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Construction of numerical methods for the solution of initial value problems (IVPs) in 

ordinary differential equations (ODEs) has been considered overwhelmingly in 

literature. However, the use of a single numerical method for the integration of ODEs of 

more than one order has not been commonly reported.  In this paper, we focus on the 

development of a numerical method capable of obtaining the numerical solution of first, 

second and third-order IVPs. The method is formulated from continuous schemes 

obtained via collocation and interpolation techniques and applied in a block-by-block 

manner as a numerical integrator for first, second and third-order ODEs. The 

convergence properties of the method are discussed via zero-stability and consistency. 

Numerical examples are included and comparisons are made with existing methods in 

the literature. 

 

1. Introduction 

We propose in this paper, a block method of the form 
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for direct solution of 
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where either of )(0 t and )(0 t do not varnish, 1)( =tk , 0)( tk and .1=k  

 The solution of either ))(''),('),(,()(''' xyxyxyxfxy = or ))('),(,()('' xyxyxfxy = has been extensively 

discussed in the literature using different approaches.  Lambert [1, 2], Awoyemi [3] and Brugnano and Trigiante 

[4], among others, reduced higher-order initial value problems (IVPs) to a system of first-order equations. 

Resulting from this is the increase in the dimension of the problem which leads to more computation.  

 Awoyemi ([5], [6]) and Kayode ([7]) successfully applied numerical algorithms as integrators of fourth-order 

initial value problems directly. However, the implementation in predictor-corrector mode has been reported to 

be more costly since the subroutines for incorporating the starting values lead to lengthy computational time, see 
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(Jator [8]). This setback was addressed by Vigo-Aguiar and Ramos [9], Jator [10], Mohammed [11], Kayode et 

al. [12], Awoyemi et al. [13], Yap and Ismail [14], Hussain et al. [15], Ismail et al. [16], Ramos et al. [17], 

Adeyefa [18], among others who independently proposed block methods for solving higher order ordinary 

differential equation which do not require the development of separate predictors, but simultaneously generate 

approximations at different grid points within the interval of integration. Of recent, Ogunniran et al. developed 

Optimized three-step hybrid block method for stiff to integrate stiff IVPs [19] and later considered linear stability 

analysis of Runge-Kutta Methods for Singular Lane-Emden Equations [20]). Singh et al. developed an efficient 

optimized adaptive step-size hybrid block method for integrating differential systems [21]. These methods, 

though efficient in integrating the targeted ODEs but not capable to solve more than one order. 

 The formulation of block method to integrate IVPs of order one or higher order has been widely reported in 

the literature but to use a formulated block method for integration of two or more order IVPs, say first, second 

and third-order ODEs, has not been commonly reported. Thus, the focus of this paper is to formulate a self-

starting method for the numerical integration of first, second and third-order IVPs.  

 In what immediately follows in the next section, we consider the formulation of the proposed block method. 

2. Materials and Methods 

In this section, we set 
4

3
,1,0 == ji  and formulate a new one-step hybrid method capable of solving first, second 

and third-order ODEs, employing Chebyshev polynomials as our basis function. Thus, we introduce 
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Equation (3) is interpolated at nxx = , its first and second derivatives are collocated at 1,
4

3
,0, == + vxx vn  while 

its third derivative is collocated at .
4

3
,0, == + cxx cn  

As a result, we have 
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Solving equation (4) using the Gaussian elimination approach to get the unknown variables sa' that are 

substituted into equation (3). This yields a continuous implicit scheme of the form: 
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 Equation (5), when evaluated at 
4

3
,1, == + jcn cxx

j
 i.e. 

2

1
,1=t  respectively, yields 
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where the values of D, E, and F are   
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Equation (6) is our proposed first, second and third-order IVPs solver. 

3. Basic Properties of the Method 

We shall consider in this section, the analysis of the basic properties of this method such as order, error constant, 

zero stability and consistency is investigated. 

3.1. Order and Error Constant 

Equation (6) derived is a discrete scheme belonging to the class of LMMs of the form 
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Following the work of Fatunla [26] and Lambert [2], we define the local truncation error associated with equation 

(7) by the difference operator 
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where y(x) is an arbitrary function, continuously differentiable on [ a, b ]. Expanding (8) in Taylor series about 

the point x , we obtain the expression 
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 In the spirit of Lambert [2], for first, second and third-order methods respectively, equation (8) is of order  p  

if 0210 ==== pCCCC   and 0+rpC  for r = 1, 2, 3. The 0+rpC  is called the error constant and

)( n
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rp xyhC ++

+  is the principal local truncation error at the point nx . 

Thus, the block (6) is of order p = 6 and error constants 
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3.2. Zero-Stability of the Method 

To analyze the zero-stability of the method, we present (7) in vector notation form of column vectors 

( )Treee 1= , ( )Trddd 1= , ( )Trnnm yyy ++= 1 , ( ) ( )Trnnm ffyF ++= 1  ,
 

( ) ( )Trnnm ggyG ++= 1 ,

( ) ( )Trnnm wwyW ++= 1  and matrices  )( ijaA =  ,  )( ijbB = . 

Thus, equation (6) forms the block formula 

  nmnmnnmm uThyVWhdghyDGhhbfyAyhBFyA 33221

0 )()()( ++++++=  (9) 

where h is a fixed mesh size within a block. 

In line with equation (9), 
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0A and 
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1A . 

The first characteristic polynomial of the block hybrid method is given by   

  )det()( 10 ARAR −=  (10) 

Substituting   
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




=

10

01
0A and 








=

10

10
1A  in equation  (10) and solving for R , the values of R are obtained 

as 0 and 1. 

 According to Fatunla in [26, 27], the block formulae represented by equation (6) are zero-stable, since in 

equation (10), 0)( =R , satisfy 1,1 = jR  and for those roots with ,1=jR the multiplicity does not exceed 

two. 

3.3. Consistency and Convergence of the Method 

The linear multistep method (7) is said to be consistent if it has order 1p . The method is consistent being of 

order 6. 

 According to the theorem of Dahlquist in [28], the necessary and sufficient condition for a linear multistep 

method to be convergent is to be consistent and zero stable. Since the method satisfies the two conditions hence 

it is convergent. 

3.4. Numerical Experiment 

We consider here, four test problems which include first, second and third-order ordinary differential equations 

to test the effectiveness of this new scheme. 

 

Problem 1: We consider the first-order IVP 1.0,5.0)0(),1(5.0' ==−= hyyy  with the exact solution

xexy 5.05.01)( −−= . This IVP was solved by Ajileye  [29] and Sunday  [30]. The numerical solution is displayed 

in Table 1. 
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Table 1. Comparison of errors of the proposed method and the existing methods (Ajileye  [29], Sunday  [30]). 

T Error in the new method Error in  [29] Error in  [30] 

0.1 0 1.218026 x 10-13 5.574430 x 10-12 

0.2 0 1.399991 x 10-13 3.946177 x 10-12 

0.3 0 1.184941 x 10-12 8.183232 x 10-12 

0.4 1x10-10 1.538991 x 10-12 3.436118 x 10-15 

0.5 1x10-10 1.110001 x 10-12 1.929743 x 10-10 

0.6 1x10-10 5.270229 x 10-12 1.879040 x 10-10 

0.7 0 2.108980 x 10-12 1.776835 x 10-10 

0.8 0 1.297895 x 10-11 1.724676 x 10-10 

0.9 0 3.082290 x 10-11 1.847545 x 10-10 

1.0 0 4.121925 x 10-11 3.005770 x 10-10 

 

Problem 2: We consider the IVP 1.0,1)0(,0)0(, =−=== hyyyy with the exact solution, 

xexy −=1)(  which has been solved in Mohammed and Adeniyi  [31] with step number k =5. The numerical 

solution is displayed in Table 2. 

 

Table 2. Comparison of errors of the proposed method and the existing methods  

(Mohammed and Adeniyi  [31], Mohammed  [32]). 

T Error in the new method Error in  [31] Error in  [32] 

0.1 1 x 10-10 2.0040 x 10-7 2.19800 x 10-5 

0.2 1 x 10-10 5.3860 x 10-7 6.07040 x 10-6 

0.3 0 8.8400 x 10-7 1.00510 x 10-5 

0.4 2 x 10-10 1.2297 x 10-6 1.40253 x 10-5 

0.5 4 x 10-10 1.5752 x 10-6 1.79934 x 10-5 

0.6 4 x 10-10 1.9204 x 10-6 2.16162 x 10-5 

0.7 3 x 10-10 2.5060 x 10-6 2.99300 x 10-5 

0.8 3 x 10-10 3.1060 x 10-6 3.45610 x 10-5 

0.9 3 x 10-10 3.7050 x 10-6 4.11140 x 10-5 

1.0 1 x 10-10 4.3040 x 10-6 4.76560 x 10-5 

 

Problem 3: We consider the third-order IVP 

  2)0(,1)0(,0)0(,0 ====+ yyyyy
  

with the exact solution, xxxy sin)cos1(2)( +−=  which has been solved in Anake et al.  [25] with step number 

k = 5. The numerical solution is displayed in Table 3. 

 

Table 3. Comparison of error of the proposed method and error in Anake et al.  [25]. 

x Error in the new method Error in  [25] 

0.1 3.30E-11 1.61E-09 

0.2 9.67E-10 1.04E-08 

0.3 3.80E-09 2.96E-08 

0.4 9.53E-09 2.32E-07 

0.5 1.93E-08 4.54E-07 

0.6 3.39E-08 1.48E-06 

0.7 5.45E-08 2.87E-06 

0.8 8.22E-08 4.68E-06 

0.9 1.17E-07 6.92E-06 

1.0 1.62E-07 9.60E-06 
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Problem 4: We consider non-linear IVP  

003125.0,
2

1
)0(,1)0(,0)( 2 ====− hyyyxy  

whose exact solution is 

                                  



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



−

+
+=

x

x
Inxy

2

2

2

1
1)( . 

The numerical solution is displayed in Table 4. 

 

Table 4. Comparing the errors of the new block and existing methods for Problem 4 

x Error in the new 

method, k=1 

Error in  [24], k=3 Error in  [23], 

k=6 

Error in  [22], k=6 

 

0.1 0 5.850875E-13 9.577668E-10 0.1329867326E-09 

0.2 1.0E-09 2.848832E-12 2.368709E-09 0.5872691257E-08 

0.3 1.0E-09 6.328715E-12 3.732243E-09 0.1327845616E-07 

0.4 1.0E-09 6.756392E-09 5.475119E-09 0.2317829012E-07 

0.5 1.0E-09 1.380119E-08 1.142189E-08 0.3218793564E-07 

0.6 1.0E-09 2.174817E-08 4.567944E-08 0.6871246012E-07 

0.7 1.0E-09 1.073052E-07 2.055838E-06 0.1012728156E-06 

0.8 1.0E-09 2.001340E-07 4.248299E-06 0.1231093271E-06 

0.9 2.0E-09 3.088383E-07 6.660458E-06 0.2019286712E-06 

1.0 1.0E-09 9.805074E-07 9.445166E-06 0.2990871645E-06 

3.5. Discussion of Results 

The results obtained from the four test problems considered are summarized in Tables 1-4. In Table 1, we 

compare the solution of problem 1 using the proposed method with Ajileye et al. (k = 2) and Sunday et al. (k = 

5) methods. In Problem 2, our step length is h = 0.1 against h = 0.01 used in Mohammed and Adeniyi  [31]. The 

proposed method still gives better accuracy even with larger h. In Table 3, the method developed by Anake et al.  

[25] is of step number k = 5. The proposed method is of step number k = 1 and it compares favourably with the 

existing methods despite their k > 1 methods. 

4. Conclusion 

A block method has been applied to solve first, second and third-order ordinary differential equations directly 

without the construction of additional schemes or employing existing predictors for implementation. Numerical 

experiments performed using this method show that the method is consistent, efficient and accurate. We, 

therefore, recommend the method for direct integration of first, second and third-order ordinary differential 

equations. 
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