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Abstract 
Paracontact geometry is in many ways an odd-dimensional counterpart of symplectic geometry. Both 
paracontact and symplectic geometry are motivated by the mathematical formalism of classical, analytical 
and dynamical mechanics.  A formulation of classical mechanics is Hamiltonian mechanics. The purpose of 
this paper is to study Weyl-Hamiltonian differential (move) equations using Weyl theorem for mechanical 
systems on 3-dimensional normal almost paracontact metric manifolds and is to get a general form for 
any movement of the object. 
 
Keywords: Symplectic geometry, paracontact manifold, Hamiltonian formalism, mechanical system, 
dynamic equation. 

Özet 
Paracontact geometrisi birçok yönden semplektik geometrinin benzer boyutlu bir karşılığıdır. Hem 
paracontact hem de semplektik geometri, klasik, analitik ve dinamik mekaniğin matematiksel 
formülasyonu tarafından motive edilir. Klasik mekaniğin bir formülasyonu Hamilton mekaniğidir. Bu 
makalenin amacı, Weyl teoremini kullanarak 3 boyutlu normal hemen hemen paracontact metrik 
manifoldlar üzerinde Weyl teoremini kullanarak Weyl-Hamiltonian diferansiyel (hareket)  denklemlerini 
incelemek ve nesnenin herhangi bir hareketi için genel bir form elde etmektir. 
 
Anahtar Kelimeler: Semplektik geometri, paracontact manifoldu, Hamilton formalizmi, mekanik sistem, 
dinamik denklem. 
 

1. Introduction 
 
One way of solving problems in classical and analytical mechanics is through use of the 
Hamilton equations. The Hamiltonian formulation is an important tramplen from which 
to develop another useful formulation of classical mechanics known. Classical field theory 
utilizes traditionally the language of Hamiltonian dynamics. This theory was extended to 
time-dependent classical mechanics. A Hamiltonian space has been certified as an 
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excellent model for some important problems in relativity, gauge theory and 
electromagnetism. 
Symplectic and paracontact geometry are theories such that naturally emerged from the 
mathematical description of classical physics. They were revolutionized in the early 
1980s with the discovery of new rigidity phenomena and properties satisfied by these 
geometric structures. They have been very useful in the development of many areas of 
mathematics and modern mathematical physics. Paracontact manifolds are the natural 
framework for geometric optics. Paracontact structures arise naturally on energy levels 
of autonomous Hamiltonian systems. 
Tripathi et al submitted the concept of ε-almost paracontact manifolds of ε-para-Sasakian 
manifolds [1]. Kr. Srivastava et al introduced the concept of (ε)-almost paracontact 
manifolds [2]. Atceken introduced the existence of warped product semi-invariant 
submanifolds in almost para contact metric manifolds [3]. Shukla and Verma investigated 
the notion of paracomplex paracontact pseudo-Riemannian submersions from almost 
para-Hermitian manifolds onto almost paracontact metric manifolds [4]. Gunduzalp and 
Sahin first defined the concept of paracontact semi-Riemannian submersions between 
almost paracontact metric manifolds [5]. Erken and Murathan completed study of three-
dimensional paracontact metric )~,~,~( υµκ -manifolds [6]. Manev and Staikova studied a 
classification with eleven basic classes of almost paracontact Riemannian manifolds of 
type (n,n) [7]. Bucki shown that for an almost r-paracontact manifold of P. Sasakian type 
there exists a product submanifold [8]. Acet et al gave canonical paracontact connection 
on a para-Sasakian manifold [9]. Ahmad et al defined a quarter symmetric semi-metric 
connection in an almost r-paracontact Riemannian manifold and consider invariant, non-
invariant and anti-invariant hypersurfaces [10]. Nakova and Zamkovoy considered 
almost paracontact pseudo-Riemannian manifolds with indefinite metric g [11]. Kasap 
and Tekkoyun found Lagrangian and Hamiltonian formalism for mechanical systems 
using para/pseudo-Kähler manifolds [12]. 

2. Preliminaries 

Definition 1. Let M be a differentiable manifold of dimension (2n+1) and suppose J is a 
differentiable vector bundle isomorphism J:TM→TM such that J:TM→TM is a almost 
complex structure for TM. An almost complex structure J on M assigns to each p∈M a 
linear map Jp:TpM→TpM that is smooth in p and satisfies Jp²=Id for all p. The pair (M,J) is 
called an almost paracomplex manifold. Any paracomplex manifold M is also an almost 
paracomplex manifold.   

A celebrated theorem of Newlander and Nirenberg [13] says that an almost paracomplex 
structure is a paracomplex structure if and only if its Nijenhuis tensor or torsion 
vanishes. The almost paracomplex structure J on M is integrable if and only if the tensor 
NJ vanishes identically, where NJ is defined on two vector fields X and Y by 

NJ[X,Y]=[JX,JY]-J[X,JY]-J[JX,Y]-[X,Y].                                               (1) 

The tensor (2,1) is called the Nijenhuis tensor (1). We say that J is torsion free if NJ=0. An 
almost product structure is integrable if its Nijenhuis tensor vanishes. An almost complex 
manifold (M,J) is complex if and only if J is integrable. 

Definition 2. A (2n+1)-dimensional manifold M is said to be a contact manifold if it 
admits a global 1-form η, such that η∧(dη)ⁿ≠0. 

Given such a form η, there exists a unique vector field ξ, called the characteristic vector 
field, such that η(ξ)=1 and dη(ξ, )=0. A semi-Riemannian metric g is said to be an 
associated metric if there exists a tensor φ of type (1,1), such that 
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φ²X=X-η(X)ξ, 

φξ=0, η(φX)=0, η(ξ)=1, 

               g(φX,φY)=g(X,Y)-η(X)η(Y), 

η(X)=g(X,ξ), 

dη( , )=g( ,φ).                                                                        (2)                                                              

Then, (φ,ξ,η,g) (more briefly, (η,g)) is called a paracontact metric structure, and 
(M,φ,ξ,η,g) or M a paracontact metric manifold [14]. 

Definition 3. Let M be an almost paracontact manifold with almost paracontact structure 
(φ,ξ,η,g) and consider the product manifold M×ℝ, where ℝ is the real line. A vector field 
on M×ℝ can be represented by (X,f(d/dt)), where X is tangent to M, f a smooth function 
on M×ℝ, and t the coordinates of ℝ. For any two vector fields (X,f(d/dt)) and (Y,h(d/dt)) , 
it is easy to verify the following: 

[(X,f(d/dt)),(Y,h(d/dt))]=([X,Y],(Xh-Yf)(d/dt)).                        (3) 

If the induced almost product structure J on M×ℝ defined by 

J(X,f(d/dt))=(φX+fξ,η(X)(d/dt)) ,                                     (4) 

is integrable, then we say that the almost paracontact structure (φ,ξ,η,g) is normal. Let M 
be an almost paracontact manifold and for any vector fields X,Y on M if it is additionally 
endowed with a pseudo-Riemann metric g of signature (n+1,n) and such that 

g(φX,φY)=-g(X,Y)+η(X)η(Y).                                                (5) 

3. Almost Paracontact 3-Structure on A Differentiable Manifold 
Theorem 1. Let (M,φ,ξ,η) bean almost paracontact manifold, and let μ≠0 be (1,1) tensor 
field defined on M. If we put 

φ′X=μ⁻¹φμX, η′(X)=η(μX) and μξ′=ξ ,                                        (6) 

then we observe that (φ′, ξ′, η′) is also an almost paracontact structure defined on M, 
thereby indicating that an almost paracontact structure on a differentiable manifold is 
not unique. This leads us to define an almost paracontact 3-structure on a differentiable 
manifold. 

Proof: Suppose a differentiable manifold M admits three almost paracontact structures 
(φ i ,ξ i ,η i), i=1,2, satisfying 

η i(ξ j)=η j(ξ i)=0, 

φ i(ξ j)=φ j(ξ i)=0, 

η i∘φ j=η j∘φ i=ξK, 

and 

φ i∘φ j+η j⊗ξ i=φ j∘φ i+η i⊗ξ j=φK.                                              (7) 

for a cyclic permutation (i,j,k) of (1,2,3), then M is said to have an almost paracontact 3-
structure. 
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Theorem 2. If a differentiable manifold M admits two almost paracontact structures 
(φ i ,ξ i ,η i), i=1,2, satisfying 

η₁(ξ₂)=η₂(ξ₁)=0, 

φ₁(ξ₂)=φ₂(ξ₁), 

η₁∘φ₂=η₂∘φ₁, 

and 

φ₁∘φ₂+η₂⊗ξ₁=φ₂∘φ₁+η₁⊗ξ₂.                                          (8) 

then it admits an almost paracontact 3-structure. 

Proof: Define a triplet (φ₃,ξ₃,η₃) on M by 

φ₃=φ₁∘φ₂+η₂⊗ξ₁,ξ₃=φ₁(ξ₂) and η₃=η₁∘φ₂.                              (9) 

We can be easy shown that (φ₃,ξ₃,η₃) is also an almost paracontact 3-structure on M. 

Theorem 3. Suppose a differentiable manifold M admits two almost paracontact 
structures (φ i ,ξ i ,η i), i=1,2, and let there be given a Riemannian metric on M associated to 
both the structures and if 

φ₁∘φ₂+η₂⊗ξ₁=φ₂∘φ₁+η₁⊗ξ₂ ,                                     (10) 

then 

   (a) η₁(ξ₂)=η₂(ξ₁)=0, 

(b) φ₁(ξ₂)=φ₂(ξ₁), 

(c) η₁∘φ₂=η₂∘φ₁,                                                                (11) 

Proof: Since g is associated metric for the structure we have 

g(ξ₁,ξ₂)=η₁(ξ₂)=η₂(ξ₁).                                                    (12) 

Using the given condition, we have 

g(φ₁φ₂X+η₂(X)ξ₁,Y) = g(φ₂φ₁X,Y)+η₁(X)η₂(Y), 

g(φ₂X,φ₁(Y))+η₂(X)η₁(Y) = g(φ₁X,φ₂Y)+η₁(X)η₂(Y).                     (13) 

Put X=ξ₁ and Y=ξ₂ in the above equation and using (12) we obtained 

g(φ₂ξ₁,φ₁(ξ₂))=g(ξ₁,ξ₁)-g(ξ₁,ξ₂)η₁(ξ₂)=g(ξ₁,ξ₁-η₁(ξ₂)ξ₂) 

         =g(ξ₁,ξ₁-η₂(ξ₁)ξ₂)=g(ξ₁,φ₂²ξ₁)=g(φ₂ξ₁,φ₂ξ₁,).                 (14) 

This gives φ₁ξ₂=φ₂ξ₁. Using (14) we get 

φ₁(ξ₂)=φ₂(ξ₁)=φ₂(ξ₁)-η₁(φ₁ξ₂)ξ₁=φ₂(ξ₁)-η₁(φ₂ξ₁)ξ₁=φ₁²(φ₂(ξ₁)),          (15) 

which gives ξ₂=φ₁φ₂ξ₁=φ₁φ₁ξ₂=ξ₂-η₁(ξ₂)ξ₁. Hence η₁(ξ₂)ξ₁=0, giving η₁(ξ₂)=0 and by 

(12) we have η₁(ξ₂)=η₂(ξ₁)=0 [15]. 
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Theorem 4. For an almost paracontact 3-structures (φ i ,ξ i ,η i), i=1,2,3, on a differentiable 
manifold M there exist a Riemannian metric g such that 

g(X,ξ i)=η i(X), i=1,2,3, X∈χ(M).                                               (16) 

Proof: Let g₁ be the associated Riemannian metric to (φ₁,ξ₁,η₁) and define a metric g₂ by 

g₂(X,Y)=g₁(X-η₂(X)ξ₂,Y-η₂(Y)ξ₂)+η₂(X)η₂(Y).                            (17) 

Now define g by 

g(X,Y)=g₂(X-η₃(X)ξ₃,Y-η₃(Y)ξ₃)+η₃(X)η₃(Y).                        (18) 

Then clearly g is Riemannian metric defined on M, and we have 

g(X,ξ₁)= g₂(X-η₃(X)ξ₃,ξ₁)=g₁(X-η₃(X)ξ₃-η₂(X-η₃(X)ξ₃)ξ₂,ξ₁) 

= g₁(X,ξ₁)-η₃(X)g₁(ξ₃,ξ₁)-η₂(X)g₁(ξ₂,ξ₁)=η₁(X).                           (19) 

Further we have 

g(X,ξ₂)=g₂(X-η₃(X)ξ₃,ξ₂)=η₂(X).                                          (20) 

and 

g(X,ξ₃)=g₂(X-η₃(X)ξ₃,ξ₃)=η₃(X).                                           (21) 

Lemma 1. In differentiable manifold M with almost paracontact 3-structures (φ i ,ξ i ,η i), 
i=1,2,3, and associated  metric g we have 

g(φ iX,φ jY)=g(φkX,Y)-η i(X)η j(Y)    (proof see[16]).                        (22) 

4. Gauge Theory and Weyl Geometry 
A conformal manifold is a differentiable manifold equipped with an equivalence class of 
(pseudo) Riemann metric tensors, in which two metrics g₂ and g₁ are equivalent if and 
only if 

g₂=Ψ²g₁,                                                                            (23) 

where Ψ>0 is a smooth positive function. An equivalence class of such metrics is known 
as a conformal metric or conformal class and a manifold with a conformal structure (23) 
is called a conformal manifold. 

Hermann Weyl (1885-1955) made many fundamental and important contributions to 
physics. Weyl's gauge theory sprang from an even earlier (1918) theory in which Weyl 
demanded that Einstein's theory of general relativity should be invariant with respect to 
the similar replacement 

gμν(x)→𝑒𝑒λ(x)gμν(x),                                                          (24) 

which we shall call a metric gauge transformation (24) and it has emerged effect of these 
transformations on Riemannian and non-Riemannian geometry. Weyl, using this gauge 
principle, was able to derive all of electrodynamics from a generalized Einstein-Maxwell 
Lagrangian. Today, the gauge principle is arguably the most powerful concept in all of 
modern physics. This gauge principle underlies all of the Yang-Mills theories and is a key 
component in string theory and its more recent variant, M theory. 
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Two Riemann metrics g₁ and g₂ on M are said to be conformally equivalent iff there exists 
a smooth function f:M→ℝ with 

efg₁=g₂.                                                                    (25) 

In this case, g₁∼g₂. Let M be an n-dimensional smooth manifold. A pair (M,G), a conformal 
structure on M is an equivalence class G of Riemann metrics on M, is called a conformal 
structure [17]. 

Theorem 5. (a) Let ∇ be a connection on M and g∈G a fixed metric. ∇ is compatible with 
(M,G)⇔ there exists a 1-form ω with ∇Xg+ω(X)g=0. A compatible torsion-free 
connection is called a Weyl connection. The triple (M,G,∇) is a Weyl structure. 

(b) To each metric g∈G and 1-form ω, there corresponds a unique Weyl connection ∇ 
satisfying ∇Xg+ω(X)g=0. Define a function F:{ 1-forms on M }×G→{Weyl connections} by 
F(g,ω)=∇, where ∇ is the connection guaranteed by Theorem 5. We say that ∇ 
corresponds to (g,ω) (poof see [16]). 

Proposition 1. 

(a) F is surjective. 

Proof: F is surjective by Theorem 5. 

(b) F(g,ω)=F(efg,η) iff η=ω-df. So 

F(efg)=F(g)-df.                                                              (26) 

Where G is a conformal structure. Note that a Riemann metric g and a one-form ω 
determine a Weyl structure, namely F:G→∧¹M where G is the equivalence class of g and 
F(efg)=ω-df. 

Proof: Suppose F(g,ω)=F(efg,η)=∇. We have 

∇X(efg)+η(X)efg=X(ef)g+ef∇Xg+η(X)efg=df(X)efg+ef∇Xg+η(X)efg=0.                (27) 

Therefore ∇X(efg)=-(df(X)+η(X)). On the other hand ∇Xg+ω(X)g=0. Therefore ω=η+df. 
Set ∇=F(g,ω). To show ∇=F(efg,η) and ∇X(efg)+η(X)efg=0. To calculate 

∇X(efg)+η(X)efg=efdf(X)g+ef∇Xg+(ω(X)-df(X))efg=ef(∇Xg+ω(X)g)=0 [17].    (28) 

Definition 4. Kähler geometry can be thought of as a compatible intersection of complex 
and symplectic geometries. Indeed, the triple (M²ⁿ,J,ω), with 2n the real dimension of M, 
is a Kähler manifold if 

(i) (M²ⁿ,J) is a complex manifold, i.e. the automorphism J:TM→TM, J²=-I, is an integrable 
complex structure 

(ii) (M²ⁿ,ω), is a symplectic manifold, i.e. the 2-form ω is closed and nondegenerate 

(iii) J and ω are compatible in the sense that the bilinear form ω(·,J·) is a Riemannian 
metric, i.e. symmetric and positive definite [18]. 

Definition 5. Consider a triple (M,g,∇) where g is a pseudo Riemannian metric on a 
smooth n dimensional manifold M and where ∇ is a torsion free connection on the 
tangent bundle TM of M. We suppose n≥2 henceforth. We say that (M,g,∇) is a Weyl 
manifold if the following identity is satisfied: ∇g=-2φ⊗g for some φ∈ℂ∞(T∗M). This 
notion is conformally invariant. If (M,g,∇) is a Weyl manifold, then (M,e2fg,∇) is again a 
Weyl manifold where φ:=φ-df. The simultaneous transformation of the pair (g,φ) is 
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called a gauge transformation, properties of the Weyl geometry that are invariant under 
gauge transformations are called gauge invariants [19]. 

Let ∇ be a torsion free connection on the tangent bundle of M and m≥6. If (M,g,∇,J) is a 
Kähler-Weyl structure, then the associated Weyl structure is trivial, i.e. there is a 
conformally equivalent metric 

g1=e2fg,                                                                              (29) 

so that (M,g1 ,J) is Kähler and so that ∇=∇g1 [20]. 

Let (M,g) is conformally flat if for each point x in M, there exists a neighborhood U of x 
and a smooth function f defined on U such that (U,e2fg) is flat. The function f need not be 
defined on all of M. 

Let m≥6. If (M,g,J,∇) is a (para)-Kähler-Weyl structure, then the associated Weyl 
structure is trivial, i.e. there is a conformally equivalent metric  

g₁=e2fg,                                                                                (30) 

so that (M,g₁,J) is (para)-Kähler and so that ∇=∇g₁ [21]. 

Weyl transformation is a local rescaling of the metric tensor: gab(x)→𝑒𝑒−2ω(x)gab(x) which 
produces another metric in the same conformal class. A theory or an expression invariant 
under this transformation is called conformally invariant, or is said to possess Weyl 
symmetry. The Weyl symmetry is an important symmetry in conformal field theory. 

Also, in three dimensions, the vector from the origin to the point with Cartesian 
coordinates (x,y,z) can be written as: 

r=x𝚤𝚤+y𝚥𝚥+z𝑘𝑘�⃗ =x(∂/(∂x))+y(∂/(∂y))+z(∂/(∂z)). 

Example 1. Let ℝ³ be the Cartesian space and (x,y,z) be the Cartesian coordinates in it 
define the standard almost paracontact structure (φ,ξ,η) on ℝ³ by 

φ(∂₁)=∂₂-2x∂₃, 

φ(∂₂)=∂₁, 

φ(∂₃)=0, 

ξ=∂₃,   η=2xdy+dz.                                                                     (31) 

We research "almost paracontact 3-structure on a differentiable manifold" conditions 
and features of (31) for ∂₁=∂/∂x, ∂₂=∂/∂y, ∂₃=∂/∂z; 

1. φξ= φ(∂/∂z)=0,  

2. η(φX)=[2x(∂/∂y)+∂/∂z](φX)=0, 

3.  η(ξ)=[2x(∂/∂y)+∂/∂z](∂/∂z)=1   [22].                           (32) 

Proposition 2. φ∗ homomorphic structure is the dual of φ homomorphic structure. We, 
using (29), transferred to Weyl structure of the system (31). 

1. φ∗dx)=e2fdy-2xe2fdz, 

2. φ∗(dy)=e-2fdx, 

3. φ∗(dz)=0.                                                                                     (33) 
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Proof:                                            1. φ∗2(dx)=e2fφ∗(dy)-2xe2f φ∗(dz)=dx, 

2. φ∗2(dy)=e-2f(e2fdy-2xe2fdz)=dy-2xdz, 

3. φ∗2(dz)=0.                                                                                    (34) 

As seen above (33) provided for the condition (2) φ∗²X=X-η(X)ξ. 

5. Hamilton Dynamics Equations 
The vector field X on T∗M given by iXω=dH is called the geodesic flow of the metric g. 
Suppose that ξ is a vector field: that is, a vector-valued function with Cartesian 
coordinates (ξ₁,...,ξn); and x(t) a parametric curve with Cartesian coordinates 
(x₁(t),...,xn(t)). Then x(t) is an integral curve of ξ if it is a solution of the following 
autonomous system of ordinary differential equations:  

dx₁/dt=ξ₁(x₁,...,xn),...,dxn/dt=ξn(x₁,...,xn). Such a system may be written as a single vector 
equation: 

ξ(x(t))=x’(t)=(∂/∂t)(x(t)).                                                  (35) 

Let M is the configuration manifold and its cotangent manifold T∗M. By a symplectic form 
we mean a 2-form Φ on T∗M such that: 
(i) Φ is closed , that is, dΦ=0; (ii) for each z∈T∗M , Φ:T∗M×T∗M→ℝ is weakly 
nondegenerate. If Φz in (ii) is nondegenerate, we speak of a strong symplectic form. If (ii) 
is dropped we refer to Φ as a presymplectic form. Let (T∗M,Φ) be a symplectic manifold. 
A vector field XH:T∗M→T∗M is called Hamiltonian if there is a C¹ function H:T∗M→ℝ such 
that dynamical equation is determined by 

iXHΦ=dH     [23].                                                              (36) 

We say that XH is locally Hamiltonian vector field if iXHΦ is closed and where Φ shows the 
canonical symplectic form so that Φ=-dΩ, Ω=J∗(ω), J∗ a dual of J, ω a 1-form on T∗M. The 
trio (T∗M,Φ,XH) is named Hamiltonian system which it is defined on the cotangent bundle 
T∗M. Recall from elementary physics that momentum of a particle, pi, is defined in terms 
of its velocity �̇�𝑞 Ri  by pi=mi�̇�𝑞 Ri . In fact, the more general definition of conjugate momentum, 
valid for any set of coordinates, is given in terms of the Lagrangian: p i=∂L/∂�̇�𝑞 Ri , 
�̇�𝑝Ri=∂L/∂q i . Note that these two definitions are equivalent for Cartesian variables. In 
terms of Cartesian momenta, the kinetic energy is given by T=∑  𝑛𝑛

𝑖𝑖=1 (𝑝𝑝𝑖𝑖
2)/(2mi). Then, the 

Hamiltonian, which is defined to be the sum, H=T+V, expressed as a function of positions 
and momenta, will be given by H(qi,pi)=V+ T = ∑  𝑛𝑛

𝑖𝑖=1 (𝑝𝑝𝑖𝑖
2)/(2mi)+(q₁,...,qn) where 

p=p₁,...,pn. The function H is equal to the total energy of the system. In terms of the 
Hamiltonian, the equations of motion of a system are given by Hamilton's equations: 

�̇�𝑞 Ri=∂H/∂p i ,  �̇�𝑝Ri=-∂H/∂q i      [24].                                          (37) 

6. An Example for Contact Manifold 

Differential geometry provides and mathematical physics a good workspace for studying 
Hamiltonians of classical mechanics and field theory. The dynamic equations for moving 
bodies are obtained for Hamiltonian mechanics. Contact geometry has a practical usage 
in physics, geometrical optics, classical mechanics, analytical mechanics, mechanical 
systems, thermodynamics, geometric quantization, applied mathematics and differential 
geometry. The some examples of the Hamiltonian are applied to model the problems 
include harmonic oscillator, charge Q in electromagnetic fields, Kepler problem of the 
earth in orbit around the sun, rotating/spherical/plane pendulum, molecular and fluid 
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dynamics, LC networks, Atwood's machine, symmetric top etc. In this section, an 
oscillator is given as an example for contact Hamiltonian system. 

Lemma 2. Assume that H(t,q,p,S) is a C¹ contact Hamiltonian function and (q,p,S) are the 
coordinates of a point of a contact manifold with the one form η=dS-p(dq). Let λ be the 
number by which we must multiply to η obtain the given point of the symplectified space. 
In these coordinates, we have ω=λdS-λp(dq). 

A Hamiltonian system with Hamiltonian function on a contact manifold: 

∂q/∂t=∂H(t,q,p)/∂p, 

∂p/∂t=-∂H(t,q,p)/∂q,                                                        (38) 

describes reversible systems such as in mechanics and electromagnetism, where 
dissipation effects are neglected. Hamiltonian system (38) extends to the contact 
Hamiltonian system on contact manifold with a contact Hamiltonian function 
H:ℝ×T∗ℝⁿ×ℝ→ℝ defined by 

∂q/∂t=∂H(t,q,p,S)/∂p, 

∂p/∂t=-∂H(t,q,p,S)/∂q-p.(∂H(t,q,p,S)/∂S), 

∂S/∂t=p.(∂H(t,q,p,S)/∂p)-H(t,q,p,S).                                            (39) 

In the coordinates (q,p,S) of phase space, the contact form is ).(
1 i

n

i i dqpdS ∑=
−=ω  (proof 

see [25]). 

Time-dependent Harmonic oscillators: 

Cha at al introduced the damped harmonic oscillator with a time-dependent damping 
constant and a time dependent angular frequency, which is the generalization of 
Caldirola-Kanai Hamiltonian. Then, the equation of motion reads x +γ(t) x
+ω₀²(t)x=0,where γ(t) and ω₀(t) imply a time-dependent damping constant and a time-
dependent angular frequency respectively, and the mass of a particle is determined in 
unity. The corresponding Lagrangian then reads L=(1/2)g(t)( 2x -ω₀²t²), where 
g(t)=exp[∫tγ(t′)dt′]. The canonical momentum is given by p=g(t). x . The corresponding 
Hamiltonian is obtained via a Legendre transformation: H=p²/2g(t)+(1/2).g(t)ω₀²x²  
[26]. 

Consider the one-dimensional damped oscillator with changing-sign damping coefficient 
γ(t), mass g(t) and time-dependent frequency ω(t), whose contact Hamiltonian is 

H(t,q,p,S)=p²/2g(t)+(1/2).g(t)ω²(t)q²+γ(t)S.                           (40) 

The contact Hamiltonian system of motions reads 
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∂q/∂t=p/g(t), 

∂p/∂t=-g(t)ω²(t)q-pγ(t), 

∂S/∂t=p²/2g(t)-(1/2).g(t)ω²(t)q²-γ(t)S.                                 (41) 

7. Hamiltonian Mechanical Systems 
We, using (36), present Hamilton equations and Hamiltonian mechanical systems for 
quantum and classical mechanics constructed on 3-dimensional normal almost-
paracontact metric manifolds (φ∗,ξ,η,g). 

Proposition 3. Let (M,g,φ∗)  be the for (33) on 3-dimensional normal almost paracontact 
metric manifolds. Suppose that the structures, a Liouville form and a 1-form on 3-
dimensional normal almost-paracontact metric manifolds are shown by ϕ∗,Φ=-dΩ, 
Ω=ϕ∗(ω) and ω=(1/2)[dx+dz] is a 1-form. If (36) is used, the Hamilton equations below 
are obtained. 

dif1. dx/dt=-(C/(2⋅A⋅B))⋅(∂H/∂x)+(1/A)(∂H/∂y)+(1/(2⋅B))⋅(∂H/∂z), 

dif2. dy/dt=(1/A)(∂H/∂x)-(B/(2⋅C.A))⋅(∂H/∂y)+(1/(2⋅C))⋅(∂H/∂z), 

dif3. dz/dt=((-1)/(2⋅B))⋅(∂H/∂x)-(1/(2⋅C))⋅(∂H/∂y)+(A/(2⋅B⋅C))⋅(∂H/∂z)). 

                (42) 

The equations introduced in are named Weyl-Hamilton equations on 3-dimensional 
normal almost-paracontact metric manifolds (ϕ∗,ξ,η,g) and then the triple (M,Φ,ω) is said 
to be a Hamiltonian mechanical system on (M,g,ϕ∗). 

Proof: The steps in the Hamilton dynamic equation section will be followed for proof. We 
obtain the Liouville form as follows: 

Ω = φ∗(ω) = (1/2)[φ∗(dx)+φ∗(dz)]= (1/2)[e2fdy-2xe2fdz].                  (43) 

It is well known that if Φ is a closed on 3-dimensional normal almost-paracontact metric 
manifolds (M,g,φ∗), then Φ is also a symplectic structure on (M,g,φ∗). Therefore the 2-
form Φ indicates the canonical symplectic form and derived from the 1-form Ω to find to 
mechanical equations. Then the 2-form is calculated as: 

Φ=[-(∂f/∂x)e2fdx∧dy+(e2f+2x(∂f/∂x)e2f)dx∧dz 

+2x(∂f/∂y)e2fdy∧dz-(∂f/∂z)e2fdz∧dy].                                        (44) 

Take a vector field XH so that called to be Hamiltonian vector field associated with 
Hamiltonian energy H and determined by 

XH=X(∂/∂x)+Y(∂/∂y)+Z(∂/∂z).                                                (45) 

So, we have 

iXHφ = φ(XH) 

       = X{ [-(∂f/∂x)e2f](dx(∂/∂x)dy-dy(∂/∂x)dx) 

         +[e2f+2x(∂f/∂x)e2f](dx(∂/∂x)dz-dz(∂/∂x)dx)+[2x(∂f/∂y)e2f 

         +(∂f/∂z)e2f](dy(∂/∂x)dz-dz(∂/∂x)dy)] } 
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+Y{ [-(∂f/∂x)e2f](dy(∂/∂y)dx-dx(∂/∂y)dy) 

+(e2f+2x(∂f/∂x)e2f)(dx(∂/∂y)dz-dz(∂(∂y)dx) 

+[2x(∂f/∂y)e2f+(∂f/∂z)e2f](dy(∂/∂y)dz-dz(∂/∂y)dy)] } 
+Z{ [-(∂f/∂x)e2f](dy(∂∂z)dx-dx(∂/∂z)dy) 

       +[e2f+2x(∂f/∂x)e2f](dx(∂/∂z)dz-dz(∂/∂z)dx) 

        +[2x((∂f/∂y)e2f+(∂f/∂z)e2f](dy(∂/∂z)dz-dz(∂/∂z)dy)] }. 
     (46) 

Kronecker delta and external product characteristics are used here to obtain the 
following equation. 

         iXHφ=φ(XH) 

                =X[-(∂f/∂x)e2f]dy+X[e2f+2x(∂f/∂x)e2f]dz 

                  +Y[-(∂f/∂x)e2f]dx+Y[2x(∂f/∂y)e2f+(∂f/∂z)e2f]dz 

-Z[e2f+x2(∂f/∂x)e2f]dx-Z[2x(∂f/∂y)e2f+(∂f/∂z)e2f]dy.                                              (47) 

Also, the differential of Hamiltonian energy H is obtained by 

dH=(∂H/∂x)dx+(∂H/∂y)dy+(∂H/∂z)dz.                                          (48) 

From iXHΦ=dH, the Hamiltonian vector field is found 

        Y[-(∂f/∂x)e2f]dx-Z[e2f+x2(∂f/∂x)e2f]dx = (∂H/∂x)dx, 

        X[-(∂f/∂x)e2f]dy-Z[2x(∂f/∂y)e2f+(∂f/∂z)e2f]dy = (∂H/∂y)dy, 

        X[e2f+x2(∂f/∂x)e2f]dz+Y[2x(∂f/∂y)e2f+(∂f/∂z)e2f]dz = (∂H/∂z)dz, 

(49) 
and for A=[-(∂f/∂x)e2f], B=[e2f+x2(∂f/∂x)e2f], C=[2x(∂f/∂y)e2f+(∂f/∂z)e2f] as follows: 

        X = (1/A)(∂H/∂y)-(A/(2⋅B⋅))[C⋅(∂H/∂x)-A⋅(∂H/∂z)+B⋅(∂H/∂y)], 

       Y = (1/A)(∂H/∂x)-(1/(2⋅A⋅C))[C⋅(∂H/∂x)-A⋅(∂H/∂z)+B⋅(∂H/∂y)], 

       Z = ((-1)/(2⋅B⋅C))[C⋅(∂H/∂x)-A⋅(∂H/∂z)+B⋅(∂H/∂y)]. 

(50) 

So, we obtain 

XH = [(1/A)(∂H/∂y)-(A/(2⋅B))[C⋅(∂H/∂x)-A⋅(∂H/∂z)+B⋅(∂H/∂y)]](∂/∂x) 

      +[(1/A)(∂H/∂x)-(1/(2⋅A⋅C))[C⋅(∂H/∂x)-A⋅(∂H/∂z)+B⋅(∂H/∂y)]](∂/∂y) 

+[((-1)/(2⋅B⋅C))[C⋅(∂H/∂x)-A⋅(∂H/∂z)+B⋅(∂H/∂y)]](∂/∂z).                                          
(51) 

Consider the curve and its velocity vector is 

α : I⊂ℝ→M,  α(t)=(x(t),y(t),z(t)), 

α̇(t) = (dx/dt)(∂/∂x)+(dy/dt)(∂/∂y)+(dz/dt)(∂/∂z).                              (52) 
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An integral curve (35) of the Hamiltonian vector field XH, i.e., 
XH(α(t))=(∂/∂t)(α(t))=α̇(t) , t∈I, t shows the time. Then, we can be find the following 
equations; 

dif1. dx/dt=-(C/(2⋅A⋅B))⋅(∂H/∂x)+(1/A)(∂H/∂y)+(1/(2⋅B))⋅(∂H/∂z), 

dif2. dy/dt=(1/A)(∂H/∂x)-(B/(2⋅C.A))⋅(∂H/∂y)+(1/(2⋅C))⋅(∂H/∂z), 

dif3. dz/dt=((-1)/(2⋅B))⋅(∂H/∂x)-(1/(2⋅C))⋅(∂H/∂y)+(A/(2⋅B⋅C))⋅(∂H/∂z)). 

                (53) 

Hence, the equations introduced in are named Hamilton equations on 3-dimensional 
normal almost-paracontact metric manifolds (φ∗,ξ,η,g) and then the triple (M,Φ,ω) is said 
to be a Hamiltonian mechanical system on (M,g,φ∗). 

8. Conclusion 

By this study the above mentioned forms: 

(a) Weyl's structure (29) on 3-dimensional normal almost-paracontact metric manifolds 
(ϕ∗,ξ,η,g) were transferred (33) the mechanical system for dynamical systems. 

(b) Hamiltonian motion equations on 3-dimensional normal almost-paracontact metric 
manifolds were found using the dynamic equation (36) introduced by Klein in 1962. 

(c) So, the Hamilton mechanical equations (42) with Weyl theorem (29) derived on a 
generalized on 3-dimensional normal almost-paracontact metric manifolds. 

9. Discussion 

A classical field theory explain the study of how one or more physical fields interact with 
matter which is used in quantum and classical mechanics. Our universe is three-
dimensional such that Einstein added time as the fourth dimension in 1905. 

Time-dependent moving Hamiltonian equations gives a model for both the gravitational 
and electromagnetic field in a very natural blending of the geometrical structures of the 
space with the characteristic properties of these physical fields. 

The obtained time-dependent equations system (42) on 3-dimensional normal almost-
paracontact metric manifolds are very important to explain and solve the rotational 
spatial mechanical-physical problems. 

Hamilton's equation system (42) may be suggested to deal with problems in electrical, 
magnetically and gravitational fields force of defined space moving objects [27-29]. 

In addition, using these equations, the route and needs of moving of the object/system on 
3-dimensional normal almost-paracontact metric manifolds can be determined. 

10. Conflict of Interests 

The author declares that there is no conflict of interests regarding the publication of this 
paper. 

 

51 
 



Kasap / Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 40–53 2020 (2) 
 

11. References 

1. Tripathi M.M., Kilic E.¸ Perktas S.Y., Keles S. Indefinite almost paracontact metric 
manifolds, International Journal of Mathematics and Mathematical Sciences, 2010; 1-19. 
2. Srivastava, D. Narain, Srivastava K. Properties of ε-S paracontact panifold, VSRD-TNTJ, 
2011; 2(11): 559-569. 
3. Atceken M. Warped product semi-invariant submanifolds in almost paracontact metric 
manifolds, Mathematica Moravica, 2010; (14)1: 15-21. 
4. Shukla S.S., Verma U.S. Paracomplex paracontact pseudo-Riemannian submersions, 
Hindawi Publishing Corporation Geometry, 2014; 1-12. 
5. Gunduzalp Y., Sahin B. Paracontact semi-Riemannian Ssubmersions, TJM, 2013; 37: 
114-128. 
6. Erken K., Murathan C. A complete study of three-dimensional paracontact (κ,μ,ν) 
Spaces, arxiv.org/abs/1305.1511v3, 1-26, 2013. 
7. Manev M., Staikova M. On almost paracontact Riemannian manifolds of type (n,n), 
Journal of Geometry, 2001. 
8. Bucki A. Product submanifold almost r-paracontact Riemannian manifold of p-Sasakian 
type, Soochov Journal of Mathematics, 1998; 24(4): 255-259. 
9. Acet B.E., Kilic E., Perktas S.Y. Some curvature conditions on a para-Sasakian manifold 
with canonical paracontact ponnection, IJMMS, 2012; 1-24. 
10. Ahmad M., Haseeb A., Jun J-B., Rahman S. On Almost r-paracontact Riemannian 
manifold with a certain connection, Commun. Korean Math. Soc.,  2010; 25(2): 235-243. 
11. Nakova G., Zamkovoy S. Almost paracontact manifold, arXiv:0806.3859v2, 2009; 1-17. 
12. Kasap Z., Tekkoyun M. Mechanical systems on almost para/pseudo-Kähler-Weyl 
manifolds, IJGMMP, 2013; 10(5): 1-8. 
13. Newlander A., Nirenberg L. Complex analytic coordinates in almost complex 
manifolds, Ann. of Math., 1957; 65: 391-404. 
14. Calvaruso G., Perrone D.Geometry of H-paracontact metric manifolds, 
arXiv:1307.7662v1, 2013. 
15. Deshmukh S., Khan G. Almost paracontact 3-structures on a differentiable manifold, 
Ind. J. Pure Appl. Math., 2012; 101: 442-448. 
16. Folland G.B. Weyl Manifolds, J. Differential Geometry, 1970; 4:145-153. 
17. Abreu M., Kähler geometry of toric manifolds in symplectic coordinates, 
arXiv:math/0004122v1, 2000; 1-24. 
18. Gilkey P., Nikcevic S. , U. Simon, Geometric realizations, curvature decompositions, 
and Weyl manifolds. JGP, 2011; 61: 270-275. 
19. Pedersen H., Poon Y.S., Swann A., The Einstein-Weyl equations in complex and 
quaternionic geometry, DGIA, 1993; 3(4): 309-321. 
20. Kadosh L. Topics in Weyl Geometry, Ph.D. Dissertationial, University of California, 
1996. 
21. Pedersen H., PoonY . S., SwannA. The Einstein-Weyl equations in complex and 
quaternionic Ggeometry, DGIA, 1993; 3(4), 309-321. 
22. Welyczko J., Slant curves in 3-dimensional normal almost paracontact metric 
manifolds, arXiv:1212.5839v1, 2012. 
23. Klein J. , Escapes Variationnels et Mécanique, Ann. Inst. Fourier, Grenoble, 1962; 12. 
24. LeonM. De, RodriguesP.R. Methods of Differential Geometry in Analytical Mechanics, 
Elsevier Sc. Pub. Com. Inc., Amsterdam, 1989; 263-299. 
25. Liu, Q. Contact Hamiltonian dynamics: Variational principles, invariants, 
completeness and periodic behavior, Annals of Physics, 2018; 95: 26-44. 
26. Cha J.,  Lee Y., Chung W.S., Kim D.,  Kim D.H., Lee Y.K., Park S., Kim K.S., Chung W.S. On 
the exact solutions of the damped harmonic oscillator with a timedependent damping 
constant and a time-dependent angular frequency, Journal of the Korean Physical Society, 
2015; 67: 404-408. 

52 
 



Kasap / Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 40–53 2020 (2) 
 

27. Thidé B. Electromagnetic Field Theory, Uppsala, Sweden, 2012. 
28. Martín R.G. Electromagnetic Field Theory for Physicists and Engineers: Fundamentals 
and Applications, Asignatura: Electrodinámica, Físicas, Granada, 2007. 
29. Weyl H. Space-Time-Matter, Dover Publ. 1922, Translated From the 4th German 

Edition by H. Brose, Dover, 1952. 

53 
 


