 
significant trend in TSP level.  
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Table 3: Regression Analysis Results for Seasonal Adjusted TSP Levels 

   
  

Unstandardized Coefficients 
t Sig. B Std. Error 

Constant 58.330 2.414 24.157 .000 
Trend -1.335 0.364 -3.663 .000 
R=%30.1% Adjusted R-Square=8.4% F=13.42 (0.000) Std. Error of the Esti-
mate=14.053 DW=1.97  DW=1.97 

Table 3 shows regression results for the deseasonalized TSP level. The coeffi-
cient of TREND, about -1.335 um/m3 represents the annual trend. Deseasonalized 
TSP level declined slowly approximately over this 11-years period. This effect is 
statistically significant at the 0.000 level. The model does not explain much of the 
variation. The R2, adjusted for the number of cases and variables, is only about 
8.4%. The standard error of the estimate is around 14.053 um/m3. 

Predicting Trend and Seasonality Simultaneously: Dummy Variable Regression 
Seasonally adjusting a series prior to evaluating the model, as done above, was 

once almost the only practical way of analyzing seasonal data. One way to include 
effects in a regression model without seasonally adjusting the data is to use dummy 
variables for the seasons. In this study, we used 11 dummy variables for 11 of the 12 
month. The 4th month (April) is reserved as a baseline for comparison. If it used all 
12 months, the 12th one would add no information that it couldn’t figure out from the 
first 11 dummy variable months.  

The result of dummy variable regression analysis shown in Table 4 shows that 
the R2 is much higher than in Table 3. Over 79.3% of the variation in TSP level is 
explained by this model, even after adjusting for the number of variables and cases. 
This improvement is largely due to the fact that the seasonal variation is included in 
the model and explained by the seasonal dummy variables, rather than being re-
moved prior to the analysis.  

The standard error of estimate in Table 3 (14.053 um/m3) is slightly less than 
that in Table 4 (14.598 um/m3). It was easier to fit the model for the seasonally ad-
justed TSP levels. The dummy-variable regression actually much the same thing as 
Additive Seasonal Decomposition Method but gave up degrees of freedom in doing 
so, which led to larger standard errors of estimates.  

The CONSTANT term is decreased from 58.33 to 53.60 um/m3. The coefficient 
of the TREND variable has increased slightly to -1.33 um/m3 and has a statistical 
significant of 0.001.  

Table 4: Regression Analysis Results of Dummy Month Variables 
 Constant TREND JAN FEB MAR MAY JUN JLY AGT SEP OCT NOV DEC 

 B 53.60 -1.33 44.6 36.0 21.6 -12.6 -24.6 -26.7 -26.2 -21.6 -14.2 26.7 53.2 
 S.E. 4.76 0.38 5.96 5.96 5.96 5.96 6.09 6.09 6.09 6.09 6.09 6.09 6.09 
 Sig. .000 .001 .000 .000 .000 .036 .000 .000 .000 .001 .022 .000 .000 
R=90.1%  Adjusted R Square=79.3%   F=44.47 (0.000)  Std. Error of the Estimate=14.598
 DW=2.19 

Each of the dummy month variable show the seasonal effect of that month 
compared to April, the omitted month. Since the April seasonal effect was quite 
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small (-4.4 um/m3) in Table 2 the coefficient of these dummy variables are very 
close to the effects estimated by Seasonal Decomposition Method.  

Table 5: Residual Analysis 
Case Number Std. Residual TSP Level Predicted Value Residual 

12 2.505 142.0 105.433 36.5673 
37 3.078 139.0 94.072 44.9276 
48 2.778 142.0 101.446 40.5542 
84 -2.772 57.0 97.459 -40.4589 

Table 5 shows the residual analysis for the dummy variable regression given in 
Table 4. It includes a list of outliers, giving their case numbers, standardized resi-
dual, TSP levels, predicted values and residuals. Four of the residuals are fairly 
large, greater than 2.5 times 14.598 um/m3 which is the standard error of estimate in 
Table 4. This is more than you would expect from only 137 observations. Conse-
quently, the histogram of standardized residual in Figure 3 shows noticeable depar-
ture from normality. Specifically, it shows positive kurtosis too many observations 
in the extreme tails, which therefore inflate the standard deviation and create the 
impression of too many observations close to the mean.  

The normal probability plot in Figure 3 also shows that observed values of the 
residuals at the top of the distribution are greater than those expected if the residual 
normally distributed.  

Figure 3: Histogram of Standardized Residual and Normal Probability Plot 

 
Outliers can have a disproportionate influence on trend estimates. Significant 

tests on regression coefficients depends on the assumption of normally distributed 
residuals and hence are also sensitive to outliers (SPSS Inc., 1999). Since our prima-
ry interest is to estimate the trend and testing the significance, we will smooth the 
outliers (replace them by less outlying values) and reestimate the regression equa-
tion.  

Table 6 shows the basic results from the regression analysis after smoothing the 
outliers (replace them by less outlying values). It is similar to those previous regres-
sion analysis (Table 4), but notice that adjusted R2 for the equation improved mar-
kedly, as it is expected when you remove the cases that are farthest from the regres-
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sion line. The coefficient of trend is slightly smaller, but its standard error is much 
smaller. It is still statistically significant at 0.001 levels again. 

Table 6: Regression Analysis Results of Smoothed Outliers 
 Const. TREND JAN FEB MAR MAY JUN JLY AGT SEP OCT NOV DEC 
B 52.16 -1.1 42.7 36.0 21.7 -12.7 -24.5 -26.7 -26.2 -21.6 -14.2 26.7 46.5 
S.E. 4.28 0.33 5.33 5.33 5.33 5.33 5.35 5.35 5.35 5.35 5.35 5.35 5.35 
Sig. .000 .001 .000 .000 .000 .017 .000 .000 .000 .000 .009 .000 .000 
R=91.5% Adjusted R Square=82.1%   F=53.08 (0.000)  Std. Error of the Estimate=12.81
 DW=2.24 

The scatter plot in Figure 4 compares the residuals (on vertical axis) with the 
predicted values (on horizontal axis). The plot shows a funnel shape that the va-
riance of the points at the right is more than the variance of the points at the left. The 
shape of the plot of residuals with the predicted values indicates that the residuals 
for observations with the predicted TSP levels have more variance than the residuals 
for observations with low predicted TSP level. Ordinarily least squares regression 
analysis assumes that the residual have a constant variance. This regression model 
evidently violates that assumption of constant variance, in technical language, the 
model shows heteroscedasticity.  

The variance of regression errors increases with the predicted values. The com-
ponents of predicted variables are TREND and 11 dummy month variables. We have 
already seen that TSP level vary with the seasons, averaging roughly 71 points high-
er in December and January than July and August (this is from the coefficients in 
Table 6). We know from experience that weather conditions are more variable in 
winter when TSP levels are high than in summer. Perhaps the pattern in the scatter 
plot is due to greater variance in TSP levels during the winter months. It is easy to 
check this.  

Figure 4: Residuals with Predicted Values Figure 5: Residual Variance by Month 

 
Figure 5 shows the residuals plotted against the month of the observation. This 

is not a time series plot (sequence chart); all the Januaries are plotted together, all 
the Februaries, and so on, so that it can be evaluated the variance of the residuals in 
each month.  

Figure 5 shows an impressive sideways hourglass pattern. The residuals are 
spread out vertically in the early months, squeezed together during the summer 
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months 5-9, and spread out again at the end of the year. TSP levels in Trabzon fluc-
tuated more in the winter when they are generally high than in the summer.  

The heteroscedasticity of the residuals violates one of the assumptions of ordi-
nary leas-squares regression, so some of the statistical results of the analysis above 
may not be reliable. To obtain more reliable and stabilized results, weighted least 
squares regression should be used.  

Weighted Least Squares Regression 
Standard linear regression models assume that variance is constant within the 

population under study. When this is not the case (for instance, when cases that are 
high on some attribute show more variability than cases that are low on that 
attribute) linear regression using ordinary least squares (OLS) no longer provides 
optimal model estimates (Norusis and SPSS Inc, 1999).  

In the current problem, it is assume that TSP levels really are a linear function 
of TREND and other 11 dummy month variable, and the residuals have a different 
variance in each month due to transient conditions or measurement problems. Ob-
servations from July and August, a month with small residual variance, will count 
more heavily in determining the regression equation than observations from Decem-
ber and January, a month with large residual variance. This is reasonable, since the 
observations from January and December are likely to be farther from typical Janu-
ary and December value than observations from July and August are from the typi-
cal July and August value.  

Figure 5 shows that the error variance differs according to the month of the ob-
servation. WLS is a technique that uses this information, giving more weight to 
precise observations and less weight to the highly variable observation. To use 
WLS, you must form a series that shows how much error you expect in each obser-
vation. The first step is to calculate how widely the TSP levels are spread within 
each month. This variable will be used as a weight (WGT) variable.  

WLS regression results are shown in Table 7. The multiple correlation coeffi-
cient of 92.3% is greater than with ordinary least squares. The adjusted R2 is still 
about 83.8%. The trend estimate is now only positive and only about 0.08 um/m3 per 
year, which has a statistical significant of 0.681. The magnitude of the trend esti-
mates change dramatically from previous regression analysis results. The constant, 
the estimated value at the beginning of the time period, with seasonal effect re-
moved, is 45.4 um/m3. There is no first order autocorrelation and multicolinearity 
problem in the built models. The Durbin-Watson statistics (DW) are 1.97, 2.19, 2.24 
and 1.85 respectively. Multicolinearity tests were also conducted with variance in-
flation factors (VIF), and the VIF values were less than 2 which is well below the 
problematic level of 10 (Gujarati, 1995).  
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Table 7: Weighted Regression Analysis Results of Dummy Month Variables 
  Constant TREND JAN FEB MAR MAY JUN JLY AGT SEP OCT NOV DEC 
 B 45.4 0.08 42.9 36.2 21.8 -12.8 -24.1 -26.4 -26.0 -21.5 -14.2 26.6 46.4 
 S.E. 2.18 0.19 6.35 6.49 3.06 2.79 2.46 2.73 2.30 2.49 3.23 6.25 7.71 
 t 20.78 0.41 6.76 5.57 7.12 -4.58 -9.80 -9.64 -11.31 -8.63 -4.38 4.25 6.01 
 Sig. .000 .681 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
R=92.3%   Adjusted R Square=83.8%  F=59.77 (0.000) Std. Error of the Estimate=0.331 
 DW=2.23 

The regression estimates have changed again, this time showing a smaller and 
statistically significant positive trend. Evidently, less reliable observations made in 
highly variable winter months had contributed to the trend and dummy month varia-
ble estimates from ordinary least squares. It should be expected that the weighed 
least squares estimates to be more reliable and stable ones.  

Figure 6: Unstandardized Residual and Normal Probability Plot of WLS 

 
Our conclusion, then, is that over the 11 years periods the TSP level in Trabzon 

was not statistically significant increasing by about 0.08 um/m3 each year.  
The P-P Plot of weighted least squares residuals is shown in Figure 6. It is noti-

ceable better than the plot of residuals from the ordinary least squares analysis 
shown in Figure 3. Finally, in Figure 7 the scatter plot between predicted values and 
residuals does not show the heteroscedasticity observed earlier.  

Figure 7: Scatter Plot of Residuals against Trend and Residual Variance by 
Month 

 
It is also a good idea to plot residuals against important independent variables. 

Figure 7 shows a plot of predicted residuals against trend (TREND) variable, whose 
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effect is being primarily interested in. Once again, there is no apparent pattern in this 
plot.  

4. CONCLUSION 
The TSP levels in Trabzon is reasonably more in January (90.75 um/m3), Feb-

ruary (82 um/m3), March (67.58 um/m3), November (72.39 um/m3), and December 
(98.79 um/m3), especially if the quality target of a daily value of 50 um/m3 is taken 
into account, while in April (45.83 um/m3), May (33.08 um/m3), June (21.73 
um/m3), July (19.46 um/m3), August (19.82 um/m3), September (24.36 um/m3) and 
October (31.68 um/m3) month values respect the quality standard.  

This study has demonstrated that the most appropriate trend prediction model 
for TSP series can be estimated by using weighted least squares (WLS) regression. 
Weighted least squares regression results showing a smaller and statistically insigni-
ficant positive trend. Evidently, less reliable observations made in highly variable 
winter months had contributed to the trend and dummy month variable estimates 
from ordinary least squares. It should be expected that the weighed least squares 
estimates to be more reliable ones.  

There is no first order autocorrelation problem in all models, the Durbin-
Watson statistics are 1.97, 2.19, 2.24 and 2.23. Multicolinearity tests were also con-
ducted with variance inflation factors (VIF) and the VIF values were well below the 
problematic level of 10.  

Our conclusion is that over the 11 years periods the TSP level in Trabzon was 
not statistically significantly increasing by about 0.08 um/m3 each year.  

The P-P Plot of weighted least squares residuals is noticeable better than the 
plot of residuals from the ordinary least squares analysis. Finally, in weighted least 
squares regression the scatter plot between predicted values and residuals does not 
show the heteroscedasticity observed earlier. It is also the plot of predicted residuals 
against trend (TREND) variable, whose effect is being primarily interested in, is not 
showing an apparent pattern. 
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