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Abstract
The Fibonacci sequence can be obtained by drawing diagonals in a Pascal’s triangle, and
from this, we can obtain the Lucas identity. An investigation on the behavior of certain
kinds of other diagonals inside a Pascal’s triangle identifies a new family of recursive
sequences: the k-Padovan sequences. This family both contains the Fibonacci and the
Padovan sequences. A general binomial identity for k-Padovan sequences which extends
both the well-known Lucas identity and the less known Padovan identity is derived.
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1. Introduction
In number theory, the study of recursive sequences and related identities by binomial

coefficients has a certain relevance (see [1,9,10,19,22,24], and references therein). One of
the most famous result in this context is probably the “Lucas identity” by the name of the
great French mathematician François Édouard Anatole Lucas (1841-1891) who discovered
it. He proved that each term Fm of the Fibonacci sequence (Fm) can be expressed as a
sum of binomials (see for instance [5], p.112) as follows:

Fm =
(

m − 1
0

)
+
(

m − 2
1

)
+ . . . +

(
m − 1 − i

i

)
+ . . .︸ ︷︷ ︸

⌊m−1/2⌋

, (1.1)

where ⌊m − 1/2⌋ represents the integer part of m.
Similar relations also hold for other relevant sequences.

The Cordonnier sequence 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12 . . ., better known as Padovan sequence
(see [21]), is a linear homogeneous recurrence with constant coefficients defined as:{

P1 = P2 = P3 = 1,

Pm = Pm−2 + Pm−3, m > 3.
(1.2)
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Figure 1. In a Pascal’s triangle, the Fibonacci and the Padovan numbers can
be obtained as the associated terms to ‘Fibonacci’ and the ‘Padovan’ diagonals,
respectively. Note that the first Fibonacci diagonal, ∆0,1, starts from the vertex
(the 0-row); while the first Padovan diagonal ∆1,1, starts from the 1-row of a
Pascal’s triangle.

This sequence has many interesting properties (see [3,7,16,23] and references therein), in
particular its ‘Kepler limit’, that is the limit of the ratio of consecutive terms (see [6, 8]),
is the so-called Plastic number. This number has a certain relevance in contemporary
Architecture (see [12, 16, 17]), and it is considered the key to finding the right proportion
among spatial figures at the same way that the Golden Mean is considered for the flat
ones (see [15]).

It is known, even if not well-highlighted in literature (see [3,16,17,22]), that each term
Pm of the Padovan sequence can be described as sum of binomial coefficients. In fact, the
following relation also known as Padovan identity holds:

Pm =
⌊n/3⌋∑
i=0

(
n − i

2i

)
if m = 2n − 1 and Pm =

⌊n/3⌋∑
i=0

(
n − i

2i + 1

)
if m = 2n. (1.3)

Therefore, both Fibonacci and Padovan numbers can be written as sum of binomial
coefficients of particular kind, we could say ‘consecutive’. It is well-known that both the
Lucas and the Padovan identities (1.1) and (1.3) have a visual interpretation by a Pascal’s
triangle (see Figure 1).

It can be noted that all Fibonacci diagonals, ∆0,1, . . . ,∆0,m, . . ., have the same inclina-
tion (Fib-inclination), which is different from the Pad-inclination of Padovan diagonals
∆1,1, . . . , ∆1,m . . ., as Figure 1 shows.

To find numerical identities inside geometric configurations is a classical mathematical
topic (see for example, [2,13,14,20] and references therein), so that it is natural to consider
other diagonals with an increasing (k)-inclination (see Figure 2): the k-Fibonacci diagonals
denoted by

(∆k,m) := ∆k,1, . . . , ∆k,m . . . ,

and their associated terms Sk,m defined as the sum of the elements which lie on them.
(We note that the k-diagonals are parallel to ray (k + 1, 1) of [4]). Two natural questions
arise:

1 Is (Sk,m) a recursive sequence?
2 If (Sk,m) is a recursive sequence for every k ≥ 0, is there a general binomial

identity which represents Sk,m?
In this paper, we will give a positive answer to both the questions.
The paper is organized as follows. In Section 2, we investigate the properties of the

k-Fibonacci diagonals of a Pascal’s triangle and their associated terms Sk,m, which are
expressed as the sum of binomials. In Section 3, we introduce a family of recursive linear
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Figure 2. The sequence of diagonals (∆2,m) in a Pascal’s triangle T, and the
sequence of their associated terms S2,m: 1, 2, 1, 1, 3, 3, 2, 4, 6, 5, 6, 10, 11, . . ..

homogenous sequences with constant coefficients, the k-Padovan sequences (Pk,m). The
main theorem shows that Sk,m = Pk,m and at the same time a general binomial identity
for k-Padovan (Pk,m) sequences is established in Theorem 3.4. As special cases Lucas
identity and Padovan identity can been derived (see Remarks 3.5 and 3.6).

2. The k-Fibonacci diagonals of a Pascal’s triangle
In this section, as usual, by the term “diagonal” we mean at the same time something

of geometric (a line) and discrete (the elements which lie above it) object.
Given a whichever configuration of numbers disposed in triangular way, say T , for any

i ≥ 0 and 0 ≤ j ≤ i we will denote by Q(i, j) the (i, j) entry of T , that is the element
that lies on the j site (counting from the left to the right, starting from 0) of the i-th row
of T . The top of the triangle is considered as the 0-row. For example if T is the classical
Pascal’s triangle (see Figure 1) we have Q(0, 0) = 1, Q(3, 0) = 1, Q(3, 1) = 3, and more

generally we have Q(i, j) =
(

i

j

)
.

It can be noted that the inclination of Fibonacci diagonals (Figure 1 on the left) is
slightly smaller than the inclination of Padovan diagonals (Figure 1 on the right). Precisely,
if an element, say Q(i, j), lies on a Fibonacci diagonal, then the element above on the same
diagonal shifts of just one position, so it is Q(i − 1, j + 1); while if an element, say Q(i, j),
lies on a Padovan diagonal, then the element above on the same diagonal shifts of two
positions, so it is Q(i − 1, j + 2).

So that, for every positive integer m, the classical Fibonacci diagonals ∆0,m and the
sum of the elements lying on each of them, their associated terms S0,m, are:

∆0,1 = {Q(0, 0)}, which gives S0,1 = 1 = F1
∆0,2 = {Q(1, 0)}, which gives S0,2 = 1 = F2
∆0,3 = {Q(2, 0), Q(1, 1)}, which gives S0,3 = 1 + 1 = 2 = F3
∆0,4 = {Q(3, 0), Q(2, 1)}, which gives S0,4 = 1 + 2 = 3 = F4
∆0,5 = {Q(4, 0), Q(3, 1), Q(2, 2)} which gives S0,5 = 1 + 3 + 1 = 5 = F5
∆0,6 = {Q(5, 0), Q(4, 1), Q(3, 2)} which gives S0,6 = 1 + 4 + 3 = 8 = F6

... .
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Similarly, the sequence of Padovan diagonals ∆1,m and their associated terms S1,m, are:

∆1,1 = {Q(1, 0)}, which gives S1,1 = 1 = P1
∆1,2 = {Q(1, 1)}, which gives S1,2 = 1 = P2
∆1,3 = {Q(2, 0)}, which gives S1,3 = 1 = P3
∆1,4 = {Q(2, 1)}, which gives S1,4 = 2 = P4
∆1,5 = {Q(3, 0), Q(2, 2)}, which gives S1,5 = 1 + 1 = 2 = P5
∆1,6 = {Q(3, 1)} which gives S1,6 = 3 = P6

... .

More generally, in a Pascal’s triangle T, just increasing the inclination we may draw the
k-Fibonacci diagonals for every integer k ≥ 0. In fact, chosen k, we may consider as ‘first’
k-Fibonacci diagonal ∆k,1 := {Q(k, 0}. This means that the triangle on the top of T,
consisting of the rows 0, 1, . . . ,k − 1 is not crossed by any k-diagonal (see for example
Figure 2); moreover if an element, say Q(i, j), lies on a k-Fibonacci diagonal, then the
element above on the same diagonal (if any) shifts on the right of k + 1 positions, so it is
Q(i − 1, j + k + 1) (see Figure 2).

Clearly, the 0-Fibonacci diagonals are the classical Fibonacci diagonals, and the 1-
Fibonacci diagonals are exactly the Padovan diagonals.
In Figure 2 some 2-Fibonacci diagonals ∆2,1, ∆2,2... are drawn. Their associated terms
S2,1, S2,2, ... are:

1, 2, 1, 1, 3, 3, 2, 4, 6, 5, 6, 10, 11, . . . (2.1)

We can note that the sequence (S2,m) showed by (2.1) appears to be recursive, linear and
homogenous of order 4; its characteristic polynomial being f = x4 − x − 1 (note that two
powers of x – namely x2 and x3 – have zero coefficients), and ‘initial conditions’ being(2

0
)
,
(2

1
)
,
(2

2
)
, 1.

We can observe that all k-Fibonacci diagonals of the same type (same k) are parallel
lines (see Figure 1 and Figure 2); instead of k ̸= k′, where any k-Fibonacci diagonals
will be not parallel to each k′-Fibonacci diagonals, as they have different inclinations (see
Figure 3).

Figure 3. In this Figure different kinds of k-Fibonacci diagonals are represented:
in red it is drawn a classical Fibonacci diagonal; in orange we find a Padovan’s
diagonal. Note that when k increases, then all the corresponding k-Fibonacci
diagonals reduce more and more their inclination.

Now we can give a formal description of the elements lying on each ‘k-Fibonacci diagonal
of a Pascal’s triangle T’. To this aim recall that if a is a positive real number, then by the
symbol ⌊a⌋ we will denote the integer part of a non-negative real number a.

Definition 2.1. Let k ≥ 0 be an integer. For every positive integer m written in the form
m = (k + 1)n + j (n and j non negative integers such that 0 ≤ j ≤ k), we will define the
m-th k-Fibonacci diagonal of a Pascal’s triangle T, ∆k,m, as follows:
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If j = 0, then we put ∆k,m := {Q(n + (k − 1), (k + 1) · 1 − 1); Q(n − 1 + (k − 1), (k + 1) ·
2 − 1); . . . ;Q(n − i + (k − 1), (k + 1) · (i + 1) − 1), ∀i such that n − i + (k − 1) ≥
(k + 1)(i + 1) − 1}.

Note that in this case for describing ∆k,m, we must consider i = 0, and all the
positive indices i such that i ≤ n−1

k+2 . Thus in this case the number of the elements
which lie on ∆k,m is 1 + ⌊n−1

k+2 ⌋.

If j ̸= 0, then we put ∆k,m := {Q(n + k, (k + 1) · 0 + (j − 1));Q(n − 1 + k, (k + 1) · 1 + (j −
1)); . . . ;Q(n − i + k, (k + 1)i + (j − 1)), ∀i such that n − i + k ≥ (k + 1)i + (j − 1)}.

Note that in this case for describing ∆k,m, we must consider 0, and all the
positive indices i such that i ≤ n+1+(k−j)

(k+2) . It follows in this case that the number
of the elements which lie on ∆k,m is: 1 + ⌊n+1+(k−j)

(k+2) ⌋. In particular if 1 ≤ m < k,
then ∆k,m = {Q(k, (m − 1))}.

It turns out that if we consider k and m as above, then the sum Sk,m of the elements
lying on the m-th k-Fibonacci diagonal ∆k,m is described by the following relations:

Sk,m =



1+⌊ n−1
k+2 ⌋.∑

i=0

(
n − i + (k − 1)

(k + 1)(i + 1) − 1

)
=

⌊ n+k+1
k+2 ⌋∑
i=0

(
n − i + (k − 1)

(k + 1)(i + 1) − 1

)
, if j = 0;

1+⌊ n+k+1−j
(k+2) ⌋∑

i=0

(
n − i + k

(k + 1)i + (j − 1)

)
, if j ̸= 0

.

(2.2)
The above equation (2.2) can be rewritten as follows:

Sk,m =
1−δ0

j +⌊ n+k−j+1
k+2 ⌋∑

i=0

(
n − i + (k − δ0

j )
(k + 1)(i + δ0

j ) + j − 1

)
, where

{
m = (k + 1)n + j,

and 0 ≤ j ≤ k
, (2.3)

where for every non negative integers a and b, δb
a denotes the Kronecker symbol:

δb
a =

{
1 if a = b

0 if a ̸= b
.

In the next section, using the equation (2.3) we will see that each (Sk,m) is a recursive
sequence (see Theorem 3.4). This gives a positive answer to the Question 1.

3. The k-Padovan sequences and the generalized Lucas identity
For every k ≥ 0, the k-Padovan sequence is defined as a linear homogeneous recurrence

with constant coefficients defined by the positions:{
Pk,1 =

(k
0
)
, Pk,2 =

(k
1
)
, . . . ,Pk,k+1 =

(k
k

)
, and Pk,k+2 = 1.

Pk,m = Pk,m−(k+1) + Pk,m−(k+2), m > k + 2.
(3.1)

Clearly, the Fibonacci sequence can be seen as the ‘0-Padovan sequence’ as well as the
Padovan sequence can be seen as the ‘1-Padovan sequence’.

Our main goal is to find a generalized Lucas identity, for k-Padovan sequences which
extends both the Lucas identity (1.1) and the Padovan identity (1.3).

Before proving our main theorem we will need some technical lemmas.
Recall that, given a non negative integer a and an integer b, the binomial coefficient a

choose b is defined as follows (see [11, Section 11.1]).
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(
a

b

)
= a!

(a − b)!b!
if b ≤ a

(
a

b

)
= 0 if it is either b < 0 or b > a

.

In our proofs we will often use the so-called Pascal’s rule (also known as Stiefel’s identity):

(
a

b

)
+
(

a

b + 1

)
=
(

a + 1
b + 1

)
, ∀a ∈ N0 and b ∈ Z.

The following lemma shows that certain binomial coefficients that we are going to use
(see Theorem 3.4) can be considered.

Lemma 3.1. Let j, k, n be integers such that 0 ≤ j ≤ k, n ≥ 0 and j + n > 0. Then, for
every i ≤ 1−δ0

j +
⌊n + k − j + 1

k + 2

⌋
the number n− i+(k −δ0

j ) is positive, and the binomial

coefficient
(

n − i + (k − δ0
j )

(k + 1)(i + δ0
j ) + j − 1

)
can be considered in particular.

Proof. Assume that k = 0, then by hypothesis j is likewise 0 and for every i such that
i ≤ 1 − δ0

j + ⌊n+k−j+1
k+2 ⌋ = ⌊n+1

2 ⌋, we have n − i + (k − δ0
j ) = n − i + 1 ≥ 0.

Suppose now that k > 0. By hypothesis i ≤ 1 − δ0
j + n+k−j+1

k+2 , then n − i + k − δ0
j ≥

n − 1 − n+k−j+1
k+2 + k = n − 2 − n−j−1

k+2 + k > n − 2 − n−j−1
2 + k = (n − 3 + j + 2k)/2.

This last term is positive because of k ̸= 0 and n + j > 0. On the other hand, the integer
(k + 1)(i + δ0

j ) + j − 1 is non-negative, so that each binomial coefficient of the statement
can be considered. �
Remark 3.2. Let j, k, n be non negative integers such that 0 ≤ j ≤ k. If n(k + 1) + j >
k + 2, then n ≥ 1 + δ0

j , so that n − 1 ≥ 0 and j + n − 1 > 0. An application of Lemma
3.1 to j, k and n − 1 shows that n − 1 − i + k − δ0

j is a non negative integer, for every
i ≤ 1 − δ0

j + ⌊n+k−j+1
k+2 ⌋. In particular we may consider all binomials that will appear in

the statement of the following lemma.

Lemma 3.3. Let j, k, n be integers such that 0 ≤ j ≤ k, and n(k + 1) + j > k + 2, then
the following binomial relation holds:

1−δ0
j +⌊ n+k−j

k+2 ⌋∑
i=δ0

j
(1−δ0

j
)+δ1

j

(
n − 1 − i + k − δ0

j

(k + 1)(i + δ0
j ) + j − 1

)
=

1−δ0
j +⌊ n+k−j+1

k+2 ⌋∑
i=δ0

j
(1−δ0

j
)+δ1

j

(
n − 1 − i + k − δ0

j

(k + 1)(i + δ0
j ) + j − 1

)
. (3.2)

Proof. First, we note that
n + k − j

k + 2
=
⌊n + k − j

k + 2

⌋
+ r

k + 2
, where 0 ≤ r < k + 2,

so that n + k − j + 1
k + 2

=
⌊n + k − j

k + 2

⌋
+ r

k + 2
+ 1

k + 2
.

If 0 ≤ r < k + 1 the upper indices of the sum in (3.2) coincide. In fact,⌊n + k − j + 1
k + 2

⌋
=
⌊n + k − j

k + 2

⌋
. Therefore the relation (3.2) is trivially satisfied.

Assume then r = k + 1. In this case
n + k − j + 1

k + 2
=
⌊n + k − j

k + 2

⌋
+ 1 =

⌊n + k − j + 1
k + 2

⌋
.
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It follows that in the second sum of the equation (3.2) more terms (with respect to the
first sum) appear, precisely the addend related to the index

ī = n + k − j + 1
k + 2

+ 1 − δ0
j .

Note that n + k = (k + 2)(̄i − 1 + δ0
j ) + j − 1, and hence

n − 1 − ī − δ0
j + k = (k + 1)(̄i + δ0

j ) − 1 − (k + 2) + j − 1 = (k + 1)(̄i + δ0
j ) − 1 + j − k − 3.

It follows that the addend
(

n − 1 − ī + k − δ0
j

(k + 1)(̄i + δ0
j ) + j − 1

)
is zero. �

We are now in a position to prove our main theorem. We highlight that the statement,
has been suggested by equation (2.3), which we have been derived from Pascal’s triangle.
In this way we will obtain a Generalized Lucas identity “via” Pascal’s triangle.

Theorem 3.4 (Generalized Lucas identity). Let k ≥ 0 be an integer, and let (Pk,m)m≥1 be
the k-Padovan sequence. Then Pk,m = Sk,m and the following generalized Lucas identity
holds:

Pk,m =
1−δ0

j +⌊ n+k−j+1
k+2 ⌋∑

i=0

(
n − i + (k − δ0

j )
(k + 1)(i + δ0

j ) + j − 1

)
, where

{
m = (k + 1)n + j,

and 0 ≤ j ≤ k
. (3.3)

Proof. By equation (2.3) it is sufficient to show the above identity (3.3).
Let k ∈ N0 and proceed by induction on m = n(k + 1) + j.
If m = 1, . . . , k, k + 1, k + 2, then one of the following cases holds:
1) 0 < j ≤ k and n = 0, 2) n = 1 and j = 0, 3) j = 1 and n = 1.

Note that in each of the above cases we have 1 − δ0
j + ⌊n+k−j+1

k+2 ⌋ = 1.
Now, in each of these three cases we can compute the sum that appears in identity (3.3),
and taking into account the definition of Pk,m, for m = 1, . . . , k, k + 1, k + 2 given by
position (3.1), we have:

1)
1∑

i=0

(
−i + k

(k + 1)i + j − 1

)
=
(

k

j − 1

)
+
(

k − 1
k + j

)
=
(

k

j − 1

)
+ 0 = Pk,j ;

2)
1∑

i=0

(
1 − i + (k − 1)

(k + 1)i + k

)
=
(

k

k

)
+
(

k − 1
k + 1 + k

)
= 1 + 0 = Pk,k+1;

3)
1∑

i=0

(
1 − i + k

(k + 1)i

)
=
(

1 + k

0

)
+
(

k

k + 1

)
= 1 + 0 = Pk,k+2.

Therefore we may suppose that m > k + 2, and assume that the statement is true for
Pk,m−(k+1) and Pk,m−(k+2).

Note that, as m = n(k + 1) + j, where 0 ≤ j ≤ k and m > k + 2, then j, k, n, satisfy all
the conditions of Lemma 3.3. We will split our analysis into three cases:

a) j = 0, b) j = 1, c) 1 < j ≤ k.
a) In this case we have m = n(k + 1). By definition (see (3.1))

Pk,n(k+1) = Pk,n(k+1)−(k+1) + Pk,n(k+1)−(k+2)

= Pk,(n−1)(k+1) + Pk,(n−2)(k+1)+k,

and by hypothesis of induction
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Pk,n(k+1) =
⌊ n−1+k+1

k+2 ⌋∑
i=0

(
n − 1 − i + k − 1
(k + 1)(i + 1) − 1

)
+

1+⌊ n−2+1
k+2 ⌋∑

i=0

(
n − 2 − i + k

(k + 1)i + k − 1

)

=
⌊ n+k

k+2 ⌋∑
i=0

(
n − 2 − i + k

(k + 1)(i + 1) − 1

)
+

⌊ n+k+1
k+2 ⌋∑
i=0

(
n − 2 − i + k

(k + 1)(i + 1) − 2

)
.

It follows by Lemma 3.3 and Pascal’s rule that

Pk,n(k+1) =
⌊ n+k+1

k+2 ⌋∑
i=0

(
n − 1 − i + k

(k + 1)(i + 1) − 1

)
,

that is what we want to prove.

b) In this case we have m = n(k + 1) + 1. By Definition 3.1 we have

Pk,n(k+1)+1 = Pk,n(k+1)+1−(k+1) + Pk,n(k+1)+1−(k+2)

= Pk,(n−1)(k+1)+1 + Pk,(n−1)(k+1),

and by hypothesis of induction

Pk,n(k+1)+1 =
1+⌊ n−1+k

k+2 ⌋∑
i=0

(
n − 1 − i + k

(k + 1)i

)
+

⌊ n+k
k+2 ⌋∑
i=0

(
n − 1 − i + k − 1
(k + 1)(i + 1) − 1

)

=
1+⌊ n−1+k

k+2 ⌋∑
i=0

(
n − 1 − i + k

(k + 1)i

)
+

⌊ n+k
k+2 ⌋∑
i=0

(
n − (1 + i) + k − 1
(k + 1)(i + 1) − 1

)

=
1+⌊ n−1+k

k+2 ⌋∑
i=0

(
n − 1 − i + k

(k + 1)i

)
+

1+⌊ n+k
k+2 ⌋∑

i=1

(
n − i + k − 1
(k + 1)i − 1

)

= 1 +
1+⌊ n−1+k

k+2 ⌋∑
i=1

(
n − 1 − i + k

(k + 1)i

)
+

1+⌊ n+k
k+2 ⌋∑

i=1

(
n − i + k − 1
(k + 1)i − 1

)
.

It follows by Lemma 3.3 and Pascal’s rule that

Pk,n(k+1)+1 = 1 +
1+⌊ n+k

k+2 ⌋∑
i=1

(
n − i + k

(k + 1)i

)
=

1+⌊ n+k
k+2 ⌋∑

i=0

(
n − i + k

(k + 1)i

)
,

that is what we wanted to prove.

c) In this case we have m = n(k + 1) + 1 where 1 < j < k + 1. By Definition 3.1 we
have

Pk,n(k+1)+j = Pk,n(k+1)+j−(k+1) + Pk,n(k+1)+j−(k+2)

= Pk,(n−1)(k+1)+j + Pk,(n−1)(k+1)+j−1,

and by hypothesis of induction

Pk,n(k+1)+j =
1+⌊ n+k−j

k+2 ⌋∑
i=0

(
n − 1 − i + k

(k + 1)i + j − 1

)
+

1+⌊ n+k−j+1
k+2 ⌋∑

i=0

(
n − 1 − i + k

(k + 1)i + j − 2

)
.
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It follows by Lemma 3.3 and Pascal’s rule that

Pk,n(k+1)+j =
1+⌊ n+k−j+1

k+2 ⌋∑
i=0

(
n − i + k

(k + 1)i + j − 1

)
.

The proof is completed. �

Remark 3.5. Lucas identity (see (1.1)) can be obtained as particular case of Theorem
3.4.

In fact, when k = 0, for every positive integer m we have m = (0 + 1)n + 0, so that
m = n and j = 0. It follows that δ0

j = 1 and the equation (3.3) becames:

P0,m =
1−1+⌊ m+0−0+1

0+2 ⌋∑
i=0

(
m − i + (0 − 1)

(0 + 1)(i + 1) + 0 − 1

)
=

1+⌊ m−1
2 ⌋∑

i=0

(
m − i − 1

i

)
. (3.4)

On the other hand P0,m is the Fibonacci sequence; therefore when k = 0 equation (3.3)
gives Lucas identity (1.1).

Remark 3.6. Padovan identity (see (1.3)) can be obtained as particular case of Theorem
3.4.

In fact, when k = 1, for every positive integer m two cases may appear:
1) If m is odd,then m = (1 + 1)n + 1, and in equation (3.3) we may put j = 1, and

δ0
j = 0:

P1,m =
1−0+⌊ n+1−1+1

3 ⌋∑
i=0

(
n − i + (1 − 0)

(1 + 1)(i + 0) + 1 − 1

)
=

1+⌊ n+1
3 ⌋∑

i=0

(
n − i + 1

2i

)
(3.5)

=
1+⌊ n+1

3 ⌋∑
i=0

(
n − i + 1

2i

)
=

⌊ n+1
3 ⌋∑

i=0

(
n − i + 1

2i

)
+ 0.

2) If m is even, then m = (1 + 1)n + 0, and in equation (3.3) we may put j = 0, and
δ0

j = 1. Applying Lemma 3.3, equation (3.3) becames:

P1,m =
⌊ n+2

3 ⌋∑
i=0

(
n − i

2(i + 1) − 1

)
(3.6)

=
⌊ n+3

3 ⌋∑
i=0

(
n − i

2(i + 1) − 1

)
=

1+⌊ n
3 ⌋∑

i=0

(
n − i

2i + 1

)
=

⌊ n
3 ⌋∑

i=0

(
n − i

2i + 1

)
+ 0. (3.7)

Summarizing equations (3.5) and (3.7), we have:

P1,m =
⌊ n+1

3 ⌋∑
i=0

(
n + 1 − i

2i

)
if m = 2n + 1 and P1,m =

⌊n/3⌋∑
i=0

(
n − i

2i + 1

)
if m = 2n, (3.8)

that is equivalent to Padovan identity (see equation (1.3)).
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Remark 3.7. It should be noted that sequences (Sk,m) appear to be related to the family
(Tn) of all sequences which satisfy the following equation (see equation (7) p.291, [4,
Theorem 1]):

Tn − x

(
r

1

)
Tn−1 + x2

(
r

2

)
Tn−2 + · · · + (−1)rxr

(
r

r

)
Tn−r = yrTn−r−q. (3.9)

For example, when k = 1, then (S1,m) is the Padovan sequence, and by Theorem 3.4,
and by equation (3.1) we have

S1,m = S1,m−2 + S1,m−3. (3.10)
The behavior of (S1,m) is described by Remark 3.6, in particular we may consider the even
and odd cases, which correspond to the indices of the type m = 2n + j with 0 ≤ j ≤ 1.

We will see that both the subsequences An = S1,2n and Bn = S1,2n+1, satisfy the
equation (3.9), by choosing r = 2 and q = x = y = 1. This is equivalent to say that
for both the cases j = 0 and j = 1 the following relation holds:

S1,2n+j = 2S1,2(n−1)+j − S1,2(n−2)+j + S1,2(n−3)+j .

Starting from the second part of the above equation, we have:

2S1,2(n−1)+j − S1,2(n−2)+j + S1,2(n−3)+j

= 2S1,m−2 − S1,m−4 + S1,m−6

= 2S1,m−2 −S1,m−4 − S1,m−5︸ ︷︷ ︸
by(3.10)

+ S1,m−5 + S1,m−6︸ ︷︷ ︸
by(3.10)

= 2S1,m−2 − S1,m−2 + S1,m−3

= S1,m−2 + S1,m−3 = S1,m = S1,2n+j .

If k = 2, then by Theorem 3.4, and by equation (3.1) we have

S2,m = S2,m−3 + S2,m−4. (3.11)
Now we put m = 3n + j with 0 ≤ j ≤ 2, and will show that for every j = 0, 1, 2, each

subsequence (S2,3n+j)n satisfies the equation (3.9), by choosing r = 3 and q = x = y = 1.
This is equivalent to prove that for every j = 0, 1, 2 the following relation holds:

S2,3n+j = 3S2,3(n−1)+j − 3S2,3(n−2)+j + S2,3(n−3)+j + S2,3(n−4)+j .

Starting from the second part of the above equation, we have:
3S2,3(n−1)+j − 3S2,3(n−2)+j + S2,3(n−3)+j + S2,3(n−4)+j

= 3S2,3n+j−3 − 3S2,3n+j−6 + S2,3n+j−9 + S2,3n+j−12

= 3S2,m−3 − 3S2,m−6 + S2,m−9 + S2,m−12

= 3S2,m−7 +S2,m−9 + S2,m−10︸ ︷︷ ︸
by(3.11)

−S2,m−10 − S2,m−11︸ ︷︷ ︸
by(3.11)

+S2,m−11 + S2,m−12︸ ︷︷ ︸
by(3.11)

= 3S2,m−7 + S2,m−6 − S2,m−7 + S2,m−8

= 2S2,m−7 + S2,m−6 + S2,m−8 (and applying again equation (3.11))
= S2,m−3 + S2,m−4

= S2,m = S2,3n+j .

Similarly, in the general case (k > 1), if we put m = (k + 1)n + j, where 0 ≤ j ≤ k,
we may conjecture that each subsequence (S2,(k+1)n+j)n satisfy the equation (3.9), by
choosing r = k + 1 and q = x = y = 1.
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4. Conclusions
The idea to discover numerical harmony inside geometric configurations is one of the

main goals for mathematics and, as a general problem, one could ask which recursive
sequences can be described through geometrical objects.

It is known that recursive sequences may have applications in counting problems referred
to graphs, and perhaps also it should be mentioned that recursive sequences are useful
in GPS systems (for localization). Here we may expect that other kind of Padovan-like
sequences may be useful both in architecture and design especially in digital process and
design [18], as well as in a large spectrum of problems in mathematics (see [21]).
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