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Abstract

The main aim of this paper is to investigate the solutions of the difference equation

xn+1 =
(−1)naxn−2k

a+(−1)n
2k
∏
i=0

xn−i

, n = 0,1, ...

where k is a positive integer and initial conditions are non zero real numbers with
2k
∏
i=0

xn−i 6=∓a.
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1. Introduction

Recently, investigating the qualitative behavior of nonlinear difference equations is a topic of a great interest. The theory of difference
equations play inportant role in applicable analysis. Applications of difference equations have appeared in many areas such as ecology,
population dynamics, genetics in biologiy, physics and engineering.
Many researchers have investigated the behavior of the solution of rational difference equations. For example see Refs. [1-12].
Ergin and Karatas[11] obtained the formulas of the solution of the difference equation

xn+1 =
axn−k

a−
k
∏
i=0

xn−i

.

Simsek and Abdullayev [4] studied a solution of the difference equation

xn+1 =
xn−(k+1)

1+ xnxn−1...xn−k
.

Karatas [9] studied the global behavior of the nonnegative equilibrium points of the difference equation

xn+1 =
Axn−m

B+C
2k+1
∏
i=0

xn−i

.

Abo-Zeid [8] investigated the global behavior of all solutions of the difference equation
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xn+1 =
Axn−k

B+C
k
∏
i=0

xn−i

.

El-Sayed et al. [5] obtained the formulas of the recursive sequences

xn =
xnxn−5

xn−4(±1± xnxn−5)
.

Our aim in this paper is to obtain the solutions of the difference equation

xn+1 =
(−1)naxn−2k

a+(−1)n
2k
∏
i=0

xn−i

, n = 0,1, ... (1.1)

where k is a positive integer and initial conditions are non zero real numbers with
2k
∏
i=0

xn−i 6=∓a.

Definition 1.1. Let I be some interval of real numbers and let f : Ik+1→ I be a continuously differentiable function. Then for every set of
initial conditions x−k,x−(k+1), ...,x0 ∈ I, the difference equation

xn+1 = f (xn,xn−1, ...,xn−k) , n = 0,1, ... (1.2)

has a unique solution {xn}∞

n=−k .

Definition 1.2. A sequence {xn}∞

n=−k is said to be periodic with period p if

xn+p = xn for all n≥−k.

2. Main Results

Before we obtain main results we will give a few lemmas for future use.

Lemma 2.1. Let {xn}∞

n=−2k be a solution of Eq.(1.1).Assume that
2k
∏
i=0

x−i 6=±a.Then we take following equalities

x1 =
ax−2k

a+
2k
∏
i=0

x−i

,x2 =
1
a

[
−x−(2k−1)

(
a+

2k
∏
i=0

x−i

)]
,

x3 =
ax−(2k−2)

a−
2k
∏
i=0

x−i

,x4 =
1
a

[
−x−(2k−3)

(
a−

2k
∏
i=0

x−i

)]
, ...,

x2k−2 =
1
a

[
−x−3

(
a−

2k
∏
i=0

x−i

)]
,x2k−1 =

ax−2

a+
2k
∏
i=0

x−i

,

x2k =
1
a

[
−x−1

(
a+

2k
∏
i=0

x−i

)]
,x2k+1 =

ax0

a−
2k
∏
i=0

x−i

.

Proof. It is obvious when applied basic itiration method for n = 0,1, ...,2k in Eq.(1.1).

Lemma 2.2. Let {xn}∞

n=−2k be a solution of Eq.(1.1).Assume that
2k
∏
i=0

x−i 6=±a.Then we take following equalities

x2k+5 =−x−(2k−3),x2k+6 =
x−(2k−4)

(
−a+

2k
∏
i=0

x−i

)
a+

2k
∏
i=0

x−i

,

x2k+7 =−x−(2k−5),x2k+8 =
x−(2k−6)

(
a+

2k
∏
i=0

x−i

)
−a+

2k
∏
i=0

x−i

,

x2k+9 =−x−(2k−7), ...,x4k−1 = x−3,x4k =
x−2

(
−a+

2k
∏
i=0

x−i

)
a+

2k
∏
i=0

x−i

,

x4k+1 =−x−1,x4k+2 =
x0

(
a+

2k
∏
i=0

x−i

)
−a+

2k
∏
i=0

x−i

.

Proof. It is obvious when applied basic itiration method for n = 2k+4,2k+5, ...,4k+1 in Eq.(1.1).
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Lemma 2.3. Let {xn}∞

n=−2k be a solution of Eq.(1.1).Assume that
2k
∏
i=0

x−i 6=±a. Then we take following equalities

x4k+6 =
1
a

[
x−(2k−3)

(
a+

2k
∏
i=0

x−i

)]
,x4k+7 =

−ax−(2k−4)

a+
2k
∏
i=0

x−i

,

x4k+8 =
1
a

[
−x−(2k−5)

(
−a+

2k
∏
i=0

x−i

)]
,x4k+9 =

ax−(2k−6)

−a+
2k
∏
i=0

x−i

,

x4k+10 =
1
a

[
x−(2k−7)

(
a+

2k
∏
i=0

x−i

)]
, ...,x6k =

1
a

[
x−3

(
a+

2k
∏
i=0

x−i

)]
,

x6k+1 =
−ax−2

a+
2k
∏
i=0

x−i

,x6k+2 =
1
a

[
−x−1

(
−a+

2k
∏
i=0

x−i

)]
,x6k+3 =

ax0

−a+
2k
∏
i=0

x−i

.

Proof. It is obvious when applied basic itiration method for n = 4k+5,4k+6, ...,6k+2 in Eq.(1.1).

The following result is obtained directly from Lemma 2.1, Lemma 2.2 and Lemma 2.3.

Corollary 2.4. Let {xn}∞

n=−2k be a solution of Eq.(1.1).Assume that
2k
∏
i=0

x−i 6=±a. Then we take following equalities

6k−1
∏

i=4k+2
xi+4 =

4k−2
∏

i=2k+1
xi+4 =

2k−3
∏
i=0

xi+4 =
2k−3
∏
i=0

x−i.

Theorem 2.5. Let {xn}∞

n=−2k be a solution of Eq.(1.1).Assume that
2k
∏
i=0

x−i 6=±a,k is a odd positive integer and 1≤ m≤ 2k+1. Then for

n = 0,1, ...all solutions of Eq.(1.1) are of the form
for m≡ 1(mod4),

x(2k+1)n+m =



ax−[2k−(m−1)]

a+
2k
∏
i=0

x−i

,n≡ 0(mod4)

x−[2k−(m−1)]

(
−a+

2k
∏
i=0

x−i

)
a+

2k
∏
i=0

x−i

,n≡ 1(mod4)

− ax−[2k−(m−1)]

a+
2k
∏
i=0

x−i

,n≡ 2(mod4)

x−[2k−(m−1)],n≡ 3(mod4)

,

for m≡ 2(mod4),

x(2k+1)n+m =



1
a

[
−x−[2k−(m−1)]

(
a+

2k
∏
i=0

x−i

)]
,n≡ 0(mod4)

−x−[2k−(m−1)],n≡ 1(mod4)

1
a

[
−x−[2k−(m−1)]

(
−a+

2k
∏
i=0

x−i

)]
,n≡ 2(mod4)

x−[2k−(m−1)],n≡ 3(mod4)

,

for m≡ 3(mod4),

x(2k+1)n+m =



−ax−[2k−(m−1)]

−a+
2k
∏
i=0

x−i

,n≡ 0(mod4)

x−[2k−(m−1)]

(
a+

2k
∏
i=0

x−i

)
−a+

2k
∏
i=0

x−i

,n≡ 1(mod4)

ax−[2k−(m−1)]

−a+
2k
∏
i=0

x−i

,n≡ 2(mod4)

x−[2k−(m−1)],n≡ 3(mod4)

,

for m≡ 0(mod4),

x(2k+1)n+m =



1
a

[
x−[2k−(m−1)]

(
−a+

2k
∏
i=0

x−i

)]
,n≡ 0(mod4)

−x−[2k−(m−1)],n≡ 1(mod4)

1
a

[
x−[2k−(m−1)]

(
a+

2k
∏
i=0

x−i

)]
,n≡ 2(mod4)

x−[2k−(m−1)],n≡ 3(mod4)

.

Proof. Firstly we take from Lemma 2.1 for n = 0 and m = 1,x1 =
ax−2k

a+
2k
∏
i=0

x−i

,

for n = 0 and m = 2,x2 =
1
a

[
−x−(2k−1)

(
a+

2k
∏
i=0

x−i

)]
,

for n = 0 and m = 3,x3 =
ax−(2k−2)

a−
2k
∏
i=0

x−i

,

for n = 0 and m = 4,x4 =
1
a

[
−x−(2k−3)

(
a−

2k
∏
i=0

x−i

)]
.
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Now our assumption holds that n = 1, m = 1,2,3,4. Let’s take
2k
∏
i=0

x−i = p for easy of writing.

We have from Eq.(1.1) for n = 2k+1,
x2k+2 =

−ax1

a−
2k
∏
i=0

x2k+1−i

.

From Lemma 2.1

x2k+2 =
−a

ax−2k
a+p

a− ax0
a−p

−x−1(a+p)
a

ax−2
a+p

−x−3(a−p)
a ...

−x−(2k−1)(a+p)
a

ax−2k
a+p

=
−a2x−2k

a+p

a− −ap
a−p

=
x−2k(−a+p)

a+p .

That is, for n = 1 and m = 1

x2k+2 =

x−2k

(
−a+

2k
∏
i=0

x−i

)
a+

2k
∏
i=0

x−i

. (2.1)

For n = 2k+2, we have from Eq.(1.1)
x2k+3 =

ax2

a+
2k
∏
i=0

x2k+2−i

.

Then from Lemma 2.1 and Eq.(2.1)

x2k+3 =
a 1

a [−x−(2k−1)(a+p)]

a+
x−2k(−a+p)

a+p
ax0
a−p

−x−1(a+p)
a

ax−2
a+p

−x−3(a−p)
a ...

−x−(2k−1)(a+p)
a

=
−x−(2k−1)(a+p)

a+p .
That is, for n = 1 and m = 2

x2k+3 =−x−(2k−1) (2.2)

For n = 2k+3, we have from E.q.(1.1)
x2k+4 =

−ax3

a−
2k
∏
i=0

x2k+3−i

.

Then from Lemma 2.1 and Eqs. (2.1), (2.2)

x2k+4 =
−a

ax−(2k−2)
a−p

a−[−x−(2k−1)]
x−2k (−a+p)

a+p
ax0
a−p

1
a [−x−1(a+p)]

ax−2
a+p

1
a [−x−3(a−p)]...

ax−(2k−2)
a−p

=
−

a2x−(2k−2)
a−p

a− ap
a+p

=
−x−(2k−2)(a+p)

a−p .

That is, for n = 1 and m = 3

x2k+4 =

x−(2k−2)

(
a+

2k
∏
i=0

x−i

)
−a+

2k
∏
i=0

x−i

. (2.3)

Lastly for n = 1 and m = 4 from Lemma 2.2 and Eqs. (2.1), (2.2), (2.3)
we obtain

x2k+5 =−x−(2k−3). (2.4)

Similarly one can show from Lemma 2.2 and Lemma 2.3 that for n = 2 and m = 1,2,3,4

x4k+3 =
−ax−2k

a+
2k
∏
i=0

x−i

, (2.5)

x4k+4 =
1
a

[
−x−(2k−1)

(
−a+

2k

∏
i=0

x−i

)]
, (2.6)

x4k+5 =
ax−(2k−2)

−a+
2k
∏
i=0

x−i

, (2.7)
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x4k+6 =
1
a

[
x−(2k−3)

(
a+

2k

∏
i=0

x−i

)]
. (2.8)

Similarly one can show from Lemma 2.3 and Eqs. (2.5), (2.6), (2.7), (2.8) that for n = 3 and m = 1,2,3,4

x6k+4 = x−2k, (2.9)

x6k+5 = x−(2k−1), (2.10)

x6k+6 = x−(2k−2), (2.11)

x6k+7 = x−(2k−3). (2.12)

Now suppose that our assumption holds for n−1.That is,
for m≡ 1(mod4),

x(2k+1)n−(2k+1−m) =



ax−[2k−(m−1)]

a+
2k
∏
i=0

x−i

,n≡ 1(mod4)

x−[2k−(m−1)]

(
−a+

2k
∏
i=0

x−i

)
a+

2k
∏
i=0

x−i

,n≡ 2(mod4)

− ax−[2k−(m−1)]

a+
2k
∏
i=0

x−i

,n≡ 3(mod4)

x−[2k−(m−1)],n≡ 0(mod4)

, (2.13)

for m≡ 2(mod4),

x(2k+1)n−(2k+1−m) =



−x−[2k−(m−1)]

(
a+

2k
∏
i=0

x−i

)
a ,n≡ 1(mod4)

−x−[2k−(m−1)],n≡ 2(mod4)

−x−[2k−(m−1)]

(
−a+

2k
∏
i=0

x−i

)
a ,n≡ 3(mod4)

x−[2k−(m−1)],n≡ 0(mod4)

, (2.14)

for m≡ 3(mod4),

x(2k+1)n−(2k+1−m) =



−ax−[2k−(m−1)]

−a+
2k
∏
i=0

x−i

,n≡ 1(mod4)

x−[2k−(m−1)]

(
a+

2k
∏
i=0

x−i

)
−a+

2k
∏
i=0

x−i

,n≡ 2(mod4)

ax−[2k−(m−1)]

−a+
2k
∏
i=0

x−i

,n≡ 3(mod4)

x−[2k−(m−1)],n≡ 0(mod4)

, (2.15)

for m≡ 0(mod4),

x(2k+1)n−(2k+1−m) =



x−[2k−(m−1)]

(
−a+

2k
∏
i=0

x−i

)
a ,n≡ 1(mod4)

−x−[2k−(m−1)],n≡ 2(mod4)

x−[2k−(m−1)]

(
a+

2k
∏
i=0

x−i

)
a ,n≡ 3(mod4)

x−[2k−(m−1)],n≡ 0(mod4)

. (2.16)

We have from Eq. (1.1)

x(2k+1)n+m =
(−1)(2k+1)n+(1−m) ax

(2k+1)n−(2k+1−m)

a+(−1)
(2k+1)n+(1−m) 2k

∏
i=0

x(2k+1)n+(i+1−m)

. (2.17)

Then for n≡ 1(mod4) and m≡ 1(mod4)



Konuralp Journal of Mathematics 321

x(2k+1)n+m =
−ax

(2k+1)n−(2k+1−m)

a−
2k
∏
i=0

x(2k+1)n+(i+1−m)

=
−ax

(2k+1)n−(2k−4s)
a−x

(2k+1)n−(−4s)
x
(2k+1)n−(1−4s)

...x
(2k+1)n−(2k−1−4s)

x
(2k+1)n−(2k−4s)

where s is a positive integer and m = 4s+1.Since k ≡ 1(mod2) and m≤ 2k+1, we get from Eqs. (2.13), (2.14), (2.15), (2.16)

x(2k+1)n+m =
−

a2x−[2k−(m−1)]
a+p

a− ap
−a+p

=
−

a2x−[2k−(m−1)]
a+p
−a2
−a+p

That is,

x(2k+1)n+m =

x−[2k−(m−1)]

(
−a+

2k
∏
i=0

x−i

)
a+

2k
∏
i=0

x−i

. (2.18)

Secondly it can be writen for n≡ 1(mod4) and m≡ 2(mod4)

x(2k+1)n+m =
−ax

(2k+1)n−(2k−4s)
a+x

(2k+1)n+1−(−4s)
x
(2k+1)n−(−4s)

x
(2k+1)n−(1−4s)

...x
(2k+1)n−(2k−2−4s)

x
(2k+1)n−(2k−1−4s)

.

We get from Eqs. (2.13), (2.14), (2.15), (2.16),(2.18)

x(2k+1)n+m =
−x−[2k−(m−1)](a+p)

a+p .
That is,

x(2k+1)n+m =−x−[2k−(m−1)]. (2.19)

We have for n≡ 1(mod4) and m≡ 3(mod4)

x(2k+1)n+m =
−ax

(2k+1)n−(2k−4s)
a−x

(2k+1)n+2−(4s)
x
(2k+1)n+1−(−4s)

x
(2k+1)n−(−4s)

...x
(2k+1)n−(2k−2−4s)

.

Then from Eqs. (2.13), (2.14), (2.15), (2.16),(2.18),(2.19)

x(2k+1)n+m =
−

a2x−[2k−(m−1)]
a−p

a− ap
a+p

=
x−[2k−(m−1)](a+p)

−a+p .

That is,

x(2k+1)n+m =

x−[2k−(m−1)]

(
a+

2k
∏
i=0

x−i

)
−a+

2k
∏
i=0

x−i

. (2.20)

Lastly we take for n≡ 1(mod4) and m≡ 0(mod4)
x(2k+1)n+m =

ax
(2k+1)n−(2k−4s)

a+x
(2k+1)n+3−(4s)

x
(2k+1)n+2−(−4s)

x
(2k+1)n+1−(−4s)

...x
(2k+1)n−(2k−3−4s)

.

Then from Eqs. (2.13), (2.14), (2.15), (2.16),(2.18),(2.19),(2.20)

x(2k+1)n+m =
−x−[2k−(m−1)](a−p)

a−p .
That is,

x(2k+1)n+m =−x−[2k−(m−1)]. (2.21)

Similarly one can obtained other situations for n≡ 2(mod4),n≡ 3(mod4) and n≡ 0(mod4). Thus, the proof is complete.

Theorem 2.6. Let {xn}∞

n=−2k be a solution of Eq.(1.1).Assume that
2k
∏
i=0

x−i 6=±a,k is a even positive integer and 1≤m≤ 2k+1. Then for

n = 0,1, ...all solutions of Eq.(1.1) are of the form
for m≡ 1(mod4),

x(2k+1)n+m =



ax−[2k−(m−1)]

a+
2k
∏
i=0

x−i

,n≡ 0(mod4)

−x−[2k−(m−1)],n≡ 1(mod4)
−ax−[2k−(m−1)]

a−
2k
∏
i=0

x−i

,n≡ 2(mod4)

x−[2k−(m−1)],n≡ 3(mod4)

,

for m≡ 2(mod4),

x(2k+1)n+m =



1
a

[
−x−[2k−(m−1)]

(
a+

2k
∏
i=0

x−i

)]
,n≡ 0(mod4)

−x−[2k−(m−1)]

(
a+

2k
∏
i=0

x−i

)
a−

2k
∏
i=0

x−i

,n≡ 1(mod4)

1
a

[
x−[2k−(m−1)]

(
a+

2k
∏
i=0

x−i

)]
,n≡ 2(mod4)

x−[2k−(m−1)],n≡ 3(mod4)

,
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for m≡ 3(mod4),

x(2k+1)n+m =



ax−[2k−(m−1)]

a−
2k
∏
i=0

x−i

,n≡ 0(mod4)

−x−[2k−(m−1)],n≡ 1(mod4)
−ax−[2k−(m−1)]

a+
2k
∏
i=0

x−i

,n≡ 2(mod4)

x−[2k−(m−1)],n≡ 3(mod4)

,

for m≡ 0(mod4),

x(2k+1)n+m =



1
a

[
−x−[2k−(m−1)]

(
a−

2k
∏
i=0

x−i

)]
,n≡ 0(mod4)

−x−[2k−(m−1)]

(
a−

2k
∏
i=0

x−i

)
a+

2k
∏
i=0

x−i

,n≡ 1(mod4)

1
a

[
x−[2k−(m−1)]

(
a−

2k
∏
i=0

x−i

)]
,n≡ 2(mod4)

x−[2k−(m−1)],n≡ 3(mod4)

.

Proof. It can be proved like proof of Theorem 2.5.

Corollary 2.7. Eq.(1.1) has periodic solutions of period (8k+4).

Proof. It is obvious from Theorem 2.4 and Theorem 2.5.

3. Applications

In this section some applications given to verify theorem 2.4 and theorem 2.5. We choosed a, k and initial conditions arbitrarly. The figures
in this section were drawn by Matlab packet program.
Example 2.8. Let xn be a solution of the Eq.(1.1) with a = 3,k = 5. If the initial conditions x0 = 1, x−1 = 1,3, x−2 = 3, x−3 = 2,5, x−4 =
1,8, x−5 = 1,1, x−6 = 4, x−7 = 5,3, x−8 = 1,5,x−9 = 2,5,, then the solution is given by Figure 2.9.

Figure 2.9 Note that the figure verifies the Theorem 2.4 and Corollary 2.
Example 2.10. Let xn be a solution of the Eq.(1.1) with a = −7,k = 4. If the initial conditions x0 = 2, x−1 = 1,2, x−2 = 1, x−3 =
3,5, x−4 = 4,8, x−5 = 1,6, x−6 = 5, x−7 = 2,3, x−8 = 2,7, then the solution is given by Figure 2.11.

Figure 2.11 Note that the figure verifies the Theorem 2.5 and Corollary 2.
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