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Abstract. This article deals with the problem of improving speech in
noisy environments using the decisional approach (DD). The decision ap-
proach (DD) uses a priori estimation of the signal-to-noise ratio (SNR)
for speech improvement and is used to estimate the time-varying noise
spectrum, which results in better performance in terms of intelligibility
and a reduction in musical noise. In this article, we propose recursive es-
timators for the a priori SNR and the spectral components of speech. We
introduce a new statistical model which takes into account the tempo-
ral correlation between the successive vocal spectral components, while
keeping the resulting algorithms simple. This model provides new infor-
mation on the DD approach and allows the extension of existing speech
improvement algorithms.
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1 Introduction

With the growth of technology in the field of mobile telecommunications, the
need to improve the sound, particularly by reducing the noise annoyance, became
increasingly present. Noise reduction techniques are subject to a compromise
between the actual level of reduction and distortion that affects the speech signal
[1], [2]. On current performance, it is desirable to remove more noise while main
tailing an acceptable level of degradation of the restored signal, especially when
the noise level is important.

The quality of the speech signal transmitted to the remote party to increase
its intelligibility and reduce fatigue of the latter, it appears important to de-
velop noise reduction systems whose purpose is to extract useful information by
performing a treatment on the noisy observation signal. In addition to these ap-
plications of spoken communication, improving the quality of the speech signal
is also required for speech recognition, whose performance is highly altered when
the user is immersed in a noisy environment [3].

The techniques that have generated the most interest in recent years are the
short-term spectral attenuation approaches that involve modifying a short-term
transform of the noisy signal using a suppression rule [1], [2]. The development
of this family of techniques is mainly due to the fact that they allow to meet
real time constraints and complexity inherent in applications of spoken commu-
nication ease of use. A popular statistical model for speech enhancement was
proposed in [3]. Accordingly, the individual short-term spectral components of
the speech and noise signals are modeled as statistically independent Gaussian
random variables.

In this paper, the decision directed (DD) approach is used to estimate the
time varying noise spectrum which results in better performance in terms of in-
telligibility and reduced musical noise. However, the a priori signal to noise ratio
(SNR) estimator of the current frame relies on the estimated speech spectrum
from the earlier frame. So, we can formulate a short time spectral gain using
Wiener filtering with DD approach in which frame delay results in an annoying
reverberation effect. The problem is solved by temporal SNR (TSNR), wherein, a
second step is formulated so as to remove the delay and Harmonic Regeneration
Noise Reduction (HRNR) algorithm which is used to regenerate the harmonics
in the reconstructed signal.

This paper is organized as follows. In Section II, we present the parameters
and rules of speech enhancement techniques by method short-term spectral at-
tenuation; we introduce a tool useful to analyze the SNR estimators. In Section
III, we recall the principle of the DD approach and analyze it and we present
and analyze the TSNR and HRNR techniques. Finally, in Section III, we demon-
strate the improved performance of the Harmonic Regeneration Noise (HRNR)
and TSNR compared to Wiener and (MMSE) methods.
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2 Additive noise model

The single-channel case considered, the goal is to estimate the useful speech
signal s(n) the latter being disturbed by additive noise b(n) assumed to be
independent of the speech signal, from the one observed signal χ(n) [1], [2], [3].
It can be discretized and mathematically represented as:

χ(n) = s(n) + b(n) (1)

The approaches based on short-term spectral attenuation realize the noise
reduction in the frequency domain (or spectral). If the signals are stationary
then from the temporal relationship can be written:

γχ(f) = γs(f) + γb(f) (2)

while γχ(f), γ(f), γb(f) represent the power spectral densities (PSDs) [3],
of the respective signals χ(n), S(n) and b(n). This representation of the power
spectral density (PSD) is unfortunately not usable because of the non-stationary
of speech signal. Indeed, if it is acceptable to consider the stationary noise, speech
cannot be considered as over short durations. It then becomes possible to exploit
the quasi-stationarity of the speech on frames of duration of the order of 20 to
40 ms. this is one reason why a majority of noise reduction techniques are based
on spectral attenuation.

The Fourier transform (FT) and Short-term Fourier transform (STFT) are
qualified and have allowed a fast and numerically inexpensive work[4].

Each frame from the time signal χ(n) can be represented in the frequency
domain by its module |χ(p, k)| and its associated phase Φχ(p, k) where p is the
time index of the current analysis frame and k the frequency channel of index
otherwise discrete frequency fk in the frequency domain.

|χ(p, k)|eiΦχ(p,k) = |S(p, k)|eiΦS(p,k) + |B(p, k)|eiΦB(p,k) (3)

The purpose of the spectral attenuation then is to estimate the short-term
spectrum of the speech signal S(p, k). We assume that is still possible to estimate
the PSD of the noise.

2.1 The SNR

SNR is a key parameter that governs the quality of noise reduction techniques.
Its various estimators are, however, subject to certain limitations. Perform noise
reduction using an ideal SNR estimator (knowing of course all signals). The result
is startling quality. If one does not reach that of the clean signal it is however in
very close. This test confirms that there is room for tremendous growth in the
estimation of SNR [7].

In reality, there is no a simple solution to the spectral estimate of S(p, k),
so generally a spectral gain G(p, k) that depends on the SNR is obtained and
applied to the noisy spectrum χ(p, k):
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Ŝ(p, k) = G(p, k)χ(p, k) (4)

The spectral gain G(p, k) has always the following asymptotic behavior. An
important value of the SNR indicates that a strong speech component is pre-
sented with respect to the noise level, the gain G(p, k) must therefore be close
to 1 to preserve this component.

A low value of SNR indicates that speech is absent or very low compared to
the noise level. The gain G(p, k) must therefore make an important attenuation
(G(p, k)� 1) to reduce the effect of noise.

The problem is thus to estimate the SNR. Depending on the assumptions
chosen for expressing the spectral gain, two types of SNR are used, the priori
and posteriori SNR [5], [6].

SNRpost(p, k) =
|χ(p, k)|2

γ̂b(k)
=
|χ(p, k)|2

E[|B(p, k)2|]
(5)

SNRprio(p, k) =
γ̂s(k)

γ̂b(k)
=
E[|S(p, k)2|]
E[|B(p, k)2|]

(6)

The quantity of SNRpost(p, k) represents the SNR of the current frame tak-
ing into account the modulus squared of the noisy signal and therefore time
dependent.

The quantity of SNRprio(k) for its part does not depend on time because it
expresses the long-term SNR assuming statistics useful speech signal known a
priori.

From SNRpost, we can also set the instantaneous SNR corresponding to a
local estimate (or short-term) of the a priori SNR by DD of the PSD noise
squared modulus of the noisy signal [5], [6].

SNRinst(p, k) =
|χ(p, k)|2 − γb(k)

γb(k)
=
|χ(p, k)|2 − E[|B(p, k)2|

E[|B(p, k)2|
= SNRpost(p, k)−1

(7)
These three terms are theoretical SNR in so far as only the quantity |χ(p, k)|2

is known. First, the quantity E[|B(p, k)2|must be estimated from the noisy signal
which is devoted to estimation techniques PSD noise. On the other hand, we also
estimate the quantity E[|S(p, k)2|.This estimate is quite problematic and gives
rise to various techniques for estimating the SNR a priori [5].

3 The DD approach

The estimate of the PSD of noise is an indispensable preliminary to calculate
the SNR and posterior SNR are then obtained as follows [8]

ŜNRpost(p, k) =
|χ(p, k)|2

γ̂b(k)
(8)
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ŜNR
DD

prio(p, k) = β
|ŜDD(p− 1, k)|2

γ̂b(k)
+ (1− β)max(ŜNRpost(p, k)− 1, 0) (9)

ŜNR
DD

prio(p, k) = β
|ŜDD(p− 1, k)|2

γ̂b(k)
+ (1− β)max(ŜNRpost(p, k)− 1, 0) (10)

Where ŜDD(p − 1, k) is the spectrum of the speech signal estimated in the
previous frame. This estimator SNR a priori appointed decision-directed (DD)
which means directed by the decision, was proposed in [6] and its behavior is
controlled by the parameter b (always close to 1 and typically 0, 98). Finally, in
general, the spectral gain is a function that depends on the SNR and optionally
a priori SNR

GDD(p, k) = g(ŜNR
DD

prio(p, k), ŜNRpost(p, k)) (11)

The spectrum of the restored speech signal is then obtained

ŜDD(p, k) = GDD(p, k)χ(p, k) (12)

In the following, by default, the chosen gain functions correspond to the
Wiener filter which leads to:

GDD(p, k) =
ŜNR

DD

prio(p, k)

1 + ŜNR
DD

prio(p, k)
(13)

The diagram of Figure 1 summarizes the principle of the DD approach.
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Fig. 1. Diagram of the general principle of the DD approach

3.1 Proposed algorithm

1. The spectral attenuation is to estimate the short-term spectrum of the speech
signal Ŝ(p, k) [1], [2].

2. It is assumed that it is always possible to estimate DSP noise [1], [2].
3. perform noise reduction using an estimator ideal SNR, usually a spectral

gain G(p, k) that depends on the SNR is obtained and applied to the noise
spectrum χ(p, k):

Ŝ(p, k) = G(p, k)χ(p, k) (14)

4. Determination of the VAD, voice activity detection.
5. A short-term spectral attenuation or spectral gain calculation requires the

estimate of the SNR (a posteriori and / or a priori) [3], [4].
6. Two types of SNR are used, the SNR posteriori and SNR apriori [3], [4].
7. Refine the estimate of the a priori SNR by TSNR approach: this is a tech-

nique in two passes corresponding to the DD estimator [6], [7], [8], [9], [12].



76 Ouardia Abdelli and Fatiha Merazka

8. Estimation errors PSD noise and the impact of Phase generate harmonic
distortion corresponds approach HRNR. [9], [10], [11].

9. The speech signal module and estimated —S (p, k)— and the phase of the
noisy signal are then used to return to the time domain using an inverse
DFT (IDFT) [12].

10. The output signal is finally synthesized from a treatment technique by OLS
block type (for overlap and save) and OLA (for overlap and add) This last
step is the inverse STFT (TFCTI) [13]

3.2 Test and Results

In this section, the each variant of approach DD method is evaluated and com-
pared with other variants. The speech datasets used in our simulations are from
the NOIZEUS corpus18 [13].

The corpus is sampled at 16 KHz and 8KHz, filtered to simulate receiving
frequency characteristics of telephone handsets.

Noise signals have different time-frequency distributions, and therefore a dif-
ferent impact on clean signal. For that reason, the NOIZEUS comes with various
non-stationary noises at different levels of SNRs. The non-stationary noises are
babble, train. In our evaluation, we have used the speech degraded by babble
noise at global SNR levels of -5 dB and 5 dB. We also generate a correspond-
ing stimulus set degraded by additive white Gaussian noise (AWGN), stationary
noise, at two SNR levels: 5 dB. The performance of this method, tests on such
noisy speech samples. Consider the signal speech “ns bab m5dB S 01 01 16KHz“
and the noisy speech “clean S 01 01 16KHz“ at -5db and Signal ”clean S 01 01.wav“
and the noisy speech ”ns bab m5dB S 01 01.wav”. Figures 2 and 3 below rep-
resent the Periodograms of the speech signals.
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Fig. 2. Periodogram of clean signal1 ”clean S 01 01“ and white noise and noisy speech
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Fig. 3. Periodogram of clean signal2 ”clean S 01 01 16KHz.wav“ and white noise and
noisy speech

3.3 Results analysis

To illustrate the behavior and performance of the implemented techniques, the
spectrograms after each step are plotted as shown in Figures 4 to 7.

Figures 4 (a) and 4 (b) show the spectrograms of the original, noisy speech
signal and enhanced by the DD approach of two signals (signal1 and signal2)
where we can observe that in the signal spectrogram noisy, the yellow color noise
distributed over the entire spectrogram unlike the enhanced signal, the yellow
and diminished color and similarly for Figures 6 (a), 6 (b) give the spectrograms
of the DD approach with TSNR and HRNR, these figures show that speech is
improved by removing much of the noise.

Figures 5 (a) and 5 (b) and Figure 6 (a) and 6 (b), give the spectrograms of
the original signal, noisy and enhanced by two signals (signal1 and signal2) by
the Wiener method and the logMMSE method these figure present an important
space of the yellow color therefore the noise is always important in the restored
signals.

Figure 7 shows speech improvement using Wiener filtering with the DD ap-
proach where we can see that in addition to noise suppression compared to
Wiener filtering and logMMSE, some of the harmonics are suppressed. In Figure
7 (a), we can observe that noise elimination is better with the TSNR approach
than that with the DD approach, but the harmonics are still not preserved.
The Figure 7 (b) shows the improvement of speech spectrogram using the DD
approach with TSNR.
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Spectogram of Clean speech signal
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Spectogram of Noisy speech signal
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Spectogram of Enhanced speech signal
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Spectogram of Noisy speech signal
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Fig. 4. The spectrogram, clean speech, noisy speech and enhancment speech of (a)
signal1 clean S 01 01 (b) signal2 clean S 01 01 16KHz with DD approach
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Spectogram of Enhanced speech signal
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Fig. 6. Spectrogram of the (a) Signal1 ”clean S 01 01“ and noisy speech and enhanced
speech, (b) signal2 “clean S 01 01.16KHz” and noisy speech and Enhanced speech with
Wiener method
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Fig. 7. Spectrogram of the (a) Signal1 ”clean S 01 01.wav“ and noisy speech and en-
hanced speech, (b) signal2 ”clean S 01 01.16KHwav“ and noisy speech and Enhanced
speech with logMMSE method

The approaches essentially seek to further preserve the component of the
speech signal while improving the quality of the restored signal, according to the
programming results and the evaluation parameters, such as mean squared error
(MSE), mean absolute error (MAE), signal to noise ratio (SNR), peak signal
to noise ratio (PSNR), cross correlation (cross core) give in Table 1, we notice
that the DD approach gives better results for all parameters by the two signals
(signal1, signal2) except the SNR, the Wiener method which gives better results.
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Note that the lower the PSNR and mse values, the smaller the error, as shown by
the results of the DD approach. And for the results of the cross core is better for
the DD approach because it is very close to 1 (the more Cross Core is close to 1
the closer the information on the signals), and the lower the signal to noise ratio
the lower the component speech signal is greater than that of noise as shown by
Wiener’s result.

Table 1. Evaluation with five objective parameters

Evaluation Signal MSE MAE SNR (db) PSNR (db) Cross Core

LogMMSE
Signal1 0.000718 0.060008 -4.674853 12.085624 0.827319
Signal2 0.000759 0.060342 -4.700813 12.058158 0.826014

Wiener
Signal1 0.000290 0.009199 0.018727 17.898187 0.522226
Signal2 0.002357 0.009758 0.096314 16.633584 0.767327

DD
Signal1 0.000120 0.009564 1.5436945 10.526052 0.999506
Signal2 0.000235 0.009589 1.4815496 9.0929756 0.999554

4 Conclusion

We presented an analysis of the DD approach, and evaluated its performance by
a comparison with Weiner and logMMSE methods.

Its algorithm consists of two steps, the first step ensures the reduction of the
musical noise while the second step ensures the suppression of the frame delay
but this approach however has a major defect. Harmonic distortion due to noise
PSD estimation errors, the TSNR and HRNR approaches make it possible to
limit the defects of the DD approach, thus making it possible to suppress the
reverberation effect and to further reduce the level of noise. of musical noise.

The TSNR approach is chosen because of its simplicity, its low complexity
and of course its effectiveness as a basis for the HRNR approach which makes it
possible to overcome the limitations related to noise and phase PSD estimation
problems. These essentially results in the distortion of the harmonics of the
speech signal. The HRNR approach allows to regenerate the harmonics destroyed
by conventional approaches using nonlinear processing of the distorted signal.
In practice, the limitation of the harmonic distortion of the speech signal makes
it possible to suppress more noise than with a conventional technique.

The results, in terms of spectrographic analysis, objective and subjective
tests, are provided to evaluate the performance of various techniques. All the
results show that the TSNR DD approachs followed by the HRNR technique
has the best performance among the others analyzed in terms of objective and
subjective tests.
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